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Abstract: To effectively de-noise the Gaussian white noise and periodic narrow-band interference
in the background noise of partial discharge ultra-high frequency (PD UHF) signals in field
tests, a novel de-noising method, based on a single-channel blind source separation algorithm,
is proposed. Compared with traditional methods, the proposed method can effectively de-noise
the noise interference, and the distortion of the de-noising PD signal is smaller. Firstly, the PD
UHF signal is time-frequency analyzed by S-transform to obtain the number of source signals.
Then, the single-channel detected PD signal is converted into multi-channel signals by singular
value decomposition (SVD), and background noise is separated from multi-channel PD UHF signals
by the joint approximate diagonalization of eigen-matrix method. At last, the source PD signal is
estimated and recovered by the l1-norm minimization method. The proposed de-noising method was
applied on the simulation test and field test detected signals, and the de-noising performance of the
different methods was compared. The simulation and field test results demonstrate the effectiveness
and correctness of the proposed method.

Keywords: partial discharge; blind source separation; de-noising performance; multi-channel signal;
l1-norm minimization method

1. Introduction

Partial discharge (PD), which is caused by insulation defects, can be utilized to evaluate the
insulation state of high voltage devices [1–3]. Since ultra-high frequency (UHF) signals (0.3–3 GHZ) will
be also produced and propagated outside through the non-metal shielding dielectrics when PD occurs,
the UHF antenna sensor can be used to detect the PD of high-voltage (HV) apparatus [4]. However,
since the PD UHF signal amplitudes are very low in the early insulation defects, and vulnerable to
interference due to the numerous external electromagnetic waves, the detected PD signal will have
serious waveform distortion, even submerged in background noise interference. Thus, the de-noising
method has attracted extensive attention from researchers.
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Periodic narrow-band interference and Gaussian white noise are the main components of
background noise interference. Digital PD de-noising methods have been widely used, with the
advantage of good noise suppression performance. There are several digital PD de-noising technologies,
such as Fast Fourier transform (FFT) thresholding filtering, adaptive digital filtering (AF), empirical
mode decomposition (EMD), undecimated Wavelet Transform (UWT), and adaptive wavelet
thresholding (AWT) methods. Although FFT thresholding filtering and the AF method can effectively
suppress the periodic narrow-band interference, the signal will be distorted when the frequency of PD
signal and narrow-band interference are coincident [5,6]. The EMD method contains the modal aliasing
problem which affects the de-noising performance [7]. The UWT method is a commonly used wavelet
de-noising method to suppress the noise interference [8]. The AWT method can effectively suppress
Gaussian white noise; however, since the wavelet basis and decomposed layers are difficult to select,
the de-noising PD signal will be distorted when the wavelet transform method is used to suppress the
periodic narrow-band interference [9].

A chaotic oscillator method was proposed to effectively suppress the narrow-band interference
signal [10], but it cannot setup the system periodic frequency, and the calculation quantity is
large. A reverse separation method, based on the independent component analysis (RS) method,
was proposed to reversely separate the partial charge signal from the noise interference signals [11],
but the de-noising PD signal amplitude was changed. A sparse representation de-noising method was
proposed in [12], but it needs to establish the atomic library and takes a long time to complete the
iteration calculation. A generalized S-transform module time-frequency matrix method (GSMT) was
proposed for de-noising the PD signals in [13], but it could not effectively suppress the amplitude
modulated narrow-band interference during wireless communication, and large amounts of matrix
operations were needed. To suppress the Gaussian white noise, a mathematical morphology filters
(MMF) method was proposed to suppress the Gaussian white noise in [14], and a novel singular value
decomposition (SVD) method was proposed to suppress the Gaussian white noise and the original PD
signal could be more accurately recovered in [15].

Blind source separation technology (BSS) has been proposed to effectively separate the source
signals when the characteristic parameters and models of source signals are unknown [16–18]. All noise
interference signals and original PD signals can be seen as the source signals, and the detected PD UHF
signals are considered to be the observation signals. Hence, the original PD signal can be separated from
the observation signals without solving the time-frequency information of narrow-band interference
signals in the PD UHF signals.

This paper proposed a novel PD UHF de-noising method based on a single-channel blind source
separation algorithm (BSS), which can effectively suppress the background noise interference of PD
UHF signals and reduce the distortion of de-noising PD UHF signals. Firstly, the principle of de-noising
method based on BSS is introduced in Section 2. The single-channel signal can be converted into
multi-channel signals by the singular value decomposition (SVD), and background noise is separated
from multi-channel PD UHF signals by the joint approximate diagonalization of eigen-matrices, and the
PD UHF signal from which the noise has been separated from can be recovered by estimation of the
l1-norm minimization method. The proposed method is applied in the simulation test and field test
detected PD UHF signals in Sections 3 and 4. In addition, the de-noising performances of different
de-noising methods were evaluated and compared. The experimental results verify the effectiveness
and correctness of the proposed method. In addition, conclusions are summarized in Section 5.

2. Single-Channel Blind Source Separation De-Noising Algorithm

2.1. BSS Mathematical Model

Assume s(t) = [s1(t), s2(t), . . . , sN(t)] is the unknown independent vector from N signal
sources, x(t) = [x1(t), x2(t), . . . , xM(t)] is the known vector detected by M sensors after several
transmission process mixtures and t is the time series. Since the superposition of the PD signal, periodic
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narrow-band interference signal and Gaussian white noise signal in the PD UHF signal is linear mixed,
the mathematical model of linear mixed BSS can be expressed as [19,20].

x(t) = As(t) (1)

where A is the mixed matrix with M in N order.
Then, the unknown signal vector s(t) can be separated from the detected signal, x(t), by solving

the separation matrix, W. Assume y(t) = [y1(t), y2(t), . . . , yN(t)] is the output signal vector after BSS.
The mathematical model of BSS is

y(t) = Wx(t) = WAs(t) (2)

where W is the separation matrix with N in M order.
When M ≥ N, it is non-underdetermined blind source separation. The unknown PD signal vector

s(t) can be directly solved by Equation (2). When M < N, it is underdetermined blind source separation.
Since the solution of Equation (2) is not unique, the optimal estimate solution of s(t) can be only
calculated by the estimation method. However, for PD UHF de-noising, a single sensor is always
used to detect the PD UHF signal (M = 1), and the number of source signals (N) (includes the PD
signal, white Gaussian noise signal and other narrow-band interference signals) will be larger than
three (N ≥ 3), which is called single-channel BSS. Hence, the BSS based on matrix computation is not
feasible. The one-dimensional signal vector, x(t), detected by single channel should be decomposed into
multiple time-domain signals. The single-channel PD signals can be converted into multiple-channel
signals, through establishing the virtual channels, meeting the requirements of non-underdetermined
blind source separation.

2.2. Number Estimation of Source Signals

To establish the virtual channels, the number of source signals (N) is needed. Firstly, the one-dimensional
time domain signal is mapped to a two-dimensional time-frequency domain through the time-frequency
analysis of detected source signals. The amplitude–time source signals can be converted into
amplitude–time–frequency signal. Hence, the number of source signals (N) can be obtained.

Due to the advantages of flexibility of time–frequency resolution and convenience, S-transform is
used to convert the source signals. S-transform function can be expressed as [21]

s(τ, f ) =
∞∫
−∞

x(t)g(t− τ, f )e−j2π f tdt =
∞∫
−∞

x(t)
f√
2π

e−
f 2(t−τ)2

2 e−j2π f tdt (3)

where f represents the frequency, t and τ represent the time, and g(t − τ, f ) represents the Gaussian
window function.

Since the frequency distribution of periodic narrow-band interference is concentrated and the
amplitude is large, a clustering analysis method of frequency section characteristic parameters,
based on the time–frequency matrix of S-transform, is proposed to estimate the number of signal
sources. The proposed clustering analysis method is as follows:

Step 1: Solve the time–frequency matrix based on S-transform, the frequency sections are extracted
at each 10 MHz interval, such as 0~10 MHz, 10 MHz~20 MHz, etc.

Step 2: Compare the amplitudes of all time–frequency sampling points for each frequency section.
The maximum amplitude (AMmax) is characteristic parameter 1, and the minimum amplitude (AMmin)
is characteristic parameter 2.

Step 3: Solve the average amplitude (AMav) for all time–frequency sampling points for each
frequency section as characteristic parameter 3.

Step 4: According to the characteristic parameters extracted in Step 2 and Step 3, the fast search
and find of the density peaks clustering (FSFDPC) algorithm is proposed to cluster [22]. The cluster
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number, which is the amount of periodic narrow-band interference (Npn), can be obtained. The FSFDPC
algorithm has better convergence capacities.

Step 5: According to the source signal statistical characteristics of blind source separation,
the number of PD UHF signals and the Gaussian white noise signal are equal to 1. Hence, the number
of the source signals is N = Npn + 2.

2.3. Multi-Channel Detected Signal Recombination

For single-channel BSS, the traditional method of constructing virtual channels is the empirical
mode decomposition (EMD), which can decompose the single-channel signal into intrinsic mode
function signals. However, since the PD UHF signal and periodic narrow-band interference source
signal are independent, the traditional method has the modal aliasing problem which will negatively
affect the final signal separation result. Therefore, this paper proposed a novel multi-channel detected
signal recombination method based on SVD. The trajectory matrix (X) of detection signal x(t) can be
expressed as [23,24]

X = UΛaVT (4)

where X is the trajectory matrix, U and V are the orthogonal matrices with m by n order, respectively,
Λa = diag (a1, a2, . . . , an) is a diagonal matrix, a1, a2, . . . , an are the singular values of mixed matrix A.

Since matrix A with rank k can be expressed as the sum of k submatrices with rank 1,

X = UΛaVT =
k

∑
i=1

aiuivT
i =

k

∑
i=1

aiXi (5)

where ui and vi are the singular value vectors of the i-th column of matrices U and V , respectively.
Xi is a submatrix.

Each submatrix in SVD is multiplied by the singular value weight and two eigenvectors are
derived from matrices U and V , respectively. The submatrix and the singular value (ai) have a positive
correlation. Hence, since the time–frequency distribution of the PD signal and periodic narrow− band
interference is relatively concentrated, the amount of information of the singular values is large.
When the time–frequency distribution of Gaussian white noise signal is dispersed, the amount of
information of the singular values is smaller. In addition, the submatrices for different singular values
(ai) are statistically independent, the corresponding submatrices with the first N singular values can be
obtained through the SVD calculation of the single-channel detection signal, x(t). Then, the virtual
channels are constructed by signal reconstruction calculation, and the multi-channel signals can be
recombined for blind source separation de-noising.

Hence, the proposed multi-channel detected signal recombination method is as follows:
Step 1: Construct a trajectory matrix (X) of signal x(t), as follows:

X =


x1 x2 . . . xn

x2 x3 . . . xn+1
...

...
...

xm xm+1 . . . xn+m−1

 (6)

Step 2: The SVD calculation for trajectory matrix X, and the singular value sequence a1, a2, . . . ,
aN is obtained.

Step 3: Extract the first N singular value sequence (a1, a2, . . . , aN) and the corresponding
submatrices. Reconstruct the virtual channels.

Xj = UΛ jVT = ajujvT
j (7)
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where Cj is the virtual channel signal trajectory matrix. Λj = diag ((0, . . . , 0), aN, (0, . . . , 0)),
j = 1, 2, . . . , N.

Step 4: Inversely calculate the trajectory matrix (Cj), according to Step 1. The virtual channel
signal, Cj(t), can be obtained.

Step 5: Recombine the virtual channel signal, Cj(t), and the original single-channel detected signal,
x(t), as the novel multi-channel detected signal, D(t) = [x(t), C1(t), C2(t), . . . , CN(t)]. It will become the
non-underdetermined blind source separation.

2.4. BSS De-Noising Method Based on the JADE Algorithm

The separation matrix (W) is the most important for BSS. This paper proposed the JADE
algorithm to solve the separation matrix, W. The JADE algorithm introduces a fourth-order cumulant
of multivariate data to estimate separation matrix W by characteristics decomposition and joint
approximation diagonalization [25]. The blind source separation de-noising method based on the
JADE algorithm can be divided into two steps to solve the separation matrix (W) whitening process
and orthogonal transform processes, as shown in Figure 1.
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Figure 1. Schematic diagram of the JADE blind source separation algorithm.

Firstly, the multi-channel detected signal, D(t), should be whitening processed to eliminate the
second-order correlation between the components. The whitening process can be expressed as [25]

D′(t) = QD(t) = QAs(t) = Cs(t) (8)

where Q is the whitening matrix, D′(t) is the signal after the whitening process, in which each
component is relatively independent and the variance is 1, and matrix C is the product of matrices Q
and A.

Assume Rx is the correlation matrix of the multi-channel detection signal D(t), and D(t) can be
eigenvalue decomposed as

Rx = EΛλ
2ET (9)

where matrix Λλ
2 = diag(λ2

1, λ2
2, . . . , λ2

n) is the orthogonal matrix, in which the diagonal elements are
the eigenvalues of matrix Rx, and the corresponding standard orthonormal eigenvector is the column
vector of characteristic matrix E.

The whitening matrix (Q) can be expressed as

Q = Λλ
−1/2ET (10)

Since the component variances of s(t) and D′(t) are both 1, each element of s(t) is independent,
and each element of D(t) is orthogonal; matrix C is an orthogonal normalized matrix and can be
expressed as

CCT = CTC = IN (11)

where IN is the N-order unit matrix.
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The matrix, D′(t), after the whitening process needs the orthogonal transformation to make
aure that the components after blind source separation are not correlated and the variance is 1.
The orthogonal transformation process can be expressed as

s′(t) = Px′(t) (12)

where matrix P is the orthogonal matrix, s′(t) is the approximate s(t) by orthogonal transformation estimation.
The fourth-order cumulant of D′(t) is

cum(x′i , x′j, x′h, x′l) =
L

∑
p=1

kpcipcjpchpclp (13)

where 1 < i, j, h, l < L, kp is the fourth-order cumulant of each element and cip, cjp, chp, clp are the
elements of (i, p), (j, p), (h, p), (l, p) of matrix C, respectively.

For any matrix (M) with L by L order, the fourth-order cumulant matrix, QD(M), can be
expressed as

[QD(M)]ij =
L

∑
h=1

L

∑
l=1

cum(xi, xj, xh, xl)mhl (14)

where mhl is the element (h, l) of matrix M.
According to Equation (9), Equation (14) is

QD(M) = PQS(M)PT (15)

where QS(M) is the fourth-order cumulant matrix of s(t).
Since the components of s(t) are statistically independent, matrix QS(M) is the diagonal matrix.

Select a matrix, M = [M1, M2, . . . , Mr], the orthogonal matrix (P) can be solved by joint approximate
diagonalization of matrix QD(M). The quadratic sum of diagonal elements is defined as the evaluation
index of the joint approximate diagonalization calculation,

E(P) =
L

∑
r=1

∣∣∣diag(PQS(Mr)PT)
∣∣∣2 (16)

The orthogonal matrix P can be solved by minimizing E(P). Then, the whitening matrix (Q) and
the separation matrix (W = QP) can be obtained.

2.5. PD Signal Recovery After De-Noising

Since the signal, s′(t), after blind source separation, based on the JADE algorithm, is an
approximate signal vector of s(t), the amplitude of s′(t) is different from the source signal. To improve
the accuracy of blind source separation, this paper proposed an l1-norm minimization method to
recover the original approximate PD UHF signal, s′(t). For a matrix with M′ by N′ order, CM′

N′ solutions
can be obtained in the l1-norm minimization [26]. Hence, the minimum norm solution can be obtained
through comparison with the solutions. The l1-norm minimization method is shown as follows:

Step 1: Calculate the CM′
N′ submatrices with M′ by N′ order of mixture matrix A, which is denoted

as Bg = [Bg1, Bg2, . . . , BgM ′ ], g = 1, 2, . . . , CM′
N′ ; g1, . . . , gM ′ ∈ {1, . . . , N′}.

Step 2: Solve the minimum l1-norm solution at t = t0. The solution can be expressed as

s
′(g)(t0) = [s

′(g)
g1 (t0), . . . , s

′(g)
gM′

(t0)] = B−1x(t0) (17)
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Step 3: Calculate the l1-norm Jg of solution s′(g)(t0), as follows

Jg =
N′

∑
b

∣∣∣s′(g)(t0)
∣∣∣, b = 1, . . . N′ (18)

Step 4: Calculate the minimum norm as the approximate signal s′(t0) at t = t0 as follows

s′(t0) = s′min(t0) = min
s′(g)(t0)

Jg (19)

Step 5: Calculate s′(t) at all time points, reconstruct the PD source signal, and the signal recovery
of PD signal is complete.

The proposed flow chart for the proposed PD UHF signal de-noising method based on
single-channel blind source separation is shown in Figure 2. Firstly, the single-channel detected
signal is analyzed through time–frequency analysis by S-transform, the frequency section characteristic
parameters based on the time–frequency matrix of S-transform is used for clustering analysis, and the
number of source signals (N) can be obtained. Then, construct the trajectory matrix of the detected
signal, and the singular value sequence of the corresponding submatrices can be obtained by SVD
calculation. The virtual channel can be reconstructed, and novel multi-channel signals can be obtained
by combining the virtual channel and original single-channel signals. In addition, the PD signal can be
separated from the mixed signals by BSS based on the JADE algorithm. Finally, the PD signal can be
recovered by the l1-norm minimization method.
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3. Simulation Test of De-Noising

3.1. Simulation Test Signals

Different types of typical insulation defects are simulated in the gas insulated switchgear (GIS)
laboratory test platform, respectively. The corresponding PD UHF signals can be detected by the step
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voltage test. Firstly, the background noise interference was measured when the PD signals did not
generate in GIS. Then, gradually increase the voltage until the remarkably stable PD UHF signals
can be detected, the PD signals are recorded. Table 1 shows the insulation defects and test voltages.
The simulation method for each insulation defect is shown in Figure 3. The simulation test platform
and schematic diagram of the simulation test are shown in Figures 4 and 5, where T1 is the voltage
regulator, T2 is the PD test transformer (YDTW-25/100, Wuhan Retop Power Equipment Company,
Wuhan, China), R1 = 1 MΩ is the protection resistance, R2 = 50 Ω, C1/C2 is the power–frequency
voltage divider (TAWF-1000/600), the PD UHF antenna is the Diagnostic Monitoring Systems (DMS)
PD UHF antenna sensor (working bandwidth: 0.5~3 GHZ, highest antenna gain: 2.7 dBi, DMS,
Glasgow, UK), the oscilloscope which is used to detect the PD UHF signals is WavePro 640Zi (maximum
sampling frequency: 20 Gs/s, maximum bandwidth: 4 GHZ, Teledyne LeCroy, Chestnut ridge,
New York, NY, USA. ), and N2/SF6 mixed gas is filled in GIS (volume ratio of N2/SF6: 1:4, 0.5 MPa).

Table 1. Insulation defects and test voltages.

Insulation Defect Types Test Voltage Pulse Sequence

Metal tip 27.8 kV Pulse 1
Internal air gap 21.6 kV Pulse 2

Floating potential 22.4 kV Pulse 3
Free metal particles 29.5 kV Pulse 4
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Figure 5. Schematic diagram of the simulation test platform.

The PD UHF pulse signals produced in four kinds of insulation defects are combined, as shown
in Figure 6a. The Gaussian white noise and periodic narrow-band interference should be added into
the PD UHF pulse signals. Since the periodic narrow-band interference mainly consists of the carrier
communication and mobile phone signals, which are the sine wave signals, with frequencies of 470,
900, and 1800 MHZ. The mathematical models of signals can be expressed as

Z1(t) = 0.005 sin(2π · 470× 106 · t)
Z2(t) = 0.005 sin(2π · 900× 106 · t)

Z3(t) = 0.005 sin(2π · 1800× 106 · t) · cos(2π · 2× 105 · t)
(20)
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Figure 6. Partial discharge (PD) UHF signals of the simulation tests.

Since the signals of wireless communication are always from the amplitude modulation type,
Z3 (t) is the amplitude modulation sine wave model. In addition, the PD signal detection will be
interfered by Gaussian white noise; thus, Gaussian white noise with distribution (0, 0.4) is added.
Figure 6b shows the final noisy PD signal. It can be seen that the signal is seriously disturbed,
and time–domain characteristics of signals cannot be identified.

3.2. De-Noising Results and Discussion

The proposed single-channel blind source separation algorithm was used to de-noise the noisy
PD UHF signal in Figure 6b. Four traditional methods were also used for de-noising for comparison,
as shown in Table 2. For the AF algorithm, the least mean square (LMS) adaptive filter algorithm
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is used. The order of the filter is 255, the transition width of the filter is 100 MHZ, and the minimum
width of a stop band is 50 MHZ [27]. For the AWT algorithm, the db10 wavelet is selected as the
wavelet basis, and the decomposition layer is 10 [9]. For the RS algorithm, the constructed Hankel
matrix is 15,000 by order 5001, and the larger number of singular values is 18 [11]. For the GSMT
algorithm, the adjusted parameter of the generalized S-transform is 0.3, and the number of effective
singular values is 4 [13].

Table 2. De-noising method.

Method De-Noising Method

Method 1 Proposed single-channel blind source separation (BSS)
Method 2 Adaptive filtering de-noising (AF)
Method 3 Adaptive wavelet thresholding de-noising (AWT)
Method 4 Reverse separation based on independent component analysis (RS)
Method 5 Generalized S-transform module time-frequency matrix method (GSMT)
Method 6 Undecimated wavelet transform de-noising method (UWT)

Firstly, S-transform is used for the time—frequency analysis of the signal, the time waveform of
the signal is shown in Figure 7a, and the time–frequency distribution is shown in Figure 7b. Then the
clustering analysis method of frequency section characteristic parameters is used to analysize the
time–frequency distribution and estimate the number of source signal; the clustering results are shown
in Figure 7c, the number of source signals is N = 5.
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Figure 7. Time–frequency distribution and clustering results of source signals.
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The reconstructed virtual channel signals by SVD calculation and trajectory matrix reconstitution
are shown in Figure 8. Then, the de-noising PD signal was obtained by the blind source separation
de-noising process based on the JADE algorithm and the l1-norm minimization method, as shown in
Figure 9. In addition, four traditional methods in Table 2 were performed for de-noising the PD UHF
signals. The de-noising results are shown in Figure 10.
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Figure 9. De-noised results using the blind source separation method. Figure 9. De-noised results using the blind source separation method.
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Figure 10. De-noised results using traditional de-noising methods.

Four evaluation indices are introduced to evaluate the PD UHF signal de-noising performance
for each method: signal to noise ratio, root-mean-square error, waveform similarity coefficient,
and variation trend parameter. Since the noise interference of the PD UHF signal in Figure 6 is very
small, it can be approximately seen as the ideal non-noise original PD signal. A higher signal to noise
ratio leads to a greater ability of the de-noising method to suppress interference. The root-mean-square
error can show the difference between the de-noising PD and original PD signals. A lower value leads
to a smaller distortion of the de-noising PD signal. When the waveform similarity coefficient is closer
to 1, the de-noising PD and original PD signals are more similar. The variation trend parameter reflects
the variation trend similarity between the de-noising PD and original PD signals. The variation trends
for both signals are consistent when the value is closer to 1.

The evaluation results of various methods which were evaluated by the proposed indices are
shown in Table 3.
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Table 3. De-noising performance evaluation results.

Evaluation Index De-Nosing Method Pulse 1 Pulse 2 Pulse 3 Pulse 4 Pulse 5

Signal to noise ratio

Proposed BSS 18.421 19.322 17.643 17.119 18.064
AF 2.662 4.723 3.982 5.298 4.209

AWT 3.816 3.210 2.978 3.382 3.283
RS 13.982 13.298 13.132 13.309 13.325

GSMT 11.120 10.872 10.987 10.876 10.897
UWT 8.142 7.973 8.023 8.487 8.201

Root-mean-square error

Proposed BSS 0.002 0.003 0.003 0.003 0.003
AF 0.063 0.048 0.023 0.021 0.036

AWT 0.052 0.059 0.064 0.053 0.055
RS 0.003 0.003 0.004 0.003 0.003

GSMT 0.006 0.005 0.006 0.006 0.006
UWT 0.018 0.021 0.019 0.022 0.020

Waveform similarity coefficient

Proposed BSS 0.988 0.969 0.983 0.911 0.973
AF 0.343 0.571 0.445 0.625 0.530

AWT 0.643 0.634 0.667 0.671 0.628
RS 0.962 0.953 0.968 0.973 0.974

GSMT 0.893 0.881 0.896 0.878 0.856
UWT 0.711 0.732 0.740 0.728 0.724

Variation trend parameter

Proposed BSS 1.032 1.048 1.092 1.021 1.051
AF 1.790 1.532 1.691 1.598 1.614

AWT 0.616 0.547 0.774 0.694 0.683
RS 1.070 1.086 1.072 1.086 1.071

GSMT 1.158 1.171 1.168 1.170 1.15
UWT 0.863 0.927 0.881 0.893 0.894

It can be seen that the proposed de-noising method based on single-channel blind source
separation can effectively suppress various noise interference without calculating the characteristic
parameters of narrow-band interference, and the distortion of the de-noising PD signal is very small
through the recovery method based on l1-norm minimization method, compared with traditional
methods. For Method 2 (AF method), since the frequency of the PD UHF signal and periodic
narrow-band interference signal overlap, part of the characteristic quantity of the PD signal will
be removed in Method 2, leading to a large distortion of PD signals. This demonstrates that the
proposed method has a good performance in suppressing the periodic narrow-band interference signal.
For Method 3 (WT method), since the PD UHF signal is complicated and appropriate wavelet basis
function is difficult to select, the distortion of the de-noising PD signals is apparent. In addition,
the difference between the de-noising and original PD signals is larger in Method 4 (RS method),
due to the unknown original PD signal. This demonstrates that, compared with the RS method,
the amplitude of the de-noising PD UHF signal can be recovered by the proposed l1-norm minimization
method. For Method 5 (GSMT method), since there is amplitude modulation sine wave periodic
narrow-band interference, the submatrix modulus value method cannot be used to suppress the
narrow-band interference, the suppression performance for periodic narrow-band interference is not
good. Compared with the GSMT method, the proposed method can also effectively suppress the
amplitude-modulation narrow-band interference. For Method 6 (UWT method), since the frequency
distribution of the periodic narrow-band interference and PD UHF signals overlap, the suppressing
performance is not good.

4. Field Test for De-Noising

The live PD detection was performed on a 500 kV open-type substation in operation, as shown
in Figure 11. The devices are the same as those for the simulation test in Section 3. Figure 12 shows
the detected PD UHF signal with noise interference. The PD signal is seriously interfered by the



Energies 2018, 11, 509 15 of 18

background noise and has obvious distortion. Six methods in Table 2 were performed to de-noise the
detected PD UHF signal in the field test. The de-noising results are shown in Figure 13.
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Figure 12. The detected PD UHF signal in the field test.

Since the original PD UHF signal with no noise interference cannot be obtained in the field
test, the evaluation method in Section 3.2 cannot be used to evaluate the de-noising performance.
Hence, the evaluation indices of the noise suppression ratio and the amplitude attenuation ratio are
proposed for evaluating the de-noising performance in the field test. The noise suppression ratio
denotes the suppression effect of the PD UHF signal after de-noising. The de-noising effect is positively
proportional to the noise suppression ratio. The amplitude attenuation ratio denotes the attenuation
degree of the PD UHF signal after de-noising. The distortion degree is positively proportional to
the amplitude attenuation ratio. Table 4 shows the evaluation results of de-noising performance for
various methods. The proposed de-nosing method can effectively suppress noise interference, and the
amplitude attenuation of the de-noising PD signal is the smallest, compared with traditional methods.
In addition, the proposed method can effectively reduce the calculation amount and computing time.

Table 4. De-noising performance evaluation results in field test.

De-Noising Method Noise Suppression Ratio Amplitude Attenuation Ratio/% Computing Time/s

Proposed BSS 16.14 27.6 1.813
AF 8.91 67.4 0.893

AWT 13.22 51.3 1.141
RS 14.62 52.5 2.121

GSMT 10.87 28.3 6.212
UWT 12.01 37.6 1.485
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Figure 13. De-noising results in field test.

5. Conclusions

This paper proposed a novel PD UHF signal de-noising method, based on a single-channel blind
source separation algorithm. This method utilizes the SVD calculation to convert the single-channel
detected PD signals into multi-channel detected signals, and can effectively suppress the background noise
in the PD UHF signals, combined with the JADE and l1-norm minimization methods. The conclusions are
as follows:
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(1) The submatrix of the SVD decomposition of the original PD signal can convert the single-channel
detected PD signal into multi-channel PD signals; the underdetermined problem of blind source
separation can be effectively solved.

(2) The l1-norm minimization method can effectively solve the large amplitude vibration problem
after single-channel blind source separation, which is better for the subsequent signal processing
and analysis.

(3) Compared with traditional methods, the proposed method can effectively de-noise the Gaussian
white noise and periodic narrow-band interference, and have small distortion.

The proposed method can be applied in the field partial discharge location and the insulation
defect identification of HV apparatus. In addition, the field partial discharge location based on the
proposed method will be studied in the future work.
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