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Abstract: Magnetic-resonant wireless power transfer (WPT) has become a reliable contactless source
of power for a wide range of applications. WPT spans different power levels ranging from low-power
implantable devices up to high-power electric vehicles (EV) battery charging. The transmission range
and efficiency of WPT have been reasonably enhanced by resonating the transmitter and receiver coils
at a common frequency. Nevertheless, matching between resonance in the transmitter and receiver is
quite cumbersome, particularly in single-transmitter multi-receiver systems. The resonance frequency
in transmitter and receiver tank circuits has to be perfectly matched, otherwise power transfer
capability is greatly degraded. This paper discusses the mistuning effect of parallel-compensated
receivers, and thereof a novel dynamic frequency tuning method and related circuit topology and
control is proposed and characterized in the system application. The proposed method is based
on the concept of switch-mode gyrator emulating variable lossless inductors oriented to enable
self-tunability in WPT receivers.

Keywords: inductive power transfer; dynamic resonance tuning; parallel compensated; switch-mode;
gyrator; variable inductance; magnetic coupling; resonant inductive coupling; wireless power
transfer (WPT)

1. Introduction

Driven by the high demand of a wide variety of applications, magnetic-resonance wireless power
transfer (WPT) has attracted wide interest in research and industry alike. WPT manifests itself as
a reasonable solution for applications where contactless power transmission is urgent and preferable.
Applications of WPT ranging from low-power (as low as 10 mW) medical implantable devices [1]
to high-power (as high as 20 kW) EV charging [2] have benefited from the basic concept of two
loosely coupled coils to transfer the power within the near field range. Magnetic-resonance WPT is
considered as an inductive coupling supported by resonance in which the transmitter and receiver are
allowed to resonate at a common operating frequency. The resonant inductive coupling WPT is well
known due to its superior power transfer capability over an extended range while efficiency is still
reasonable [3]. Several compensation techniques have been introduced and studied extensively in the
literature starting from the simple connection of series or parallel compensating capacitor [4] up to more
advanced topologies such as inductor/capacitor/inductor (LCL) [5] and inductor/capacitor/capacitor
(LCC) [6].

Considering the simple topology of capacitor-compensated coils, it has been found that the
WPT link efficiency is a function of the quality factor Q at the transmitter and receiver circuit [7].
Consequently, the design of high-Q resonant circuits is preferred in terms of efficiency. However,
the system becomes more sensitive to any frequency mismatch in case of high-Q resonant transmitter
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and receiver. Even for small mismatch percentages, the power transfer capability would drop severely
and the system would lose functionality [8]. The mismatch in a resonant tank, either at the transmitter
or receiver side, originates due to various reasons such as component tolerance, temperature effect on
component value, distance variations and interference from proximity devices [9]. To avoid stability
issues due to high-Q receiver tank, it has been suggested to limit Q at a maximum of ten such that the
system becomes less sensitive for variations and mismatch [3].Therefore, automatic tuning is critical
for high-Q systems, ensuring optimal power transfer conditions. Moreover, a self-tuned receiver tank
is more practical especially in multiple receiver WPT systems [10].

Different solutions have been proposed in the literature for a seamless tuning of WPT receivers.
Among them, Lem et al. [11] proposed an adaptive matching for compensating distance change by
means of a switch-capacitor network. Alternatively, Zaheer et al. [12] added a saturable-core inductor
in parallel with the compensating capacitor where the resonant frequency could by continuously tuned.
Similarly, Si et al. [13] have used a capacitor to be switched dynamically in parallel with the receiver
in order to change the effective value of the capacitor, so that the resonance frequency can be tuned.
On the other hand, Pantic et al. [9] have leveraged a novel tri-state boost converter to be used as means
of real power regulation while injecting a negative or positive reactance to the receiver tank.

This paper, considered as an extended version of the work presented in [14,15], proposes the
concept of gyrator-based dynamic tuning of parallel-compensated WPT receivers. The fundamentals
of tuned and mistuned parallel-compensated WPT receivers are discussed in Section 2. Following that,
the concept of dynamic tuning by means of gyrator-based reactance is presented in Sections 3 and 4.
Driven by the design of gyrator-based reactance, a closed-loop dynamic frequency tuning is given
and verified in Section 5. Moreover, the chip design implementation for the proposed gyrator-based
dynamic tuning is given in Section 6. Finally, system design considerations and technical limitations
are discussed in Section 7.

2. Parallel-Compensated WPT Receivers

Magnetic-resonant WPT is characterized by tuning the transmitter and receiver coil using
a capacitor connected either in series or parallel; hence the name “series-compensated” or
“parallel-compensated” respectively. There are different compensation topologies depending on
the connection of the capacitor at the transmitter and receiver, such as series-series, series-parallel,
parallel-series and parallel-parallel. The power transfer capability and characteristics of each
topology has been extensively discussed in [4]. From the load perspective, a series-compensated
receiver coil is normally used for low-voltage application in which the receiver has voltage source
characteristics combined with a current boosting capability. On the other hand, a parallel-compensated
receiver is suitable for most applications due to the inherent capability of voltage boosting which
extends the system operation at very weak coupling conditions while still meeting the load
voltage requirement [16]. Therefore, this paper focuses on the discussion of mistuning issues in
parallel-compensated WPT receivers in which the proposed dynamic tuning solution is dedicated for
the same.

2.1. Principles of Parallel-Compensated WPT Receivers

In parallel-compensated WPT receivers, the receiver coil LR is compensated by a capacitor CR

connected in parallel to enable the receiver to resonate precisely at the transmitter frequency fT.
Considering the simplified model given in Figure 1, the open-circuit induced voltage Voc is commonly
modeled as a voltage source in series with LR. While the receiver circuit is usually loaded by a rectifier
followed by a voltage regulator, it is widely accepted to assume a resistive load RL for the sake of
simplicity. The voltage ratio of the receiver parallel resonant tank (Vac/Voc) is given by:

Vac

Voc
=

1
s2LRCR + sLR/RL + 1

(1)
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where Vac is the receiver resonant tank output voltage, Voc= jωT MIT , s = jω, M is the mutual
inductance between the transmitter and receiver coils, ωT is the transmitter angular frequency and IT
is the transmitter coil’s current. Given the resonance frequency of the receiver tank as:

ωR0 =
√

1/LRCR (2)

at fully-tuned case, (i.e., the resonance frequency of the receiver tank ωR0 is equal to the transmitter
frequency ωT), then Equation (1) can be reduced with the help of (2) as:

Vac = −j
RL

ωT LR
Voc = −jQRLVoc (3)

where QRL is the receiver’s quality factor. Equation (3) shows that the resonant tank voltage Vac is
boosted from the open-circuit induced voltage Voc by a factor that is equal to the quality factor QRL.
On the other hand, the power transmitted to the receiver is a function of the reflected impedance from
the receiver to the transmitter circuit. The reflected impedance is a function of the input impedance of
the receiver tank, as seen by Voc, defined as:

ZR =
1 + jωLR

(
1

RL
+ jωCR

)
1/RL + jωCR

(4)

and the impedance reflected back to the transmitter is expressed as follows:

Zre f =
ω2M2

ZR
= Rre f − jXre f (5)

where Zref is the receiver impedance seen by the transmitter, and Rref, Xref are the real and imaginary
parts of the reflected impedance respectively. Thus, the expressions for Rref and Xref are derived as:

Rre f =
ω2M2RL

(ω2LRCRRL − RL)
2 + (ωLR)

2 (6)

Xre f =
ω3M2[CRR2

L
(
ω2LRCR − 1

)
+ LR

]
(ω2LRCRRL − RL)

2 + (ωLR)
2 (7)

Similarly, at fully-tuned case the transmitter angular frequency ωT is equal to Equation (2),
Equations (6) and (7) reduce to:

Rre f =
M2RL

L2
R

=
ωT M2QRL

LR
(8)

Xre f =
ωT M2

LR
(9)

Equations (8) and (9) declare that the reflected impedance is a function of M which represents the
coupling between the two coils. Another fact revealed by Equation (9) is that a nonzero reactance is
reflected to the transmitter. The nonzero reflected reactance is an important characteristic that should
be taken into account during the design of the compensation circuit at the transmitter side. On the
other hand, the power transmitted to the receiver is the power dissipated into the real part given in
Equation (8), which reaches a maximum at fully-tuned condition. The maximum power delivered is
written as [12]:

Pmax =
ωTQRL M2 I2

T
LR

=
Q2

RL
RL

V2
oc (10)
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2.2. Mistuning Effect on Power Delivery

The maximum power in Equation (10) refers to the load dependency; moreover, power transfer
capability is greatly enhanced with higher quality factor QRL. However, the receiver circuit becomes
more sensitive for any variations as QRL increases. To illustrate the mistuning effect on the receiver
circuit, Figure 1 depicts possible variations in LR or CR modeled as ∆LR and ∆CR respectively. Note that
∆CR (or ∆LR) comprises either positive or negative values (i.e., presuming over-tuned or under-tuned
conditions). Including such variations implies that the resonance frequency of the receiver tank is
either shifted to lower or higher values compared to the value given in Equation (2). Consequently,
one can conclude that Vac and Pmax in Equations (3) and (10), respectively, are not relevant anymore.
By including all the prospective mismatch sources altogether, it is possible to predict the accurate
performance of the receiver tank. The obtained equations, however, would be cumbersome. Therefore,
a simple case of variation ∆CR in the compensation capacitor is assumed, as shown in Figure 1, in which
∆CR presumes positive or negative values.
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Figure 1. A simplified model for wireless power transfer (WPT) parallel-compensated receiver with
possible components’ variations modeled.

Firstly, the capacitor variation ∆CR is included in Equation (1) in which the voltage boosting ratio
turns into:

Vac

Voc
=

1
[(1 − ω2LR(CR + ∆CR)] + jωLR/RL

(11)

assuming that the transmitter frequency ωT is constant and complies with Equation (2), then the rms
value of Equation (11) is given by:

Vac

Voc

∣∣∣∣
ω=ωT

=
QRL√

1 + (QRLγC)
2

(12)

where (γC = ∆CR/CR) is the capacitance mismatch ratio. By comparing Equations (3) and (12), it is
apparent that the voltage ratio of the receiver tank drops to a lower value due to the capacitance
mismatch. It is even worse for ultra-high QRL receiver circuits. Moreover, the mistuning effect on
the delivered power has to go through the reflected impedance expressions in Equations (6) and (7)
that become:

Rre f =
ω2M2RL

(ω2LRCR(1 + γC)RL − RL)
2 + (ωLR)

2 (13)

Xre f =
ω3M2{[(1 + γC)R2

LCR
(
ω2LRCR(1 + γC)− 1

)]
+ LR

}
[ω2LRCR(1 + γC)RL − RL]

2 + (ωLR)
2 (14)

In a similar way, recalling that (ω = ωT) reduces Equations (13) and (14) to:

Rre f =
ωT M2QRL

LR
(
1 + Q2

RLγ2
C
) (15)
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Xre f =
ωT M2

LR
×

1 + LRCRQ2
RLγC(1 + γC)

1 + Q2
RLγ2

C
(16)

Once more, while paying more attention to the real part in Equation (15), the mistuning factor
γC multiplied by a factor of Q2

RL results in a significant drop in the resistance reflected back to the
transmitter. This necessarily appears as a serious drop in power delivery at the receiver circuit which
is obvious by comparing Equation (10) with the new expression of delivered power:

Prms =
Q2

RL
RL
(
1 + Q2

RLγ2
C
)V2

oc (17)

The given power delivery in Equation (17) is not actually applicable unless the transmitter circuit
is equipped by an adaptive tuning circuit to compensated for the modified reflected reactance in
Equation (16). Otherwise, the transmitter circuit would be left with some amount of uncompensated
VAR that would deteriorate the power transfer from another side.

A clear consequence that arises from Equation (17) is that a significant drop in transferred power
is inevitable as long as the receiver circuit is designed for high-Q operation. The effect of capacitance
variation on the transferred power is shown in Figure 2a, where the normalized power (Prms/Pmax)
is plotted against γC for three different values of QRL. It is obvious that the drop in power due to
a small mismatch percentage of 2% is becoming noticeable for high-Q values. As noted in Figure 2a,
the high-Q receiver circuit becomes extremely sensitive irrespective of the enhancement in power
transfer capability at the tuned point. The case of QRL = 80 is an illustrative example in which a 71%
drop in Prms is expected for a 2% mismatch in CR. On the other hand, Figure 2b depicts the frequency
drift by ∆fl as a result of 15% mismatch while it drifts to a higher frequency by ∆fh amount due to
−20% mismatch. As a direct result, in order to overcome the pitfall of high-Q receivers, the QRL is
normally limited to less than 10 in most systems particularly for high power applications [3]. This,
however, is not an adequate choice for low power applications that would demand energy from
a distance that extends up to a few times the coil diameter. In the next section, we introduce a novel
approach for dynamic frequency tuning of high-Q parallel-compensated WPT receivers to mitigate the
mistuning effects.
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3. Dynamic Tuning by Means of Gyrator-Based Reactives

In order to counteract the mistuning in WPT receivers, the resonance frequency of the receiver
tank can be re-tuned by means of an additional corrective inductive or capacitive element. Obviously,
the added element has to be an active element where the feature of tunability is met.
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3.1. Generalized Model for The Proposed Dynamic Tuning Approach

Provided that we have no access to the physical values of receiver’s coil and compensation
capacitor once the system is already functioning in practice, one way to dynamically tune the resonance
frequency ωR of the receiver tank is to add a tunable active reactance to the circuit. A model for the
WPT receiver with the connection of a variable inductance is illustrated in Figure 3a. The variable
inductance Lϕ is connected in parallel with the compensation capacitor. Therefore, it can be deemed
as an additional inductance connected in parallel with the receiver coil LR (and ∆LR) in essence.
By referring to the Figure 3a, then, a new parameter evolves as a combination between the added
inductance Lϕ and CR:

CϕR = CR − 1
ω2Lϕ

(18)

where CϕR is the equivalent capacitance that includes the inductive behavior of Lϕ. In accordance to
Equation (18), the new expression for the resonance frequency of the receiver tank becomes:

ω2
R =

1
LRCϕR

= ω2
R0(1 +

LR
Lϕ

) (19)

where ωR0 is already given in Equation (2). Since the new resonance frequency in Equation (19) is
a function of Lϕ, it indicates that ωR can be tuned over a wide range that is only limited by the tuning
range of Lϕ. With the help of Figure 3a, including all the depicted mismatches (∆LR, ∆CR), the power
transferred to the receiver is calculated as:

Prms =
ω2M2 I2

T RL(
ω2LRCϕR(1 + γL)

(
1 + γϕ

)
RL − RL

)2
+ ω2L2

R(1 + γL)
2

(20)

where γL = ∆LR/LR and γϕ = ∆CR/Cϕ. Clearly, the transferred power in (20) can be recovered to
the maximum, nearly as given by Equation (10), by tuning Lϕ and thus CϕR subsequently. Thereby,
the mistuning effect incurred by γL and γϕ could be neutralized.
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3.2. Impedance Emulation By Means of Gyrators—A Spotlight

The general approach of adding a variable reactive element in parallel with the receiver tank
has been developed in [17] by means of a phase-controlled inductance and in [12] by means of
a saturable-core reactor. Nevertheless, the phase-controlled reactor has been introduced in the
framework of detuning the receiver circuit at light-load condition, which is undoubtedly far from
our objective. On the other hand, the saturable-core approach is incompatible with size and weight
constraints of low power portable applications.
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The gyrator in Figure 4a, as a theoretical concept, has been firstly proposed by D. H. Tellegen in the
domain of a new network element added to the four known elements [18]. Since that date, the gyrator
has become a reliable element for a wide range of applications. Promoted by its characteristics as
a two-port, lossless, linear, and power-conservative element, the gyrator offers a unique property of
transconductivity highlighted by its input-output relations:

i1 = gv2

i2 = −gv1
(21)

where g(t) is called “gyrator conductance”. Implied by Equation (21), the gyrator has the capability
of duality transformation for any element from one port to the other, e.g., inductive to capacitive
reactance and capacitive to inductive reactance is possible as illustrated in Figure 4b. Given a capacitive
reactance coupled to the output port of a gyrator, an inductive reactance is viewed at the input port,
as follows:

Xin =
1

g2Xo
=

ωCo

g2 = ωLeq (22)

where Co is the capacitance connected to the output port and Leq is the equivalent inductance as seen
by the input port. Indeed, this unique property has been of valuable importance for many applications
such as RF filter design in which the replacement of on-chip bulky inductors by a gyrator-C circuit is
a cutting-edge solution [19].
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Gyrator circuit realization was, and is still, a rich topic of research in literature. Several successful
implementations has been proposed. For instance, transistor-based realization [20], linear amplifier
based [21], and current conveyor based [22] are among the most popular realizations. Yet, such
implementations are lossy linear amplifier-based. Consequently, they are not adequate for power
processing applications where efficiency is a must. In the next section, topology candidates for power
gyrator realization are discussed.

4. Switch-Mode Gyrator-Enabled Variable Inductance

4.1. Gyrators in Power Processing Applications

Loss-free gyrator implementation has been enabled following the rapid development in
switch-mode power processing circuits. A gyrator, as a power conservative element, could be
theoretically implemented by any power-out-equals-power-in circuit (POPI) such as buck, boost,
and flyback converters [23,24]. In order for a POPI circuit to be “gyrated”, i.e., to operate as
a gyrator, the output current could be controlled proportionally with the input voltage in circuits
that enjoy a continuous output current such as buck converter [23]. In contrast, the input current
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needs to be controlled with respect to output voltage in continuous input current topologies such as
boost converter.

Clearly, for a circuit to behave as a gyrator, it is obtainable either through topology-based
implementations like in the case of two back-to-back transconductors or through control-based
realization. Interestingly, dual bridge converters (DBC) is a family of switch-mode converters that
belongs to the first kind, i.e., topology-based gyrators. The dual active bridge converter (DAB) is
a DBC switch-mode converter that is well-known as a control-free naturally gyrated converter [25].
By using the DAB as control-free gyrator, the effort of forcing the gyration behavior could be saved in
favor of designing a simple control to tune the value of a DAB-based synthesized reactance. In the next
subsections, the operation and adoption of DAB as a variable reactance synthesizer will be discussed.

4.2. DAB as a Switch-Mode Natural Gyrator—Revisiting

The DAB converter is a bidirectional topology that benefits from the concept of what is called
“AC inductor” where the average inductor current is zero [26]. The operation of the DAB converter as
a candidate topology for inductive reactance synthesis has been discussed, in detail, in [27] and [28].
Shortly described, the DAB converter is composed of two full-bridge structures (S11–S12–S13–S14

bridge and S21–S22–S23–S24 bridge in Figure 5) linked by an AC inductor LDAB. Moreover, it is
a bidirectional topology where the power flow direction is guided by the relative phase-shift (ϕ)
between the two bridges.
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The DAB converter has been primarily introduced as a DC-DC converter for the purpose of power
processing where all the converter switches shown in Figure 5 could be realized by a two-quadrant
IGBT or MOSFET switches [29]. However, for the purpose of variable reactance synthesis using the
same converter, the converter has to be capable of processing bidirectional ac voltages. Thus, the DAB
converter must allow bidirectional current flow and voltage polarity [30]. Therefore, four-quadrant
switches, e.g., back-to-back source connected MOSFETs, have been used to realize all the switches as
shown in Figure 5. In essence, either the input or output bridges could be treated as a matrix converter
equipped with four-quadrant AC switches [31].

As a natural gyrator, the gyration conductance following the analysis in [25] is given by:

g =
1

ωDABLDAB

(
ϕ − ϕ2

π

)
(23)
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where ωDAB is the angular switching frequency of the converter, LDAB is the link inductance, and ϕ is
the phase-angle between the switching operation of the two bridges. Considering the capacitive load
CDAB at the output, then the seen inductance at the input port is given as:

Lϕ =
CDAB

g2 =
π2ω2

DABL2
DAB

(ϕπ − ϕ2)
2 ·CDAB (24)

The synthesized inductance Lϕ is a function of circuit parameters, in which tunability is achieved
by either varying the switching frequency ωDAB or the phase-angle ϕ in Equation (24). Obviously,
varying the switching frequency would complicate the process of control design, therefore varying the
phase-angle is more reasonable and appropriate in terms of design reliability.

4.3. DAB-Based Variable Inductance Design

As a design example, in this section a DAB-based variable inductance is designed to showcase the
validity of the concept. A sinusoidal input source with frequency of 300 kHz is applied to the input of
the DAB. The switching frequency fDAB is affecting the design parameters while at the same time there
is a perpetual trade-off between the circuit performance, efficiency and the switching frequency [32].
The higher the switching frequency is, the lower LDAB and CDAB for the same required Lϕ become.
For the specified input frequency, a switching frequency of 5 MHz is chosen in order to decrease
the amount of ripple while maintaining lower LDAB and CDAB. The circuit parameters are given in
Table 1, in which the circuit in Figure 5 has been characterized using the event-based PSIM simulation
framework. Figure 6a indicates the gyration behavior of the four-quadrant DAB converter, in which
the inductor current ILDAB, the input bridge voltage VAB, the output bridge voltage VCD, and the DAB
output voltage VCo are shown for the case of ϕ = 50◦. The estimated value of synthesized inductance Lϕ

at ϕ = 50◦ is nearly 36 µH. It is observed in Figure 6a that the average current of LDAB is zero. Moreover,
the input current of DAB is bipolar (Iin is not shown in the figure) and discontinuous. However, it is
still valid to infer the input current ILDAB by referring to the DAB output VCo as an indication, a fact
that is derived from the gyrator characteristic equation (iin = g·vo). Therefore, the gyration behavior is
denoted by the quadrature phase lag (in Figure 6a) between the DAB output voltage VCo and the input
voltage Vin.
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Table 1. Dual active bridge (DAB) circuit parameters.

Parameter fT fDAB LDAB CDAB

Value 300 kHz 5 MHz 367 nH 100 nF

With regards to tuning capability, the phase-shift angle has been swept from 30◦ to 150◦ and
the synthesized inductance Lϕ as well as the gyration conductance g versus ϕ is shown in Figure 6b.
Although Lϕ is theoretically amenable to full–range tuning of 0–180◦, it has been noted that the
synthesized inductance approaches very high values of ϕ < 20◦ or ϕ > 150◦. Note that the shown data
in Figure 6b is limited to the range of 40–130◦ for the sake of clarity. The given results are comparing
the calculated values of g and Lϕ as given in Equations (23) and (24) with the values obtained by circuit
simulation. The figure shows a good correlation between the calculated and simulated verification.
Indeed, the mismatch between the calculated and simulated values is due to the losses of the AC
switches that are included in the simulation circuit while lossless circuit components have been
considered in the theoretical expressions. Worthwhile, the gyration behavior in Figure 6b replicates
symmetrically around ϕ = 90◦, which closely correlates with Equation (23). This symmetry reveals that
the synthesized inductance has only two valid tuning ranges either ϕ = 0◦–ϕ = 90◦ or ϕ = 90◦–ϕ = 180◦.
This fact should be taken into account in the process of designing a bidirectional tuning system for
WPT receivers.

5. Implementation of Dynamic Frequency Tuning Control

Figure 7 shows the block diagram of the parallel-compensated WPT receiver after adding the DAB
gyrator as a tunable inductance synthesizer. In order to verify the dynamic tuning capability of the
approach, a quadrature phase-locked loop (Q-PLL) control was designed. The details and operation of
the Q-PLL control is to be discussed in the next subsection.
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5.1. PLL-Like Control—Theory and Operation

The ultimate goal of the controller is to guarantee autonomous dynamic tuning for the WPT
receiver irrespective of any variations that would give rise to a mistuned tank, such as the variations
that have been discussed in Section 2. The controller finds out whether there is a mistuning in the WPT
receiver, then responds accordingly by fine-tuning the phase-angle ϕ of the DAB converter such that
the corresponding Lϕ for retuning is dynamically achieved. A parallel-compensated WPT receiver,
while in fully-tuned state, holds two facts as indicated by Equation (3): (a) the resonant voltage Vac

is equal to a maximum value given by the induced voltage Voc boosted by QRL; (b) Voc leads Vac by
90◦. We have verified in [14] that accurate retuning cannot be achieved by utilizing merely the first
fact, i.e., the maximum Vac = QRL·Voc. Therefore, the Q-PLL control takes advantage of the second
fact, which is dependent on the quadrature phase difference between Vac and Voc at fully-tuned state.
To examine this fact, the transfer function of the parallel WPT receiver after adding the DAB variable
inductance Lϕ is given as:

Vac

Voc
=

LϕRL

−ω2LϕLRCRRL + RL
(

Lϕ + LR
)
+ jωLϕLR

(25)

Regarding this proposal, it is of interest to examine the phase angle between Vac and Voc by
converting Equation (25) to the polar form. The phase angle can be expressed as:

tan θ =
ωLϕLR

ω2CRLϕLRRL − LR
(

Lϕ + RL
) (26)

where θ is the phase angle between Vac and Voc. For θ to be equal to 90◦, the right-hand term of
Equation (26) has to approach infinity. In other words, the denominator of Equation (26) becomes:

ω2CRLϕLRRL −
(

Lϕ + LR
)
= 0 (27)

It is evident that for the angle in Equation (26) to be equal to 90◦, the denominator in Equation (27)
has to be equal to zero, which is only possible if Lϕ is adjusted such that the tank is fully-tuned
{ωT = (Lϕ + LR)/LϕLRCR}. Consequently, the control has to be designed as quadrature PLL-like,
hence the name “Q-PLL”. The control operates by sensing Vac and Voc and acts by tuning ϕ

toward steady-state fully-tuned state fulfilled once Vac lags Voc by 90◦. The control block diagram in
Figure 8 comprises an XOR phase-detector (PD), low-pass filter (LPF), an error amplifier compensated
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by a proportional-integral (PI), pulse-width modulator (PWM) block, and finally a phase-shift
modulator (PSM).

Energies 2018, 11, x 11 of 22 

 

Regarding this proposal, it is of interest to examine the phase angle between 𝑉𝑎𝑐   and 𝑉𝑜𝑐   by 

converting Equation (25) to the polar form. The phase angle can be expressed as: 

tan 𝜃 =
𝜔𝐿𝜑𝐿𝑅

𝜔2𝐶𝑅𝐿𝜑𝐿𝑅𝑅𝐿 − 𝐿𝑅(𝐿𝜑 + 𝑅𝐿)
 (26) 

where 𝜃  is the phase angle between 𝑉𝑎𝑐   and 𝑉𝑜𝑐 . For 𝜃 to be equal to 90°, the right-hand term of 

Equation (26) has to approach infinity. In other words, the denominator of Equation (26) becomes: 

𝜔2𝐶𝑅𝐿𝜑𝐿𝑅𝑅𝐿 − (𝐿𝜑 + 𝐿𝑅) = 0 (27) 

It is evident that for the angle in Equation (26) to be equal to 90°, the denominator in Equation 

(27) has to be equal to zero, which is only possible if Lφ is adjusted such that the tank is fully-tuned 

{ωT = (Lφ + LR)/LφLRCR}. Consequently, the control has to be designed as quadrature PLL-like, hence 

the name “Q-PLL”. The control operates by sensing Vac and Voc and acts by tuning φ toward steady-

state fully-tuned state fulfilled once Vac lags Voc by 90°. The control block diagram in Figure 8 

comprises an XOR phase-detector (PD), low-pass filter (LPF), an error amplifier compensated by a 

proportional-integral (PI), pulse-width modulator (PWM) block, and finally a phase-shift  

modulator (PSM).  

 

Figure 8. Block diagram of the Q-PLL control for gyrator-based dynamic frequency tuning system in 

Figure 7. 

In order for the control to work properly, the desired tuning range has to be designed according 

to the WPT receiver parameter, e.g., operating frequency fT and coil inductance LR. Note that the 

tuning range of DAB-based synthesized inductance Lφ as shown in Figure 6b is unidirectional, either 

from 0° to 90° or from 90° to 180° as implied by the symmetrical gyration behavior around φ = 90°. In 

order to allow a bidirectional tuning range, the Lφ has to be designed at the middle of the gyration 

curve, e.g., φ = 50°, to resonate with LR and CR at the nominal operating frequency fT. Therefore, tuning 

ranges of (0°–50°) and (50°–90°) are enabled depending on the sign of mismatch either in γL or γC. 

5.2. System Integration and Validation Results 

The dynamic frequency tuning approach declared in Figure 7 has been characterized and 

validated by simulation for the design specification parameters given in Table 2. The values of WPT 

transmitter coil LT and receiver coils LR have been designed to deliver about 500 mW to 200 Ω load at 

a coupling coefficient of k = 0.1 while operating at 200 kHz.  

The transmitter coil LT has been compensated by a series capacitor CT of 63.97 nF taking into 

account the reflected negative reactance (100 nF at coupling coefficient of k = 0.1) from a fully-tuned 

receiver as given by (9). Correspondingly, the DAB gyrator parameters have been designed and given 

in Table 2. As pointed out in the previous subsection, it turns out that for a wide bidirectional tuning 

Figure 8. Block diagram of the Q-PLL control for gyrator-based dynamic frequency tuning system in
Figure 7.

In order for the control to work properly, the desired tuning range has to be designed according to
the WPT receiver parameter, e.g., operating frequency fT and coil inductance LR. Note that the tuning
range of DAB-based synthesized inductance Lϕ as shown in Figure 6b is unidirectional, either from 0◦

to 90◦ or from 90◦ to 180◦ as implied by the symmetrical gyration behavior around ϕ = 90◦. In order
to allow a bidirectional tuning range, the Lϕ has to be designed at the middle of the gyration curve,
e.g., ϕ = 50◦, to resonate with LR and CR at the nominal operating frequency fT. Therefore, tuning
ranges of (0◦–50◦) and (50◦–90◦) are enabled depending on the sign of mismatch either in γL or γC.

5.2. System Integration and Validation Results

The dynamic frequency tuning approach declared in Figure 7 has been characterized and validated
by simulation for the design specification parameters given in Table 2. The values of WPT transmitter
coil LT and receiver coils LR have been designed to deliver about 500 mW to 200 Ω load at a coupling
coefficient of k = 0.1 while operating at 200 kHz.

The transmitter coil LT has been compensated by a series capacitor CT of 63.97 nF taking into
account the reflected negative reactance (100 nF at coupling coefficient of k = 0.1) from a fully-tuned
receiver as given by (9). Correspondingly, the DAB gyrator parameters have been designed and
given in Table 2. As pointed out in the previous subsection, it turns out that for a wide bidirectional
tuning range by means of the DAB gyrator inductance, the synthesized inductance Lϕ has to be
designed in order to resonate with LR and CR while a sufficient ϕ tuning margin is allowed. Therefore,
the synthesized inductance Lϕ has been optimized at a value of 8.08 µH at ϕ = 45◦. The DAB circuit
is switching at the rate of 1.5 MHz which is reasonably higher than the link signal frequency fT.
A higher switching frequency would be beneficial in terms of the required values for LDAB and CDAB,
as suggested by (24). As a typical phenomenon in switch-mode circuits, the internal losses of the DAB
circuit would increase proportionally with the switching frequency leading to the trade-off between
components size and efficiency.
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Table 2. System parameters. WPT: wireless power transfer.

Parameter Value

WPT link parameters

Vin 2.12 Vrms
fT 200 kHz
LT 10 µH
CT 63.97 nF
M 447.2 nF (k ≈ 0.1)
LR 2.0 µH
CR 395 nF
RL 200 Ω (nominal)

DAB gyrator parameters

fDAB 1.5 MHz
LDAB 480 nF
CDAB 100 nF

Bidirectional-switch RON 4 mΩ
ϕ 45◦ (nominal)

Following the system parameters design, the Q-PLL control for dynamic tuning has been
implemented as shown in the block diagram in Figure 8, in which the components values are annexed
to the same figure. Figure 9a shows the transient waveforms of the resonant tank voltage Vac where it
shows that the tank voltage builds until it reaches the maximum at fully-tuned state. Also, the same
figure shows the Q-PLL control signal VCtrl and the corresponding control input variable VLPF. It is
evident that VLPF, which represents the phase difference between Vac and Voc, reaches Vref = 0.5 V
indicating that Vac lags Voc by 90◦ as the typical state of a fully-tuned parallel resonant tank. Moreover,
Figure 9b shows a close-in view for the steady-state waveforms for which the phase difference between
Vac and Voc (scaled by QRL) is highlighted. Figure 9b shows, as well, how the duty-cycle generated
by the control is translated to the corresponding phase-angle ϕ (almost 45◦ at the specified system
parameters in Table 2) between the gating signals PS1 and PS2.

Figure 10 shows the performance of the gyrator-based dynamic tuning approach in response to
mismatch in CR and LR. The system operation for −11% mismatch in CR followed by −11% mismatch
in LR is given in Figure 10a, in which the figure shows how ϕ is dynamically controlled to retune
the resonant tank. To neutralize the undercompensation effect of decreased CR and LR, the effective
synthesized Lϕ has to be increased which is apparent in the phase-angle stepping down from the
nominal value of Lϕ = 45◦ (refer to Figure 6b). Moreover, Figure 10b indicates the system performance
for an increase in CR and LR for the same amount of +11%. Once more, the controller acts by increasing
ϕ to counteract the overcompensated tank by lowering the effective value of Lϕ. In order to be able to
track the variation imposed by the controller in ϕ, the phase difference between PS1 and PS2 is sensed
and filtered, and subsequently it is post-processed to show the phase-angle in degrees.

Figure 11 aims to show the wide tunability and robustness of the suggested approach in response
to irregular successive changes in CR and LR. As pointed out earlier, the allowable tuning range is
limited by either the phase-angle ϕ of DAB-based inductance or by a saturated control output. This
effect is to be discussed in the next section.
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of −11% variation in CR followed by −11% variation in LR; (b) Case of +11% variation in CR followed
by +11% variation in LR.
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Figure 11. Waveforms of system response to irregular change in CR and LR.

Figure 12a shows the normalized power delivered versus different CR mismatch percentages with
and without the gyrator-based synthesized inductance at RL = 200 Ω (system specifications defined in
Table 2). By comparing the normalized received power with using the gyrator-based dynamic tuning,
it is evidenced that the system is successfully capable of compensating the mismatch effect by tuning
the synthesized inductance. It is noted that the delivered power at γC = 0% is almost the same either
with or without the dynamic tuning approach, which is because the receiver parameters have been
optimized at fully-tuned condition in the nominal case of no mismatch. Nonetheless, we note that the
delivered power drops slightly with using the gyrator-based dynamic tuning due to the losses of the
DAB converter that affect the tank analogously as being the series resistance of Lϕ. Further, Figure 12b
shows the optimal phase-shift ϕ and the corresponding synthesized inductance Lϕn (normalized to
the LR). We note that at no mismatch, i.e., 0% on the plot, the corresponding Lϕ is approximately four
times the coil inductance LR which is nominal value at ϕ = 45◦ for the optimized parameters in Table 2.
Moreover, it is interesting to notice that ϕ extends from 24.7◦ to 67.3◦ approximately for a mismatch
range ±15% of CR, which is far enough from the theoretical limit of ϕ from 0◦ to 90◦. This implies that
the dynamic tuning range extends arbitrarily beyond the verified range of ±15%. The resonant tank
RMS voltage Vac is plotted versus γC to show that the tank is fully-tuned in response of the mismatch
in CR. Again, we note that there is a slight change in Vac due to a slight drop in QR due to losses
in DAB.

Energies 2018, 11, x 14 of 22 

 

 

Figure 11. Waveforms of system response to irregular change in CR and LR. 

Figure 12a shows the normalized power delivered versus different CR mismatch percentages 

with and without the gyrator-based synthesized inductance at RL = 200 Ω (system specifications 

defined in Table 2). By comparing the normalized received power with using the gyrator-based 

dynamic tuning, it is evidenced that the system is successfully capable of compensating the mismatch 

effect by tuning the synthesized inductance. It is noted that the delivered power at γC = 0% is almost 

the same either with or without the dynamic tuning approach, which is because the receiver 

parameters have been optimized at fully-tuned condition in the nominal case of no mismatch. 

Nonetheless, we note that the delivered power drops slightly with using the gyrator-based dynamic 

tuning due to the losses of the DAB converter that affect the tank analogously as being the series 

resistance of Lφ. Further, Figure 12b shows the optimal phase-shift φ and the corresponding 

synthesized inductance Lφn (normalized to the LR). We note that at no mismatch, i.e., 0% on the plot, 

the corresponding Lφ is approximately four times the coil inductance LR which is nominal value at φ 

= 45° for the optimized parameters in Table 2. Moreover, it is interesting to notice that φ extends from 

24.7° to 67.3° approximately for a mismatch range ±15% of CR, which is far enough from the 

theoretical limit of φ from 0° to 90°. This implies that the dynamic tuning range extends arbitrarily 

beyond the verified range of ±15%. The resonant tank RMS voltage Vac is plotted versus γC to show 

that the tank is fully-tuned in response of the mismatch in CR. Again, we note that there is a slight 

change in Vac due to a slight drop in QR due to losses in DAB. 

  
(a) (b) 

Figure 12. Demonstration of system performance versus CR mismatch of ±15%: (a) Normalized 

delivered power with dynamic tuning (Po w/G) and without (Po w/o G); (b) The synthesized inductance 

Lφ, the corresponding φ and Vac versus CR mismatch. 

Figure 12. Demonstration of system performance versus CR mismatch of ±15%: (a) Normalized
delivered power with dynamic tuning (Po w/G) and without (Po w/o G); (b) The synthesized inductance
Lϕ, the corresponding ϕ and Vac versus CR mismatch.
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6. Chip Implementation for the Proposed DAB-based Inductance Synthesizer

In order to reduce the size of the proposed DAB-based dynamic frequency tuning, the target of
fully integrating the DAB cell and the Q-PLL control on a single silicon die is of crucial interest. Given
the system parameters in Table 2, a full chip implementation becomes feasible in terms of size and
performance. Figure 13 shows a schematic diagram for the main parts inside the chip. The receiver
coil LR, the compensation capacitor CR, the output load RL, the DAB inductance LDAB, and the DAB
output capacitor CDAB are planned as off chip components. All the other components including the
DAB power switches and the Q-PLL controller could be integrated into a single chip.

The chip implementation is realized by a 0.18 µm BCD process. High-voltage triple-well isolated
MOSFETs are used for realizing the power switches. As shown in Figure 13, two back-to-back switches
sized at (60,000 µm/0.35 µm) are used to implement every AC switch. It has been verified through
the accurate models of the process that the nominal channel resistance of every AC switch is around
22 mΩ. Consequently, with four AC switches closed simultaneously (two at every bridge), a total
conduction resistance of 88 mΩ is included in the loop. The higher the channel resistance of a power
MOSFET, the more power it consumes. The channel resistance of every switch could be decreased by
sizing the power MOSFETs at higher width. However, this will be at the expense of the total chip area
and switching losses. Note that the details of transistor-level design of control blocks are not shown in
Figure 13. However, the power consumption of control circuits are verified on Cadence Virtuoso using
the accurate models offered by the foundry. The total power consumption of the control is 74.8 mW.
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Figure 13. Schematic diagram for on chip implementation for gyrator-based dynamic tuning.

The non-ideal yet functional waveforms of the designed chip are shown in Figure 14. A phase-lag
of 90◦ between Vac and Voc is clear in Figure 14a, where the phase-difference output (VPD) demonstrates
this fact. Moreover, the averaging circuit output (VLPF) reaches a steady-state value of 900 mV represent
the average of VPD. Note that, when the receiver tank is tuned, VPD has 50% duty-cycle while its
high-level is at 1.8V due to the implementation of the phase-difference circuit using 1.8V low-voltage
devices. Furthermore, Figure 14b shows the real-time results of the controller signals including error
amplifier output VCtrl compared to a ramp signal VST. A comparator realized by a fast folded-cascode
wide-swing stage is used to compare VCtrl with VST and the Vduty output is then translated to the
phase-shift ϕ between the driving signals of the DAB circuit.

With using coupled-coils model in Cadence for the coupling between the transmitter and receiver,
the total power delivered to the receiver is 5 W. The real power that is consumed by the load (RL = 50 Ω
in Figure 13) was 3.74 W, this leads to an estimated efficiency of 74.8%. The total power loss of the
chip counts up to 1.26 W which is divided into 74.8 mW (1.5% of total power) in the controller and
1.185 W (23.7% of total power) consumed by the DAB power switches. It is noted that the higher
power consumption is due to the losses of power switches. However, the DAB losses can be decreased
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by up-sizing the width of the DAB power MOSFETs at the expense of more silicon area. The designed
chip has been tested over a wide range of variation in LR and CR (−10% to +10% in ∆LR and ∆CR)
and the rms power delivered to the load is shown in Figure 14c. It is noted that load rms power
is slightly affected by the variations due to the effect on the total quality factor of the receiver tank.
The efficiency given in Figure 14c has been calculated as (PL/PR) where PL is the power consumed
by the resistive load RL and PR is the actual power received by the WPT coil LR. While the quiescent
power consumption by the control circuits stay almost constant at 75 mW, we found that the power
consumption of the DAB power switches is main contribution to the losses. A minimum efficiency
of 73.4% has been found at ∆CR of +10%. Though, still the total power recovered by the DAB-based
dynamic tuning approach is promising compared to a mistuned WPT receiver tank.
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7. System Design Consideration—Performance Discussion

7.1. Efficiency and Quality Factor

The analytical expressions that have been provided earlier in Equations (18)–(20), assumed an ideal
circuit with loss-free components including the gyrator-based synthesized inductance. In practice,
the losses related to circuit components—such as coils, capacitors, switch-mode DAB, rectifier and
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any other circuit in the power path—have a significant effect on the quality factor of the resonant
tank and, in turn, upon the WPT link efficiency. The loss analysis and efficiency evaluation including
most of non-idealities in the receiver circuit has been previously discussed in [33]. The quality factor
as a definition—the ratio of stored energy to the lost energy—is a valid implicit indication for the
efficiency of a circuit. Referred to our parallel-compensated WPT receiver, it is well known that the
power transfer link efficiency can be given in terms of the quality factor as [7]:

ηT =
k2QTQRL

1 + k2QTQRL

(
1 − QRL

QR

)
(28)

where QT is the transmitter coil’s quality factor, QRL is the quality factor of the receiver circuit as
given in Equation (3), QR is the quality factor of the receiver coil and k is the coupling factor between
transmitter and receiver coils. The total efficiency given in Equation (28) is only given to highlight how
other components losses would affect the power transfer efficiency. In order to investigate the effect of
the gyrator losses, the receiver circuit is analyzed from the perspective of quality factor using the model
shown in Figure 15. In this model, we include the receiver coil series resistance RR, the load resistance
RL, and the gyrator losses modeled as a resistance Rϕ in series with the synthesized inductance Lϕ.
To facilitate the analysis, the circuit can be converted to the Norton equivalent as shown in Figure 15,
where Lϕp, LRp, RRp and Rϕp are given by:

Rϕp =
(

1 + Q2
ϕ

)
Rϕ

∼= Q2
ϕRϕ

Lϕp ∼= Lϕ

RRp =
(
1 + Q2

R
)

RR ∼= Q2
RRR

LRp ∼= LR

(29)

where (LRp, RRp) and (Lϕp, Rϕp) are the equivalent values of (LR, RR) and (Lϕ, Rϕ) after converting
the series networks to a parallel networks, while QR and Qϕ are the quality factors of LR and Lϕ

respectively. At fully-tuned state (ωR given by Equation (19)), the resonant voltage of the circuit in
Figure 15 can be given as:

Vac = −jQRL
1(

1 + RL
RRp

+ RL
Rϕp

)Voc = −jQRxVoc (30)

Equation (30) develops a new term QRx as the total quality factor of the receiver tank which
contains the losses of LR and Lϕ. A similar term could be developed to study the effect of CR series
resistance. It is worth to mention that the losses of the DAB gyrator have been represented as
a series resistance Rϕ while indeed it represents the total energy loss due to switching and conduction
loss simultaneously.
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In order to maintain a very high QRx, the DAB gyrator circuit has to be optimized for high
efficiency operation. Loss evaluation for AC-AC DAB topology has been already given in [34], which
could be used to accurately optimize the DAB gyrator efficiency. However, deriving equations for
power loss in the DAB circuit is not straightforward as the system is complex in nature. The power
consumed by the DAB gyrator is a function of switching frequency fDAB which, in turn, has to be
much higher than the operating frequency fT. At the same time, the losses are closely dependent
on the resonant tank output voltage Vac which in turn is a linear function of QRx. Consequently,
a mathematical modelling for the total efficiency has to be extended while considering the interaction
between the DAB parameters and those of the receiver resonant circuit.

7.2. Comparison with Other Solutions in the Literature

In comparison with other proposed ideas in the literature for retuning and impedance matching,
the aim is to discuss how the proposed gyrator-based adaptive tuning is performing. The main
comparison metrics are number of components, tuning mechanism and reliability. A common solution
for tuning is to add a switched matrix of reactive components such as capacitors. In [11,35,36],
a switch-capacitor matrix is proposed for impedance matching either at the transmitter or receiver side.
The proposed work in [11] uses seven capacitors and AC switches. While the total number of seven
capacitors and AC switches has been tested as one example, the solution would be extended to M by N
capacitor matrix. This technique is reconfigurable to connect the capacitors in series or parallel with the
WPT coil. A digital algorithm has been suggested to search for the matched point. In comparison, our
proposed gyrator-based uses a fixed number of components, total of eight AC switches, one inductor
and one capacitor. On the other hand, it is not affected by the searching steps for the tuned point.
It is already concluded from [35,36], that for a higher resolution in the searching algorithm, either the
number of switch-capacitors has to be increased or the searching steps would increase. In that point,
the gyrator-based is more appealing as monotonic wide-range tuner with lower complexity.

On the other hand, a LCL network has been proposed as a compensation network at the
transmitter side [37]. The LCL compensation offers many advantages such as load independent
voltage characteristics and zero-phase-angle which improves the efficiency and reliability of the
transmitter inverter. However, a self-tuning at the receiver is still inevitable to avoid the incurred
reactive power increase at the transmitter side [11]. Another work in [38] assumes that all the receivers
coupled to the transmitter are perfectly tuned and studies the effect of tuning at the transmitter. On the
other hand, employing LCL compensation at the receiver side as proposed in [16] and [39] has already
reported the sensitivity of the output voltage to variations in the compensation components. It has
been shown that the sensitivity is a function of the quality factor Q, which clearly needs to be designed
at low value in order to avoid the losses in the system due to high-Q mistuned receiver. Therefore,
a saturable-core magnetic amplifier has been proposed for tuning LCL-compensated receivers which
is considered as a bulky solution suitable for high power applications [40]. Similarly, a double-sided
LCC compensation has been proposed in [41] to achieve a unity power factor at the transmitter
and the receiver. The presented compensation technique has been proposed to offer k-independent
and load-independent constant resonance frequency while achieving a zero-voltage-switching at
the transmitter driver. Still, the proposed technique has not been introduced in the context of
tuning the mismatch due to component variation or interference that would occur from external
conducting devices. Therefore, the proposal of a gyrator-based adaptive tuning shows its validity
toward an autonomous tuning in multiple receivers WPT system.

7.3. Design Oriented Characterization

PI controllers are widely used for controlling power converter targeting zero steady-state error
unless advanced dynamic performance is required. The proposed closed-loop Q-PLL control has been
stabilized using a PI controller by ensuring a zero steady-state error in the quadrature phase difference
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between Vac and Voc. To ensure a stable dynamic tuning control action, a simplified system dynamics
are assumed in which the simplified block diagram of the system is shown in Figure 16.

Such simplification tends to limit the analyzed system variables by interpreting the gyrator as
a linear inductance synthesizer Lϕ that is function of the control output ϕ. However, the system involves
multiple correlated parameters, namely, receiver operating frequency fT, and PWM switching frequency
fDAB, LPF crossover frequency fLPF, Vref, resonant tank parameters (LR, CR, RL), DAB parameters (LDAB,
CDAB), PWM ramp amplitude Vm, all which affect the quantitative interplay between the different
dynamics of the system. Consequently, the system can exhibit different kinds of instabilities in
complex dynamic cases such as slow-scale instabilities (SSI), fast-scale instabilities (FSI)—associated
to period-doubling, bifurcation and chaotic regimes [42]. Such behavior has been pointed out by the
authors in [15].
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It is thus possible to design the system at a stable point; however such design may shift due to
plant and controller parameter deviations and take different dynamic routes to other instability regions.
The possible routes from a stable starting point can be defined provided that the initial and final states
of the system are well defined [42]. Therefore, small-signal average model for the DAB as a reactive
element synthesizer is required to facilitate the task of designing a robust controller. Nonetheless,
characterizing the full dynamic behavior of the system yet requires an accurate exploration for all the
system parameters. This would lead to a more complex but comprehensive bifurcation maps.

7.4. Complexity and Cost

To this point, the proposal of switch-mode gyrator-based variable reactive element synthesizer
is potentially promising for WPT. As revealed in the literature, the WPT has extra cost compared
to conventional wired systems in terms of magnetically coupled coils and the power electronics
circuitry for power management [43,44]. In this regard, the added complexity of the dynamic tuning
or even adaptive impedance matching techniques need to be evaluated in terms of how much power
is retrieved compared to how many components would be added to the system.

Clearly the DAB switch-mode gyrator has a unique advantage as a natural gyrator which saves
the effort paid for designing a sophisticated closed-loop control to force the gyration behavior.
However, it comes with larger number of components which adds to the cost and size of the
system. Yet, a combined bidirectional switch module is not available commercially. This means
that for implementation of the DAB converter using two-quadrant switches, a total number of sixteen
MOSFETs is required. Nevertheless, the DAB gyrator-based approach is still comparable to other
solutions in [11,36,45] where capacitor bank is switched on or off by means of switch network for
adaptive tuning.

We believe that other switch-mode gyrator topologies could be used as a compact solution in
which reactive energy is injected to the tank for tuning while the same circuitry is supplying a load
with a regulated voltage. Switch-mode gyrator topologies such as the one in [46] could be used for
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active power processing accompanied with the ability of reactive energy generation. This would
enable a hybrid solution for tuning and regulation while still benefits from the gyration behavior.

8. Conclusions

The mistuning effect of a parallel-compensated receiver in magnetic resonant WPT systems
has been studied. To overcome the pitfalls of a detuned WPT receiver, a dynamic frequency tuning
approach was presented. The proposed approach benefited from the concept of gyrator-based variable
reactive element synthesis. A switch-mode gyrator was proposed for high efficiency operation in which
the DAB converter was proposed as a preferable topology candidate due to its property as a control-free
natural gyrator. The design of a DAB-based inductance synthesis was presented and characterized
by the event-based PSIM simulator. Accordingly, a dynamic frequency tuning Q-PLL control was
introduced to control the synthesized DAB-based inductance in a WPT receiver. The verified operation
of the system showed that the proposed method is performing properly in terms of self-tunability
over a wide range of mistuning percentages in the receiver components. Moreover, the performance
of the proposed approach was discussed in addition to potential technical limits of such approach.
In general, the conclusion can be summarized as following:

1. The proposed dynamic tuning approach by means of a gyrator-based reactive components
synthesis has shown a potential for proper performance in terms of autonomous tunability in
WPT receivers.

2. While DAB converter was studied as a natural gyrator, this study is meant to open the door
for the concept of gyrator based control of power delivery in WPT systems. Despite the circuit
complexity of the DAB, more simple and compact switch-mode gyrator would greatly support
the adoption of tunable gyrators for power flow control in WPT systems.

3. This paper has given a detailed insights into the feasibility of adopting switch-mode gyrators in
adaptive tuning of WPT receivers. Despite that no experimental validation has been practiced, still
the theory and analysis given here could be applicable by means of more compact switch-mode
gyrator topologies without loss of generality.
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