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Abstract: An efficient synchronous active rectifier and Multi Feedback low drop out (LDO) Regulator
coupled with a wireless power receiver (WPR) is proposed in this study. An active rectifier with
maximum power conversion efficiency (PCE) of 94.2% is proposed to mitigate the reverse leakage
current using zero current sensing. Output voltage and current are regulated by multi-feedback LDO
regulator, sharing the single path transistor. The proposed chip is fabricated in the 0.18 µm BCD
technology having die area of 16.0 mm2. A 94.2% power conversion efficiency with the load current
of 800 mA is measured for the proposed active rectifier.

Keywords: wireless power receiver; active rectifier; multi-feedback low-dropout regulator; power
conversion efficiency (PCE)

1. Introduction

Wireless power transfer (WPT) technology is getting significant attention in recent research,
especially with mobile phone chargers. Its applications vary from medical components to automobiles [1].
The inductive coupling method is one of the popular WPT methods applicable for a distance below
0.5 cm with a transfer frequency in the range of 87 kHz to 375 kHz. This method is standardized by two
consortiums: Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA). Whatever we
use the charging technique for, maintaining a high efficiency is necessary which is important because low
efficiency will produce heat from the receiver which creates several problems. Under normal conditions,
a WPT system has more than 5 W of power at its input, low efficiency of the receiver causes heat which
reduces the receiver efficiency [2–6]. Usually, the whole efficiency of wireless power receiver (WPR) is
controlled by the rectifier [7]. As low-dropout (LDO) regulators get their DC supply from the rectifier,
rectifier efficiency is crucial. The output voltage of rectifier determines the LDO regulator’s efficiency.
Protection functions like over current protection (OCP), over voltage protection (OVP), and adaptive
communication limit (ACL) are unified with the LDO regulator.

This study proposes an efficient active rectifier and multi-feedback LDO (MF-LDO) regulator
coupled with a wireless power receiver. Section 2 describes the architecture and building blocks
of inductive coupling WPR. The simulation results are presented in Sections 3 and 4 summarizes
the paper.
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2. Proposed Wireless Power Receiver Design and Its Implementation

2.1. Architecture

The simplified block diagram of the wireless power receiver is depicted in Figure 1 where the
power is transmitted to the receiver through the coil. The impedance matching network maximizes
the power transfer from the receiving coil to active rectifier. The active rectifier converts the input
AC signals (AC1 and AC2) to DC voltage. The proposed active rectifier uses synchronous control by
tracking input frequency by ZCS (zero current sensing) with a monostable circuit to eliminate the
double pulse problem. The battery needs regulated DC voltage which is generated by the MF-LDO
regulator. Protection functions are integrated to the proposed MF-LDO in this work. A 10-bit ADC
converts the internal analog signals from several blocks into digital signals. The digital control block
collects them and arranges the packets based on them. To perform the load modulation, it serializes
the parallel data into serial data and finally delivers to the modulator. In this work, a complete wireless
power receiver (WPR) is designed with proposed active rectifier and MF-LDO.
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Figure 1. The simplified block diagram of the proposed wireless power receiver.

2.2. Active Rectifier

A design of active rectifier is proposed in this work which receives AC input voltage, the polarity of
this input voltage decides which metal oxide semiconductor (MOS) transistor will turn on and off actively
in the active rectifier, as exhibited in Figure 2. High power conversion efficiency is achieved because, at
MOS transistors, less voltage drop can be made as compared to diode-based passive rectifier [8].

ηrectifier =
Vout

|V in|
× Iout

Iin
≈ Vout

Vdo + Vout
× Iout

Iloss + Iout
(1)

The rectifier efficiency is calculated by Equation (1).
In this equation;
Vdo = Voltage drop in conducting path
Iloss = Current loss, defined by the reverse current leakage in power stage
As the power transfer begins, the active rectifier operates in passive mode and operates in active

mode when VRECT gets voltage of the required power level.
The received AC power input rectification power conversion efficiency will be low with high

output power level, therefore, the power efficiency of the rectifier is maximized by minimizing Vdo [9].
Passive diodes have some forward voltage drop which can limit the efficiency of a rectifier [8,10,11].

On the other hand, MOS transistors have a bidirectional current flow where current flow will be from
DC output to AC input. Power conversion efficiency is extremely reduced by this leakage current [12–16].
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Figure 2. Block diagram of the active rectifier.

In Figure 3, the ZCS circuit senses the current of the active rectifier to prevent the reverse leakage
current. To generate the gate signals (LI1, HI1) that turn on and off MLS1 and MHS1 respectively, the ZCS
circuit senses source voltages (VSEN1) of the sensing MOSFET (MSEN1). Also, gate control signals of LI2

and HI2 are generated by MSEN2 in the same way. The gate control signals (LI1, HI1) are turned and off
based on Equations (2) and (3).

Turn− on:VREF1 ≤
(VDD_5V−V SEN1)× R0

R1 + R0
(2)

Turn− off:VREF1 >
(VDD_5V−V SEN1)× R0

R1 + R0
(3)
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Figure 3. Zero current sensing (ZCS) circuit for MHS1 and MLS1.

The efficiency of the active rectifier is improved by the ZCS circuits because reverse currents of the
active rectifier are prevented. The resistors of R0, R1, R2, and R3 with a low-temperature variation are used
in ZCS circuit. The VREF1 and VCS voltages are generated by resistive ratio. Therefore, the ZCS circuit is
designed strongly against the change in PVT variation. The monostable circuit and SR latch in the ZCS
circuits are used to prevent the double pulse problem by glitches in the gate signals (LI1,2 and HI1,2).

The timing diagram of the ZCS circuit is shown in Figure 4a. At zero crossing point of ZCS_SET
is generated. In Figure 2, power transistors (MHS1, MHS2, MLS1, and MLS2) are turned on by ZCS_SET
and turned off by the reset signal. To turn on the high side transistors (MHS1 and MHS2) with the
minimum conduction losses, the bootstrap circuit shown in Figure 2 generates boost voltages (VBST1

and VBST2) with the amplitude levels of AC signals (AC1 and AC2) plus 5 V since the maximum
gate-source voltages of high side transistors (MHS1 and MHS2) are 5 V in this process.
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The simulation results of the Active rectifier are shown Figure 4b. When IAC is 20 mA, the LG1

and HG1 are turned on. On the other hand, when the IAC is less than 5 mA, LG1, and HG1 are turned
off and the reverse leakage current is blocked.
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2.3. Multi Feedback LDO (MF-LDO) Regulator

A regulated DC output is provided to the charger IC before the battery and this is provided by the
LDO regulator. In the WPR system, the receiver needs various protection functions. In a conventional
LDO regulator, the voltage feedback loop is implemented. A MF-LDO regulator is proposed in Figure 5,
in which the protection functions are incorporated to low-dropout regulator. The MF-LDO regulator
shares the power transistor MP1, to save die area.

Figure 6 shows simplified functional diagram of multi feedback LDO. The load current, IOUT,
is defined by VG, VRECT, and VOUT voltages. VOUT and VRECT voltages are defined by the specification
and the active rectifier respectively. Therefore, only VG controls the IOUT, and is derived from Equation (4).

VG =
t

CG
× (I FB + IOVP + IOCL + IACL + ISINK

)
(4)
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Figure 5. Multi-feedback LDO (MF-LDO) regulator.
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In the normal operation mode of MF-LDO, the ISINK current discharges the VG node constantly.
Also, the IFB current is generated by voltage feedback loop. Therefore, VOUT voltage is regulated
constantly, and the VG voltage is changed depending on IOUT currents. In the protection modes of
MF-LDO—such as OCP, OVP, or ACL modes—IOCP, IOVP, and IACL are not zero current sources.
When the IOCP, IOVP, and IACL are not zero current sources, VG voltage is increased and the IOUT

current is blocked or limited since the ISINK current is constant.
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Figure 7 shows the adaptive communication limit (ACL) circuit. If the load current (IOUT) increases
rapidly during the WPC communication period, communication errors may occur. In order to prevent it,
IOUT is limited by the ACL circuit. The input signals of control circuits are the VCOMM signal, the output
signal (VIACL) of the current sensor, and references (REF1,2,3). The ACL is enabled by the VCOMM signal
and the current limit level is determined depending on the voltage level of VIACL signal. When the
VON is high, the parasitic gate capacitor (CG) of MP1 is charged by the limit level block through the
diode, D4. Therefore, the voltage level of VG is increased, and the output current (IOUT) is limited.
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Figure 7. Adaptive communication limit circuit.

Simulated results of a MF-LDO regulator are presented in Figure 8. The MF-LDO regulator
regulates the output voltage to 5 V under the load current of 200 mA. The ACL is enabled at this load
current and regulated up to 400 mA.



Energies 2018, 11, 479 6 of 10
Energies 2017, 10, x FOR PEER REVIEW  6 of 10 

 

  

Figure 8. Simulation results of multi-feedback LDO (MF-LDO) regulator. 

3. Experimental Results 

The proposed WPR chip is fabricated in 0.18 µm 1P4M with MIM capacitors and high sheet 

resistance poly resistors. Figure 9 shows the chip layout pattern of the WPR. The die area in the WPR 

is 16.0 mm2. 

 

Figure 9. Chip layout pattern. 

The measurement environment of wireless power receiver is displayed in Figure 10. Inductive 

wireless power is generated by power transmitter. Below the receiver coil, a transmitter coil is 

placed. 

The measured waveform of the active rectifier is revealed in Figure 11. The ZCS circuit operates 

the active rectifier. MHS1 and MLS1 start to be turned on at 10 mA current of IAC and are active during 

the interval time T1. On the other hand, MHS2 and MLS2 start to be turned on at −15 mA current of IAC 

and are active during the interval time T2. 

The measured waveform of MF-LDO is shown in Figure 12. The value of load current (IOUT) 

varies from 200 mA to 600 mA to check the performance of MF-LDO. When the MF-LDO is in the 

normal operation mode, VOUT is regulated to 5.0 V. On the other hand, when the ACL is enabled, 

IOUT is limited to 450 mA. 

VG

VOUT

VRECT

IOUT

VCOMM

5.2 V 5.5 V 4.8 V

5 V
4 V

200 mA
400 mA

ACL enalbe

Digital 

Block

Active Rectifier

Multi Feedback 

LDO Regulator

ADC

UVLO/

LDO/

OVP/

OCP

4.0 m
m

4.0 mm

Figure 8. Simulation results of multi-feedback LDO (MF-LDO) regulator.

3. Experimental Results

The proposed WPR chip is fabricated in 0.18 µm 1P4M with MIM capacitors and high sheet
resistance poly resistors. Figure 9 shows the chip layout pattern of the WPR. The die area in the WPR
is 16.0 mm2.
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The measurement environment of wireless power receiver is displayed in Figure 10. Inductive
wireless power is generated by power transmitter. Below the receiver coil, a transmitter coil is placed.

The measured waveform of the active rectifier is revealed in Figure 11. The ZCS circuit operates
the active rectifier. MHS1 and MLS1 start to be turned on at 10 mA current of IAC and are active during
the interval time T1. On the other hand, MHS2 and MLS2 start to be turned on at −15 mA current of
IAC and are active during the interval time T2.

The measured waveform of MF-LDO is shown in Figure 12. The value of load current (IOUT)
varies from 200 mA to 600 mA to check the performance of MF-LDO. When the MF-LDO is in the
normal operation mode, VOUT is regulated to 5.0 V. On the other hand, when the ACL is enabled,
IOUT is limited to 450 mA.
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In Figure 13, the rectifier output voltage (VRECT) can change from 6 V to 8 V, whereas the variation
of MF-LDO output voltage (VOUT) is less than 89 mV/A. For this measurement, VRECT is provided
from the power supply.

When the value of load current is 800 mA in Figure 14, the maximum measured PCE of the active
rectifier and wireless power receiver are 94.2% and 85.3%, respectively.

The performance comparison with prior works is shown in Table 1 [8,17,18]. The examples from [8,17]
are active rectifiers for A4WP standard operating at 6.78 MHz and their efficiencies are 91.5% and 94.2%
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respectively. The maximum efficiency of [18] is 92.7% when the input frequency is 150 kHz. Therefore,
this work achieves an efficiency of 92.4% and has the best performance when the input frequency is
150 kHz. This work shows the highest overall efficiency of a rectifier compared with references.
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Table 1. Performance comparison with prior works.

Parameters [8] [17] [18] This Work

Technology 0.18 µm BCD 0.18 µm CMOS 0.18 µm BCD 0.18 µm BCD

Supported standards A4WP A4WP WPC and PMA A4WP WPC and PMA

Input frequency 6.78 MHz 6.78 MHz 85 kHz~500 kHz
6.78 MHz 87 kHz~375 kHz

Input Voltage Range (V) 7–20 7–20 3–20 3–20

Efficiency of rectifier (%) 91.5 94.2
(rectifier only)

91.7 @ 6.78 MHz
92.7 @ 150 kHz 94.2 @ 150 kHz

Post-regulator DC–DC converter N/A DC–DC converter Low-dropout
regulator

System efficiency (%) 80.86 N/A 84.5 @ 6.78 MHz
85.5 @ 150 kHz 85.3

Max. output power (W) 6 8 9 5

Die area (mm2) 12.25 3.45 17.5 16.0
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4. Conclusions

This work describes an inductive coupling (WPC/PMA) WPR having high-efficiency Active rectifier
and MF-LDO Regulator. The synchronous Active rectifier with ZCS is proposed to get high efficiency in
order to reduce the reverse leakage current. MF-LDO Regulator is proposed to implement the output
voltage regulation, OVP, over current limit (OCL), and ACL sharing the single power transistor.

This chip is implemented in the 0.18 µm BCD technology having die area of 16.0 mm2. The maximum
PCE of the Active rectifier is 94.2% at 800 mA load current.
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