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Abstract: Responsible, efficient and environmentally aware energy consumption behavior is
becoming a necessity for the reliable modern electricity grid. In this paper, we present an intelligent
data mining model to analyze, forecast and visualize energy time series to uncover various temporal
energy consumption patterns. These patterns define the appliance usage in terms of association
with time such as hour of the day, period of the day, weekday, week, month and season of the
year as well as appliance-appliance associations in a household, which are key factors to infer and
analyze the impact of consumers’ energy consumption behavior and energy forecasting trend. This is
challenging since it is not trivial to determine the multiple relationships among different appliances
usage from concurrent streams of data. Also, it is difficult to derive accurate relationships between
interval-based events where multiple appliance usages persist for some duration. To overcome these
challenges, we propose unsupervised data clustering and frequent pattern mining analysis on energy
time series, and Bayesian network prediction for energy usage forecasting. We perform extensive
experiments using real-world context-rich smart meter datasets. The accuracy results of identifying
appliance usage patterns using the proposed model outperformed Support Vector Machine (SVM)
and Multi-Layer Perceptron (MLP) at each stage while attaining a combined accuracy of 81.82%,
85.90%, 89.58% for 25%, 50% and 75% of the training data size respectively. Moreover, we achieved
energy consumption forecast accuracies of 81.89% for short-term (hourly) and 75.88%, 79.23%, 74.74%,
and 72.81% for the long-term; i.e., day, week, month, and season respectively.

Keywords: big data; energy time series; smart meters; behavioral analytics; energy forecasting;
clustering analysis; data mining

1. Introduction

Currently, smart meters are being deployed in millions of houses, offering bidirectional
communication between the consumers and the utility companies; which has given rise to a pervasive
computing environment generating extensive volumes of data with high velocity and veracity
attributes. Such data have a time-series notion typically consisting of energy usage measurements of
component appliances over a time interval [1]. The advent of big data technologies, capable of
ingesting this large volume of time series streams and facilitating data-driven decision making
through transforming data into actionable insights, can revolutionize utility providers’ capabilities for
learning customer energy usage patterns, forecasting demand, preventing outages, and optimizing
energy usage.

Utility companies are constantly working towards determining the best ways to reduce cost
and improve profitability by introducing programs, such as demand-side management and demand
response, that best fit the consumers’ energy consumption profiles. Although there has been a marginal
success in achieving the goals of such programs, sustainable results are yet to be accomplished [2].
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This is because it is a challenging to understand consumers’ habits individually and tailor strategies
that take into account the benefits vs. discomfort from modifying behavior according to suggested
energy-saving plans. Furthermore, the relationship between human behavior and the parameters
affecting energy consumption patterns are non-static [2]. Consumer behavior is dependent on weather
and seasons and has a variable influence on energy consumption decisions. Thereby, actively engaging
consumers in personalized energy management by facilitating well-timed feedback on energy
consumption and related cost is key to steering suitable energy saving schemes or programs [3].
Therefore, designing models that are capable of analyzing energy time series from smart meters that is
capable of intelligently infer and forecast the energy usage is very critical.

The purpose of this paper is to present models for analyzing, forecasting and visualizing energy
time series data to uncover various temporal energy consumption patterns, which directly reflect
consumers’ behavior and expected comfort. Furthermore, the proposed study analyzes consumers’
temporal energy consumption patterns at the appliance level to predict the short and long-term
energy usage patterns. These patterns define the appliance usage in terms of association with time
(appliance-time associations) such as hour of the day, period of the day, weekday, week, month and
season of the year as well as appliance-appliance associations in a household, which are key factors
to analyze the impact of consumers’ behavior on energy consumption and predict appliance usage
patterns while assisting success of the smart grid energy saving programs in different ways. With such
information, not only utilities can recommend energy saving plans for consumers, but also can plan to
balance the supply and demand of energy ahead of time. For example, daily energy predictions can be
used to optimize scheduling and allocation; weekly prediction can be used to plan energy purchasing
policies and maintenance routines while monthly and yearly predictions can be used to balance the
grid’s production and strategic planning. Such endeavor is very challenging since it is not trivial
to mine complex interdependencies between different appliance usages where multiple concurrent
data streams are occurring. Also, it is difficult to derive accurate relationships between interval-based
events where multiple appliance usages persist for some duration.

The aforementioned challenges are addressed in the open literature through big data
techniques related to behavioral and predictive analytics using energy time series. For examples,
extensive arguments in support of exploiting behavioral energy consumption information to encourage
and obtain greater energy efficiency are made in [2,3]. The impact of behavioral changes for energy
savings was also examined by [4,5] and end-user participation towards effective and improved energy
savings were emphasized. Prediction of consumers’ energy consumption behavior is also studied
in several papers. For examples, the work presented in [6] uses the Bayesian network to predict
occupant behavior as a service request using a single appliance but does not provide a model to be
applied to real-world scenarios. Authors in [7,8], propose a time-series multi-label classifier for a
decision tree taking appliance correlation into consideration, to predict appliance usage, but consider
only the last 24 h window for future predictions along with appliance sequential relationships.
The study in [9] inspects the rule-mining-based approach to identify the association between energy
consumption and the time of appliance usage to assist energy conservation, demand-response and
anomaly detection, but lacks formal rule mining mechanism and fails to consider appliance association
of a greater degree. The work in [1] proposes a new algorithm to consider the incremental generation
of data and mining appliance associations incrementally. Similarly, in [10], appliance association
and sequential rule mining are studied to generate and define energy demand patterns. The authors
in [11] suggest a clustering approach to identify the distribution of consumers’ temporal consumption
patterns, however, the study does not consider appliance level usage details, which are a direct
reflection of consumers’ comfort and does not provide a correlation between generated rules and
energy consumption characterization.

The study in [12] uses clustering as a means to group customers according to load consumption
patterns to improvise on load forecasting at the system level. Similar to [12], the authors in [13]
use k-means clustering to discover consumers’ segmentation and use socio-economic inputs with
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Support Vector Machine (SVM) to predict load profiles towards demand side management planning.
Context-aware association mining through frequent pattern recognition is studied in [14] where the
aim is to discover consumption and operation patterns and effectively regulate power consumption to
save energy. The work in [15] proposes a methodology to disclose usage pattern using hierarchical
and c-means clustering, multidimensional scaling, grade data analysis and sequential association
rule mining; while considering appliances’ ON and OFF event. However, the study does not
consider the duration of appliance usage or the expected variations in the sequence of appliance
usage, which is directly related to energy consumption behavior characterization. The study in [16]
employs hierarchical clustering, association analysis, decision tree and SVM to support short-term
load forecasting, but does not consider variable behavioral traits of the occupants.

The work presented by [17,18] mine sequential patterns to understand appliance usage patterns
to save energy. An incremental sequential mining technique to discover correlation patterns
among appliances is presented in [1]. The authors propose a new algorithm which offers memory
reduction with improved performance. Authors in [19] utilize k-means clustering to analyze
electricity consumption patterns in buildings. The approach provided in [20] uses an auto-regression
model to compute energy consumption profile for residential consumers to facilitate energy saving
recommendations but without the consideration of occupants’ behavioral attributes. The methodology
proposed by [21] uses a two-step clustering process to examine load shapes and propose segmentation
schemes with appropriate selection strategies for energy programs and related pricing. The work in [22]
proposes graphical model-based algorithm to predict human behavior and appliance inter-dependency
patterns and use it to predict multiple appliance usages using a Bayesian model. The study in [23]
considers structural properties and environmental properties along with occupants’ behavior such
as thermostat settings or buying energy efficient appliances to analyze the energy consumption for
houses/buildings. The study is not aimed towards energy consumption predictions and does not
consider appliance level energy consumption and occupants’ energy consumption patterns, which are
influenced by occupants’ behavior. The proposed system in [24] uses an interactive system to minimize
the energy cost of operating an appliance when switched on waits for an order from the system.
It is a fixed input system and does not learn continuously. Also, the study is tailored towards
electrical setup rather data-driven decision making. The work in [25] uses only light and blind
control to simulate behavior patterns. In this way, it takes only partial patterns of daily usage of
energy to test a stochastic model of prediction. However, in reality, occupants’ behavior is more
complex to be captured by only two parameters. The works in [26,27] are surveys of existing studies,
does not discuss on occupants’ behavior or appliance level analysis, all the models discussed are
at the premise, building, or even national level. Similarly, [28] use Support Vector Regression (SVR)
and [29] use weighted Support Vector Regression (SVR) with nu-SVR and epsilon-SVR while using
differential evolution (DE) algorithm for selecting parameters to forecast electricity consumption at
daily and 30 min at a building level. Study [30] use ANN (Artificial Neural Network) to predict energy
consumption for a residential building. Works in [31,32] employ deep learning approach for energy
consumption predictions at a building level.

The proposed model in this paper differs from existing works in two main aspects.
Firstly, the model utilizes big data mining techniques to analyze behavioral energy consumption
patterns resulted from uncovering appliance-to-appliance and appliance-to-time associations which
are derived from energy time series of a household. This is rather important as it gives insight not
only about when and how large energy appliances (e.g., washing machines, dryers, etc.) are being
used, but also gives insight about how small appliances and devices (e.g., lights, TVs, etc.) that result
in significant energy consumption due to excessive use that is directly linked to behavioral attributes
of occupants. Such energy usage behavior is often neglected when analyzing cost reduction programs
or scheduling mechanisms in previous work. Secondly, we utilize the Bayesian network for energy
consumption prediction. In a real-world application, it is required to predict all the possible appliances
expected to operate together. The proposed mechanism uses a probabilistic model to forecast multiple
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appliance usages on the short and long-term basis. The results can be used in forecasting energy
consumption and demand, learning energy consumption behavioral patterns, daily activity prediction,
and other smart grid energy efficiency programs.

For the evaluation of the proposed model, we used three datasets of energy time series: the UK
Domestic Appliance Level Electricity dataset (UK-Dale) [33]-time series data of power consumption
collected from 2012 to 2015 with time resolution of six seconds for five houses with 109 appliances from
Southern England, and the AMPds2 [34] dataset-time series data of power consumption collected from
a residential house in Canada from 2012 to 2014 at a time resolution of one minute, and a synthetic
dataset. A more detailed explanation on datasets is presented in Section 3.2 with a sample of raw data.
After extensive experiments, the accuracy of identifying usage patterns using our proposed model
outperformed Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) at each stage. Our
model obtains accuracies of 81.82%, 85.90%, 89.58% for multiple appliance usage predictions on 25%,
50% and 75% of the training data size respectively. Moreover, it produces energy consumption forecast
accuracies of 81.89%, 75.88%, 79.23%, 74.74%, and 72.81% for short-term (hourly), and long-term (day,
week, month, season) respectively.

This work is different from our previously published work [35,36] which focuses on energy
consumption analysis of appliances and their impact during peak and non-peak hours. Also, this work
is different from [37] which focuses on determining activity recognition for healthcare applications.
This paper introduces the specific analysis of behavioral treats, detail clustering algorithms and
forecasting models that have not been discussed in our previous work.

The paper is organized as follows: The next Section 2 discusses the proposed model followed
by evaluation and results analysis in Section 3. Finally, we conclude the paper and discuss future
directions in Section 4.

2. Proposed Model

Figure 1 illustrates the proposed model with its distinct phases: pre-processing/data preparation,
incremental frequent pattern mining and clustering analysis, association rules extraction,
prediction and visualization. In this section, we discuss these phases and provide details about
their respective mechanisms along with related theoretical background.

In the first phase, raw data, which contain millions of records of energy time series of consumption
data, are prepared and processed for further analysis. In the following phase, incremental frequent
pattern mining and clustering is performed. Frequent patterns are repeated itemsets or patterns that
often appear in a dataset. Considering energy time series data, an itemset could comprise, for example,
of a kettle and laptop and when this itemset is repeatedly encountered it is considered a frequent
pattern. The aim is to uncover association and correlation between appliances in conjunction with
understanding the time of appliance usage with respect to hours and time (Morning, Afternoon,
Evening, Night) of day, weekdays, weeks, months and seasons. This latent information in energy
time series data facilitates the discovery of appliance-time associations through clustering analysis
of appliances over time. Clustering analysis is the process of constructing classes, where members
of a cluster display similarity with one another and dissimilarity with members of other clusters.
While learning these associations, it is important to identify what we refer to as Appliance of
Interest (AoI), that is, major contributors to energy consumption, and develop capabilities to predict
multiple appliance usages in time.
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Figure 1. Model: incremental progressive data mining and forecasting using energy time series.

The mining of frequent patterns and cluster analysis are typically recognized as an off-line and
expensive process on large size databases. However, in real-world applications, data generation
is a continuous process, where new records are generated and existing ones may become obsolete
as the time progresses, thereby, refuting existing frequent patterns and clusters and/or forming
new associations and groups. This is the case of time series of energy consumption data, which is
continuously generated at high resolution. Therefore, a progressive and incremental update approach is
vital, where ongoing data updates are taken into account and existing frequent patterns and clusters are
accordingly maintained with updated information. For example, an appliance such as a room-heater
generally will be used during winter, and we can expect reduced usage frequency during other seasons.
As an effect, a significant gain in use during winter but the decline in other seasons will be recorded.
As a result, room-heater should appear higher on the list of frequent patterns and association rules
during winter, but much lower during summer or spring. Similarly, appliance usage frequency would
affect size or strength of clusters; i.e., association with time. This objective of capturing the variations
can be achieved through progressive incremental data mining while eliminating the need to re-mine the
entire database at regular intervals. For a large database, frequent pattern mining can be accomplished
through pattern growth approach [38,39], whereas cluster analysis can be achieved through k-means
clustering analysis [40]. In the proposed model, we expand these two techniques and present an online
progressive incremental mining strategy where available data is recursively mined in quanta/slices
of 24 h. This way, our data mining strategy can be viewed as an incremental process being administered
every day. During each consecutive mining operation, existing frequent patterns and clusters are
updated with new information, whereas new discovered patterns and clusters are appended to the
persistent database in an incremental and progressive manner. With this technique, we mine only a
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fraction of the entire database at every iteration thus minimize memory overhead and accomplishing
improved efficiency for real-world online applications where data generation is an ongoing process,
and extraction of meaningful, relevant information to support continuous decision making at various
levels is of paramount importance.

Frequent patterns and clusters can be stored and maintained in-memory using hash table
data-structure or stored in off the memory Database Management System. The latter approach
reduces memory requirement at the cost of a marginal increase in processing time, whereas the
former approach reduces processing time but requires more memory. Considering the smart meter
environment, quicker processing time is of importance; however, the persistence of information
discovered through days, months or years is more vital to achieving useful and usable results for the
future. Therefore, we prefer permanent storage using Database Management System over in-memory
volatile storage.

In the third phase, the model extracts critical information of the appliance-appliance
association rules from the appliance-appliance frequent patterns, incrementally and progressively.
Frequent patterns discovered and clusters formed can determine the probabilistic association of
appliance with other appliances and time while identifying AoIs. In the last phase, we use the Bayesian
network based prediction approach, while taking in results from the previous phase, to predict the
multiple appliance usages and energy consumption for both short-term and long-term forecasting.
This phase includes the visualization of behavioral analytics and forecasting results.

The details of the mechanisms used in each phase are described in the following subsections.

2.1. Data Preparation

Energy time-series raw data is a high time-resolution data; it is transformed into a 1-min resolution
energy consumption or load data. Afterwards, it is translated into a 30-min time-resolution source data
for next stage of data mining process. Therefore, reducing data points to a 24× 2 = 48 readings per day
per appliance, while recording usage duration, average load, and energy consumption for each active
appliance. All the appliances registered active during this 30-min time interval are included in the
source data for frequent pattern mining and cluster analysis. We analyzed and found time-resolution
of 30-min as most suitable because it does not only capture appliance-time and appliance-appliance
associations adequately but also keeps the number of patterns eligible for analysis sufficiently low
and makes it appropriate for a real-world application. Three datasets (two real and one synthetic)
were utilized for this research. The first real dataset has over 400 million raw energy consumption
records from five houses having a time resolution of 6 s. It was reduced to just over 20 million
during pre-processing phase without loss of accuracy or precision. Similarly, the second real dataset
AMPds2 [34] was reduced to 4 million records from over 21 million raw records, which initially had
1-min time-resolution. Additionally, we constructed a synthetic dataset for preliminary evaluation
of our model, having over 1.2 million records. In Tables 1–3, presents an example of source data
comprising of four appliances for one house that is ready to mine for extraction of frequent patterns
and clusters.
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Table 1. Frequent pattern source database.

Start Time End Time Appliances (Active)

2013-08-01 07:00 2013-08-01 07:30 ’2 3 4 12’
2013-08-01 07:30 2013-08-01 08:00 ’3 4 12’
2013-08-01 08:00 2013-08-01 08:30 ’2 4 12’
2013-08-01 08:30 2013-08-01 09:00 ’4 12’
2013-08-01 09:00 2013-08-01 09:30 ’2 3 12’
2013-08-01 09:30 2013-08-01 10:00 ’2 3 4’
2013-08-01 10:00 2013-08-01 10:30 ’2’
2013-08-01 10:30 2013-08-01 11:00 ’12’
2013-08-01 11:00 2013-08-01 11:30 ’2 12’
2013-08-01 11:30 2013-08-01 12:00 ’3 12’
2013-08-01 12:30 2013-08-01 13:00 ’2 4’

- - - - -

2 = Microwave; 3 = Kettle; 4 = Laptop; 12 = TV.

Table 2. Clustering source database-I.

Appliance Hour (of Day) Time (of Day)

2 08:30 09:00 M A E
3 15:00 15:30 A E

12 12:30 13:00 M A

2 = Microwave; 3 = Kettle; 12 = TV; M = Morning; A = Afternoon; E = Evening.

Table 3. Clustering source database-II.

Appliance Weekday Week Month Season

2 2 7 1 3 2 10 F W
3 1 4 2 6 3 12 F W

12 2 5 6 2 7 4 S

2 = Microwave; 3 = Kettle; 12 = TV; F = Fall; W = Winter; S = Spring.

2.2. Frequent Pattern Mining and Association Rules Generation

Appliance-appliance and appliance-time associations represent critical consumer energy
consumption behavioral characteristics and can identify peak load/energy consumption hours.
These associations also explain respective behavioral traits and the expected comfort of the occupants.
Therefore, with the gigantic volume of data continuously being gathered from smart meters, it is not
only of avid interest to utilities and energy producers, but also to consumers to mine such frequent
patterns and clusters for decision-making processes such as energy cost reduction, demand response
optimization, and energy saving plans.

Frequent pattern mining which is conducted over the input data and presented in Table 1,
can discover a recurring pattern; i.e., a pattern comprising of itemsets which exist repeatedly.
In our case, these itemsets are individual appliances operating in specific houses/premises.
Hence, the appliances appearing frequently together form frequent patterns are deemed to be
associated. Therefore, the discovery of these frequent patterns aids us to identify appliance-appliance
associations. The following subsection presents an introductory background on frequent pattern
mining that is built on [41].

Let Γ = {I1, I2, ..., Ik} be an itemset consisting k items (appliances), which can be designated as
k-itemset (lk). Let DB, denote a transaction database where every transaction Υ is such that Υ ⊆ Γ and
Υ 6= ∅. Table 1 represents sample of transaction database. Support count of the itemset can be defined
as the frequency of its appearance; i.e., count of transactions that contain the itemset. Let, X (X ⊆ Υ)
and Y (Y ⊆ Υ) be set two itemsets or patterns. X and Y are considered frequent itemsets/patterns if
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their respective support sX and sY are greater than or equal to minsup. minsup is a pre-determined
minimum support count threshold. support can be viewed as the probability of the itemset or pattern
in the transaction database DB. It is also referred to as the relative support. Whereas, the frequency
of occurrence is known as the absolute support. Hence, if the relative support of an itemset fulfills a
pre-defined minimum support threshold minsup, then the absolute support of X (or Y) satisfies the
corresponding minimum support count threshold.

In the second stage of the (FP) mining process extracted frequent items, or frequent patterns
are processed to develop association rules. Association rules, having configuration {X ⇒ Y},
are developed through employing support–con f idence framework, where support sX⇒Y [Equation (1)]
is the percentage of transactions having (X∪Y) in the database DB that can be viewed as the probability
P(X ∪Y). Additionally, the con f idence cX⇒Y, as shown in equation [Equation (2)], can be described
as the percentage of transactions, in transaction database DB, consisting of X that also contain Y;
i.e., the conditional probability P(Y|X) [41]. Equations (1) and (2) defines the notion of support and
con f idence respectively:

support(X ⇒ Y) = sX⇒Y = support(X ∪Y) (1)

con f idence(X ⇒ Y) =
support(X ∪Y)

support(X)
(2)

support–con f idence frame-work is a common workhorse for the algorithms to extract frequent
patterns and generate association rules. They eliminate uninteresting rules through comparing support
with minsup and con f idence with mincon f . However, support–con f idence frame-work do not examine
correlation of the rule’s antecedent and consequent. This makes this approach ineffective for eliminating
uninteresting (association) rules. Therefore, it is vital to determine the correlation among the rules’
components to learn the negative or positive effect of their presence or absence and eliminate the
rules that are deemed uninteresting. Li f t is one of the most generally employed correlation measures,
but it has a negative impact of null-transactions. Null-transactions, are transactions where the possible
constituents of association rules (itemsets) are not part of these transactions; i.e., X /∈ null-transaction
and Y /∈ null-transaction. In a large transaction database, null-transactions can outweigh the support
count for these itemsets. Thus, in a situation where minimum support threshold is low or extended
patterns are of importance, the technique of using Li f t as criterion fails to yield results as described
by [41]. The study proposes to use Kulczynski measure (Kulc) in conjunction with the Imbalance Ratio
(IR) that are interestingness measures of null-invariant nature to supplement support–con f idence/li f t
frame-work in order to improve the efficiency of extracting rules that are interesting [41].

A correlation rule can be defined as:

X ⇒ Y[support, con f idence, correlation] (3)

Kulczynski Measure (Kulc) [41]: Kulczynski measure of X and Y, is an average of their con f idence.
Considering the definition of con f idence this can be interpreted as the average of conditional
probabilities for X and Y. Kulc or Kulczynski measure is null-invariant, and it is described as:

Kulc(X, Y) =
1
2
(P(X|Y) + P(Y|X)) (4)

where,

• Kulc = 0.0 indicates that X and Y are negatively correlated; i.e. the occurrence of one indicates
the absence of other

• Kulc = 1.0, signifies that X and Y have positively correlation; i.e., occurrence one indicates
presence of other
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• Kulc = 0.50 signifies that X and Y are unrelated or independent having no correlation among them

Imbalance Ratio (IR) [41]: IR is used to asses the imbalance between antecedent and consequent for a
rule. It can be defined as:

IR(X, Y) =
|sX − sY|

sX + sY − s(X∪Y)
(5)

where IR = 0.0 represent perfectly balanced and IR = 1.0 represent a very skewed context respectively.
IR is null-invariant, and it is not affected by database size.

2.2.1. Extracting Frequent Pattern

In the work [38,39], the authors present FP-growth a pattern growth approach that utilizes
divide-and-conquer depth-first technique. It starts by generating a frequent pattern tree or FP-tree,
which is a compact form representation of the database transactions. An FP-tree stores the association
information that is extracted from transactions with the support count for each component item.
Next, conditional databases(tree) for each frequent pattern item is derived from FP-Tree to mine or
generate frequent patterns where the item that is under consideration is present. By employing this
approach, only a divided portion that is relevant to the item and its corresponding growing patterns
are examined that addresses both the deficiencies of the Apriori [42] technique. Moreover, we do not
use minimum support minsup threshold at the data mining phase to eliminate candidate patterns;
rather we let the discovery of all the feasible frequent patterns. This change in approach ensures
avoiding missing of any candidate pattern that may become a frequent pattern if the time slice is
increased or mining activity is taken up for the complete database as a single process. All the frequent
patterns extracted or discovered are stored in a persistent Database Management System, which ensures
the continued availability of all the historical results to the consecutive mining operations. This is inline
as discussed earlier. Additionally, new frequent patterns are compared with the frequent patterns in the
database, and the support for the patterns are updated if found to exists else the new pattern is added
and stored in the persistent database. At the completion of each data mining activity, the database_size
is updated for all the frequent patterns in the database to make sure support is computed all the
time correctly. Algorithm 1 presents the incremental progressive frequent pattern mining technique,
and corresponding results are shown in Table 4. Further, if we consider the definition of support for an
itemset in a database, which is the probability of the existence of the itemset in the transaction database,
the marginal distribution for appliance-to-appliance association can be calculated at a global level. It is
shown in Table 4. The computed marginal distribution establishes the probability of appliance being
concurrently active.

Table 4. Frequent patterns: frequent patterns discovered database.

Frequent Pattern Absolute Support (S) Database Size (D) Support or Probability P = S/D

‘2 3’ 3939 7899 0.4986
‘2 4’ 2840 7899 0.3595

‘2 3 4’ 2649 7899 0.3353

2 = Microwave, 3 = Kettle, 4 = Laptop.
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Algorithm 1 Frequent Pattern mining: Incremental.

Require: Transactional database (DB), Frequent patterns discovered storage database (FP_DB)
Ensure: Incremental mining of frequent patterns, permanently stored in frequent patterns discovered

storage database (FP_DB)
1: for all Transaction data slice db24 in quanta of 24 hr in database DB do {Process time-series data in

24 hr time slices}

2: Compute database size Database_Sizedb24 for the data quantum/slice db24
3: Extract Frequent patterns in data slice FP_DBdb24 through extended FP-growth technique
4: for all Frequent Pattern FP in FP_DBdb24 do

5: Look a frequent pattern FP in FP_DB
6: if Found Frequent Pattern then

7: Update new information for frequent pattern in database FP_DB
8: else

9: Add/append newly discovered Frequent Pattern to database FP_DB
10: end if
11: end for
12: For all Frequent Patterns discovered and stored in Database FP_DB increase size of database

i.e., Database Size by value of Database_Sizedb24
13: end for

2.2.2. Generating Association/Correlation Rules

Generation of appliance association rules is an uncomplicated process of extracting these rules
from the frequent patterns for itemsets captured from transactions in a transaction database DB.
We extract the association rules by extending the Apriori [42] technique. We propose to use the
correlation measure Kulc to eliminate uninteresting association/correlation rules while use measure
imbalance ratio IR to explain it.

2.3. Cluster Analysis: Incremental k-Means Clustering to Uncover Appliance-Time Associations

In addition to uncovering inter-appliance association, understanding the appliance-time
association can aid critical analysis of consumer energy consumption behavior. Appliance-time
associations can be defined in terms of hour of day (00:00–23:59), time of day
(Morning/Afternoon/Evening/Night), weekday, week of month, week of year, month and/or season
(Winter/Summer/Spring/Fall). Finding appliance-to-time associations can be seen as assembling of
adequately adjoining time-stamps, for an active appliance that is recorded as operational, to construct a
class or cluster for the given appliance. The clusters formed defines the appliance-to-time associations,
while the size of clusters, determined by the count of members in the clusters, defines the relative
strength of the clusters. Therefore, the finding of appliance-to-time associations can be interpreted as
clustering of appliances into groups of time-intervals; where every cluster belongs to one appliance
with time-stamps (data points) of activity as members of the cluster.

Cluster analysis is a process of constructing batches of data points according to the information
retrieved from the data, but without external intervention; i.e., unsupervised classification.
This extracted information outlines the relationship among the data points and acts as the base
for classification to ensure data points within a cluster are closer to one another but distant from
members of other clusters [43,44]. “Closer” and “Distant” are measures of association, defining how
closely members of a cluster are related to one another. Hence, clustering analysis conducted
over the input data, presented in Tables 2 and 3, can generate clusters or classes defining natural
associations of appliances with time while respective support or strength defines the degree of
association. These appliance-to-time associations are capable of not only determining peak load



Energies 2018, 11, 452 11 of 26

or energy consumption hours but can reveal the energy consumption behavioral characteristics of
occupants or consumers as well.

We extend one of the most widely used prototype-based partitional clustering technique to extract
appliance-time associations. The prototype of a cluster is defined by its centroid, which is the mean of
all the member data points. In this approach, clusters are formed from non-overlapping distinct groups;
i.e., each member data point belongs to one and only one group or cluster [43]. Moreover, we mine
data incrementally in a progressive manner, which we explain next.

2.3.1. k-Means Cluster Analysis

We introduce preliminary background on k-means clustering based on [43,44]. For a dataset,
DB, that has n data points in the Euclidean space, partitional clustering allocates the data points from
dataset DB into k number of clusters, C1, C2, ..., Ck, having centroids c1, c2, ..., ck such that Ci ⊂ DB,
Ci ∩ Cj = ∅ and ci 6= cj for (1 ≤ i, j ≤ k). An objective function that is based on Euclidean distance,
Equation (7), is employed to measure the cohesion between data points that demonstrate the quality
of the cluster. The objective function is defined as the sum of the squared error (SSE), define in
Equation (6), and k-means clustering algorithm strives to minimize the SSE.

SSE =
k

∑
i=1

∑
d∈Ci

distance(d, ci)
2 (6)

distance(x, y) =
√

∑
j
(xj − yj)2 (7)

The k-means starts by selecting k data points from DB, where k ≤ n , and form k clusters having
centroids or cluster centers as the selected data points. Next, for each of the remaining data points
d in DB, data point is assigned to a cluster having least Euclidean distance from its centroid (ci)
i.e., distance(d, ci). After a new data point is assigned the revised cluster centroids are determined by
computing the cluster centers for the clusters, and k-means algorithm repetitively refines the cluster
composition to reduce intra-cluster dissimilarities by reassigning the data points until clusters are
balanced; i.e., no reassignment is possible, while evaluating the cluster quality by computing the sum
of the squared error (SSE) covering all the data points in the cluster from its centroid.

2.3.2. Optimal k: Determining k using Silhouette coe f f icient

We exploit silhouette coe f f icient that is calculated based on the Euclidean distance, to ascertain
the optimal number of clusters; i.e., k, while assessing the quality of clustering by analyzing
intra-cluster cohesion and inter-cluster separation of data points among clusters. Silhouette coe f f icient
measures the degree of similarities and dissimilarities to indicates “How well clusters are formed?”.
Silhouette coe f f icient can be computed as defined in Equations (8)–(12) [45],

• Compute aj as average distance of dj to all other data points in cluster Ci

aj = average{distance(dj, di)}
where, di = (d1, d2, ..., dn); di 6= dj

(8)

• Compute Average distance of dj to all other data points in clusters Ci, having i 6= j;
Determine bj = minimum(bj) across all the clusters except Ci.

bj = average{distance(dj, di/Cx )}
where, di = (d1, d2, ..., dn); (9)

and, Cx = (C1, C2, ..., Cn); Cx 6= Ci
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• Compute Silhouette coe f f icient for dj

sdj
=

(bj − aj)

maximum(aj, bj)
(10)

• Compute Silhouette coe f f icient for cluster Ci

sCi = average(sdj
) f or j = d1..dn (11)

• Compute Silhouette coe f f icient for clustering, having k clusters

sk = average(sCi ) f or i = 1..k (12)

Silhouette coe f f icient can range from −1 to 1; where a negative value indicates misfit as the
average distance of data point di to data points in the cluster Ci (ai) is greater than the average distance
di to data points in a cluster other than Ci (bi) , and a positive number indicates better-fit clusters.
Overall the quality of the cluster can be assessed by computing average Silhouette coe f f icient by
computing the average of Silhouette coe f f icient (Silhouette width) for all the member data points for
the cluster, as shown in Equation (11). Similarly, an average Silhouette coe f f icient (Silhouette width)
can be calculated for complete clustering by obtaining the average of Silhouette coe f f icient for all the
member data points across all the clusters, as in Equation (12) [45].

Finally, to determine optimal k ∈ 1, 2, 3...n, where n is the unique set of data points in
database/dataset, the process of analyzing the quality of clusters formed is repeated while computing
Silhouette coe f f icient (Silhouette width) and k is chosen having maximum Silhouette width.

2.3.3. Optimal One-Dimensional k-Means Cluster Analysis: Dynamic Programming

With reference to the clustering input database, presented in Tables 2 and 3, we have a cluster
analysis requirement for a single dimension data. We make use of dynamic programming algorithm
for optimal one-dimensional k-means clustering proposed by [46], which ensures optimality and
efficient runtime. We further extend the algorithm to achieve incremental data mining to discover
appliance-time associations.

Here we provide the relevant background based on [46]. A one-dimension k-means cluster
analysis can be viewed as grouping n data points d1, d2, ...dn into k clusters, while minimizing sum of
the squared error (SSE), shown in Equation (6). A sub-problem for the original dynamic programming
problem can be defined as finding the minimum SSE of clustering d1, d2, ...di data points into m clusters.
The respective minimum SSE are stored in a Distance Matrix (DM) of size [n+ 1, k+ 1], where DM[i, m]

records the minimum SSE for the stated sub-problem, and DM[n, k] provides the minimum SSE for
the original problem. For a data point dj in the m clusters, where dj is the first data element of cluster
m, the optimal solution (SSE) to the sub-problem is DM[i, m]; therefore, DM[j− 1, m− 1] must be the
optimal SSE for the first j− 1 data points in the m− 1 clusters. This provides optimal substructure
defined by Equation (13).

DM[i, m] = min
m≤j≤i

{DM[j− 1, m− 1]

+dist(dj, ..., di)} (13)

1 ≤ i ≤ n, 1 ≤ m ≤ k
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where dist(dj, ..., di) is the computed SSE for dj, ..., di from their centroid/cluster center,
and DM[i, m] = 0, for m = 0 or i = 0. dist(dj, ..., di) is computed iteratively from dist(dj+1, ..., di)

as shown in Equation (14) .

dist(dj, ..., di) = dist(dj, ..., di−1) +
i− 1

i
(xi − µi−1)

2 (14)

µi =
xi + (i− 1)µi−1

i
(15)

where, µi−1 is the mean of the first (i− 1) data elements.
A backtrack matrix BM is maintained, of size [n, k], to record the starting index of the first data

element of respective cluster. Backtrack matrix is used to extract cluster members by determining
the starting and ending indices for the corresponding cluster and retrieving the data points from the
original dataset. Equation (16) captures this notion.

BM[i, m] = argmin
m≤j≤i

{DM[j− 1, m− 1]

+dist(dj, ..., di)} (16)

1 ≤ i ≤ n, 1 ≤ m ≤ k

2.3.4. Incremental Mining: Cluster Analysis

We achieve incremental progressive clustering by merging clusters and/or adding new clusters
extracted during each successive mining operation into a persistent database in the Database
Management System. Discovered clusters database records all the relevant cluster parameters and
information that includes centroid, Silhouette coe f f icient (width), SSE, and data points along with
their distance from the centroid. This enables the easy addition of new data points or clusters
while computing cluster parameters with respect to the newly added data points and updating the
information in the database accordingly. Considering, the translation of the raw time series data into a
source data having 30 min time-resolution during the data preparation phase, this time-resolution unit
is sufficient to capture vital information regarding consumer energy consumption decision patterns.
The cluster analysis for hour of day done on this source data will result in clusters created with a
separation between clusters’ centroids as multiples of such time-resolution, which is 30 min in the
current case. This time-resolution is identified as permissible centroid distance. Whereas, a cluster
analysis on the other bases such as time of day, weekday, week of month, week of year, month and
seasons have natural segmentation. With this operation, we achieve more exclusive homogeneity and
separation among clusters.

Upon completion of mining on the incremental quantum of data, newly discovered clusters are
matched against the existing clusters in the database to determine the closest cluster(s) to merge with,
having centroid within the distance of permissible centroid distance from the new cluster. If there
exists no cluster in the database, which is closer to the new cluster satisfying the permissible centroid
distance constraint, the new cluster is added/stored into the discovered clusters database with all the
accompanying parameters and information. However, in the case of success, data points from the
new cluster will be added to the searched cluster(s) while evaluating the quality of the final cluster
by computing the Silhouette coe f f icient (width). The data points from the new cluster are picked
according to increasing order of distance from the centroid. The most stable cluster configuration,
having the maximum Silhouette coe f f icient(width), are saved to the database. Algorithm 2 outlines
the incremental cluster analysis using one-dimensional k-means clustering via dynamic programming
and results are presented in Table 5. During the analysis of the clustering results, it can be noted that
for a cluster centroid, the marginal distribution for the appliances at a global level can be computed as
shown in Table 6. The computed marginal distribution decides the probability of appliances being
operational or active during the period identified by the centroid.
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Algorithm 2 Incremental k-means Clustering.

Require: Transactional database DB, permissible centroid distance between clusters

permissible centroid distance = 30
Ensure: Incremental k-means clustering, clusters and associated configuration

(Silhouette coe f f icient/width, SSE, and data points along with distance from centroid)

stored in clusters discovered database CL_DB
1: for all 24 hr quantum transaction data db24 in DB do {Process time-series data in 24 hr time slices}

2: Find optimal k for data quantum db24 by evaluating silhouette coe f f icient (width)

for clustering
3: Construct k clusters CL24 in db24 using one-dimensional k-means clustering through dynamic

programming, while recording Silhouette coe f f icient (width), SSE, and data points along with

their distance from cluster center or centroid
4: for all Cluster c in CL24 do

5: Seek the closest cluster cts in CL_DB, having cluster center or centroid within the distance

of permissible centroid distance
6: if Found Cluster(s) then

7: Combine/merge the clusters cts and c while assessing quality of cluster by

determining the silhouette coe f f icient (width) and store it in database CL_DB
8: else

9: Add new cluster c with associated information in the database CL_DB
10: end if
11: end for
12: end for

Table 5. Cluster analysis: discovered clusters database.

Active Appliance Cluster_ID Cluster Size Cluster Centroid SSE Distance from the Centroid

12 1 113 630 0 0
12 2 118 660 0 0
12 3 120 690 0 0
: : : : : :

12 14 154 1020 0 0
12 15 151 1050 0 0
: : : : : :

12 40 10 1380 0 0
12 41 8 1410 0 0
12 42 7 0 0 0
: : : : : :

12 48 51 150 0 0

12 = TV.

Table 6. Cluster analysis: cluster marginal distribution.

Appliance Cluster ID Size (S) Probability (P) Pi = Si / ∑ Si

2 40 10 0.0414
3 38 5 0.0207
4 37 41 0.1701
- - - -

2 = Microwave, 3 = Kettle, 4 = Laptop.
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2.4. Bayesian Network for Multiple Appliance Usage Prediction and Household Energy Forecast

We utilize a Bayesian Network (BN) that is a probabilistic graphical model using directed acyclic
graph (DAG) to predict the multiple appliances usage at some point in the future. Bayesian networks
are directed acyclic graphs, where nodes symbolize random variables and edges represent probabilistic
dependencies among them. Each node or variable in BN is autonomous; i.e., it does not depend on
its nondescendants. It is accompanied by local conditional probability distribution in the form of a
node probability table that aids the determination of the joint conditional probability distribution
for the complete model [47,48]. Therefore, the local probability distributions furnish quantitative
probabilities that can be multiplied according to qualitative independencies described by the structure
of Bayesian Network to obtains the joint probability distributions for the model. The Bayesian
network has advantages such as the ability to effectively make use of historical facts and observations,
learn relationships, mitigate missing data while preventing overfitting of data [49]. A Bayesian network
can be illustrated by the probabilistic distribution defined by Equation (17) [50,51].

p(x1, x2, ..., xn) =
n

∏
i=1

p(xi|parents(xi)) (17)

2.4.1. Probabilistic Prediction Model

We construct our model based on Bayesian network, having eight nodes representing
probabilities for appliances-to-time associations in terms of hour of day (00:00–23:59), time of day
(Morning/Afternoon/Evening/Night), weekday, week of month, week of year, month and/or season
(Winter/Summer/Spring/Fall), and appliance-appliance associations. The resulting Bayesian network
has a very simple topology, with known structure and full observability, comprising only one level
of input evidence nodes, accompanied by respective unconditional probabilities, converging to one
output node. The Equation (18) and Figure 2 present the posterior probability or marginal distribution
and network structure for the proposed prediction model.

p(.) = p(Hour)× p(Time o f day)× p(Weekday)× p(Week o f Month)

×p(Week o f Year)× p(Month)× p(Season) (18)

×p(Appliance− Appliance Associations)

We use the output of the earlier two phases; i.e., cluster analysis and frequent pattern mining
to train the model, which effectively incrementally learns the prior information through progressive
mining. Table 7 represents a sample of the training data with marginal distribution for the
various appliances, and the probability of appliances to be active during the period, for the node
variable/parameter vector. The probabilities are computed from the clusters, formed and contentiously
updated during the mining operation. The respective cluster strength or size determines the relative
probability for the individual appliance. Additionally, appliance-appliance association, the outcome
of the frequent pattern mining, computes the probabilities for the appliances to operate or be active
concurrently. Therefore, the model uses top-down reasoning to deduce and predict active appliances
consuming energy, operating concurrently, using historical evidence from the results of cluster analysis
(appliance-to-time associations) and frequent pattern mining (appliance-to-appliance associations).

Furthermore, the multiple appliance usage prediction results build the foundation for household
energy consumption forecast, where, average appliance load and average appliance usage duration
are extracted from the historical raw time-series data at the respective time resolution that is an
hour, weekday, week, month or season level. In this way, we are capable of predicting energy
consumption for a defined time in the future for short-term: from the next hour up to 24 h and
long-term: days, weeks, months, or seasons. Next, we evaluate our proposed model and provide
results of the analysis. Table 8 shows an example of extracted raw data for data mining for one
appliance.
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Figure 2. Bayesian prediction model: eight input evidence nodes.

Table 7. Node probability table-appliance marginal distribution.

Centroid/Cluster Center
Appliance 12:00 12:30 13:00 13:30 14:00

2 0.0270 0.0422 0.0719 0.1010 0.0979
3 0.0878 0.0783 0.0778 0.0657 0.0553
4 0.6014 0.5060 0.4731 0.3939 0.4043

2 = Microwave; 3 = Kettle; 4 = Laptop.

Table 8. Raw data: sample.

Timestamp * Appliance Energy Consumption **

1501570800 108
- -

1501571550 88
- -

1501572210 98

* Unix timestamp; ** Appliance level power consumption readings captured using plug-in IAMs:
individual appliance monitors or Multi-Circuit Power Submeters.

3. Evaluation and Results

We performed thorough data mining experimentation using time-series energy consumption
data from two datasets UK-Dale [33] and AMPds2 [34] in addition to a synthetic dataset prepared
for training purposes. The evaluation results clearly support our hypothesis regarding the
impact of human behavior on energy consumption patterns. This is reflected in the analysis of
appliance-to-appliance and appliance-to-time usage correlations. Although it is important to note that
our proposed approach can be applied to any quantum size for incremental mining, we considered 24 h
as the most optimal selection of time-span to retrieve underlying essential information. We obtained
consistent results during evaluation for all the houses in the datasets; but, due to space constraint we
present appliance-appliance, and appliance-time associations result from one house and prediction
statistics for all the houses.

Moreover, we make use of a multi-label SVM classifier, based on Binary Relevance (a One-vs.-All
(OvA) approach) algorithm as a problem transformation method [52] and Multi-layer Perceptron
(MLP) multi-label classifier algorithm that trains using Backpropagation to predict the operation
of multiple appliances to compare the results and accuracy of the proposed model. Our choice of
models for comparison is based on the wide use of these classification techniques, SVM and MLP,
and wide acceptance as two well-known approaches for classification and prediction by the research
community [53–64].

Further, we are considering a context-aware time series data from smart meter; i.e., energy consumption
measurements are tagged with appliance details. In the current scope of work, we have taken into
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account two key features or variables; i.e., a time-stamp (at the hour, minute, day, weekday, week,
month, and season) and energy consumption measurement at appliance level. This provides us data
with reduced dimensions for data mining. All the approaches; i.e., proposed model and models chosen
for comparative study (SVM, and MLP) use these features.

3.1. Results Analysis and Discussion

Table 9 presents the extracted appliance-appliance associations outcome of processing 25%
of the data from the respective dataset for House 3. We noticed that appliances such as Laptop,
Monitor, and Speakers manifest associations; and during further steps of the incremental mining,
associations among these appliances strengthen and new appliances such as Washing Machine,
Kettle, and Running Machine develop associations. From these associations, we can infer the
occupants’ behavioral preferences such as “occupants like to work on the computer and/or listen to
music while washing clothes” and “work on the computer and/or workout while cooking”.

Table 9. House 3 : Appliance association rules in 50% training dataset.

Sr. Association Rule Support Confidence Kulc IR

1 Monitor⇒ Laptop 0.40 0.99 0.90 0.17
2 Laptop⇒Monitor 0.40 0.82 0.90 0.17
3 Speakers⇒ Laptop 0.27 0.79 0.68 0.26
4 Monitor, Speakers⇒ Laptop 0.24 1.00 0.74 0.51
5 Laptop, Speakers⇒Monitor 0.24 0.88 0.73 0.30

Kulc ≥ 0.70; minsup ≥0.20; mincon f ≥ 0.75.

Furthermore, Table 10 presents the appliance usage priorities, which are revealed from the
habitual use of certain appliances. This led us to determine what we refer to as Appliance-of-Interest
(AoI), which are the appliances having a low power rating, but they have large energy footprints due
to excessive use. This is clear for appliances Speakers, Laptop, and Monitor in House 3. They are
identified as appliances that are habitually used over extended periods; therefore, they are major
contributors to electricity usage. This conclusion is often neglected by consumers when they try to
identify the higher cost of electricity. In other words, large appliances that often have higher power
ratings are not always the source of higher cost of electricity; it is often small appliances that are used
excessively due to consumers’ behavior are responsible for it. Moreover, we found that other appliances
such as Kettle, Toaster, and Microwave; i.e., appliances with higher power rating contribute towards
peak power (kW) load but overall energy (kWh) consumption is higher for appliances identified
as AoI.

Table 10. House 3 : appliance usage priority in 50% training dataset.

Sr. Appliance Relative Support (%)

1 Laptop 42.25
2 Monitor 35.56
3 Washing Machine 33.81
4 Speakers 31.47
5 Laptop II 11.42
6 Running Machine 08.93
7 Kettle 05.83

minsup ≥ 0.05.

The carried extensive analysis of energy consumption for the peak load and peak energy revealed
homogeneous trends across the board.

Next, Figure 3 shows the appliance-time associations discovered. We can see that Laptop and
Monitor are two appliances which are used simultaneously and with the highest concentration of
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use during 17:00–18:00 with similar frequency of use during the week but increased usage in spring.
Whereas, Washing Machine is used all day long with major usage concentration noted between
05:45–07:15 and 15:15–17:15 with increased usage on Saturdays and during the summer season.
Based on the above-mentioned behavior, we realized the changing impact of time, days and seasons on
appliance usages. Figure 4 outlines the number of clusters formed during the incremental data mining
process; which further confirms the discovery of new appliance-time associations representative of
behavioral changes taking place over a period of time.

Figure 3. House 3: appliance-time associations [25% training dataset], (a) appliance-hour of day;
(b) appliance-time of day; (c) appliance-weekday; (d) appliance-week; (e) appliance-season; (f)
appliance-month.
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Figure 4. Number of clusters discovered vs dataset size mined.

We utilized the above appliance-appliance and appliance-time associations, in our probabilistic
prediction model to forecast multiple co-occurrence usages of appliances with high success.
Table 11 shows the forecasting accuracy attained for short and long-term as well as the overall
predictions when performing incremental data mining processes using 25%, 50% and 75% of the
dataset. Our proposed model outperformed SVM and MLP at each stage while attaining an overall
accuracy of 81.82% (25%), 85.90% (50%), 89.58% (75%) at each mining process, respectively. Figure 5
presents the comparison of the accuracy proposed model vs. SVM and MLP while supporting our
hypothesis that incremental mining can discover variations induced by dissimilarities of occupants’
behavioral traits and facilitate well-informed energy consumption decision-making at various levels.
Additionally, Table 12 presents and compares the accuracy of the model at the household level.

Figure 5. Overall prediction accuracy: proposed model vs. SVM vs. MLP.
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Table 11. Prediction: model accuracy, precision, recall.

Short Term Long Term Overall

Model Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

25% Data as Training Data

Model 85.45% 88.24% 81.82% 78.18% 76.09% 63.64% 81.82% 82.47% 72.73%
SVM 58.57% 75.93% 58.57% 56.45% 64.81% 56.45% 57.58% 70.37% 57.58%
MLP 47.14% 67.35% 47.14% 45.16% 53.85% 45.16% 46.21% 60.40% 46.21%

50% Data as Training Data

Model 89.41% 89.29% 88.24% 81.69% 81.43% 80.28% 85.90% 85.71% 84.62%
SVM 73.96% 75.53% 73.96% 61.18% 62.65% 61.18% 67.96% 69.49% 67.96%
MLP 65.63% 72.41% 65.63% 54.65% 58.97% 53.49% 60.44% 66.06% 59.89%

75% Data as Training Data

Model 91.67% 95.52% 88.89% 87.50% 88.41% 84.72% 89.58% 91.91% 86.81%
SVM 80.00% 92.75% 80.00% 78.67% 84.29% 78.67% 79.35% 88.49% 79.35%
MLP 72.50% 89.23% 72.50% 73.33% 81.82% 72.00% 72.90% 85.50% 72.26%

Combined across all datasets: I-Synthetic Dataset, II-UK-DALE Dataset [33], and III-AMPds2 Dataset [34].

Table 12. Prediction: premise level accuracy, precision, recall @ 50% data as training data.

Short Term Long Term

Dataset Premises Model Accuracy Precision Recall Accuracy Precision Recall

I House_1
Proposed Model 75.00% 72.73% 66.67% 90.00% 88.90% 80.00%

SVM 53.33% 53.33% 53.33% 57.14% 57.14% 57.14%
MLP 46.67% 50.00% 46.67% 42.86% 46.15% 42.86%

II

House_2
Proposed Model 92.31% 92.31% 92.31% 90.91% 90.91% 90.91%

SVM 85.71% 85.71% 85.71% 52.94% 52.94% 52.94%
MLP 78.57% 84.62% 78.57% 47.06% 50.00% 47.06%

House_3
Proposed Model 100.00% 100.00% 100.00% 90.00% 90.00% 90.00%

SVM 80.00% 80.00% 80.00% 64.29% 64.29% 64.29%
MLP 66.67% 76.92% 66.67% 57.14% 61.54% 57.14%

House_4
Proposed Model 66.67% 66.67% 66.67% 70.00% 70.00% 70.00%

SVM 42.86% 42.86% 42.86% 60.00% 60.00% 60.00%
MLP 35.71% 38.46% 35.71% 60.00% 60.00% 60.00%

House_5
Proposed Model 100.00% 100.00% 100.00% 70.00% 70.00% 70.00%

SVM 85.71% 85.71% 85.71% 63.64% 63.64% 63.64%
MLP 78.57% 84.62% 78.57% 54.55% 60.00% 54.55%

House_6
Proposed Model 100.00% 100.00% 100.00% 80.00% 80.00% 80.00%

SVM 91.67% 100.00% 91.67% 70.00% 77.78% 70.00%
MLP 83.33% 90.91% 83.33% 60.00% 75.00% 60.00%

III House_7 Proposed Model 91.67% 91.67% 91.67% 90.00% 80.00% 80.00%
SVM 83.33% 90.91% 83.33% 66.67% 75.00% 66.67%
MLP 75.00% 90.00% 75.00% 70.00% 75.00% 60.00%

I-Synthetic Dataset; II-UK-DALE Dataset [33]; III-AMPds2 Dataset [34].

Subsequently, we applied our results of multiple appliance predictions to forecast the expected
household energy consumption. We achieved accuracies of 81.89%, 75.88%, 79.23%, 74.74%, and 72.81%
for short-term @ hour, long-term @ day, long-term @ week, long-term @ month, and long-term @ season
energy consumption predictions respectively. Figure 6 presents and compares the energy prediction
against actual energy consumption for House 3.
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(a) Long-Term @ Day

(b) Long-Term @ Week (c) Long-Term @ Month

(d) Long-Term @ Season (e) Short-Term @ Hour

Figure 6. House 3: energy consumption prediction vs. actual energy consumption.

Considering the above results, we note the robust evidence of the influence of consumer behavior
on household energy consumption patterns, which can be learned through appliance-to-appliance
and appliance-to-time associations derived from the frequent pattern mining and cluster analysis.
We observed through incremental association discovery that the associations change over time, and are
directly affected by occupants’ behavior. Also, the choice of use of appliances, whether increased or
reduced usage frequency, depends on the time (time of day, days, week, season, etc.); for example,
from Figure 3, we observed that the kettle in house 3 was used more around 01:30 a.m. on Mondays,
Saturdays, and Sundays on the second and the fourth weeks of the months, and during Spring but
less otherwise. These choices made by occupants affect the energy consumption decision patterns
that get directly translated into energy usage. Therefore, energy consumption behavior for different
occupants is affected by these parameters differently depending on their lifestyle. In other words,
the occupants’ behavior has a direct influence on household energy consumption. Acknowledging and
learning these variations, which are the result of the occupants’ behavioral traits and corresponding
personal preferences, are crucial for designing successful energy reduction programs that encourage
consumers to participate.
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3.2. Dataset and System Setup

The model evaluation and experiments were run on two energy time series datasets collected
from real houses. The first one is the UK Domestic Appliance Level Electricity dataset (UK-Dale) [33],
which includes 4 years worth of energy time series data collected from five houses in Southern England
between 2012 and 2015. Furthermore, this energy time series dataset entails a total of 109 appliances
with time resolution of 6 s. This dataset is published by UK Energy Research Centre Energy Data
Centre (UKERC-EDC) and considered one of the largest energy time series with approximately half a
billion records [33]. The second energy time series dataset is AMPds2-Almanac of Minutely Power
dataset [34], which is a time series data for electricity, water, and natural gas measurements for over
2 years from 2012 to 2014, with a time resolution of 1 minute for one residential house from Greater
Vancouver metropolitan area in British Columbia, Canada. This dataset includes weather data from
Environment Canada. Electrical measurements are done at the electrical circuit breaker panel using
DENT PowerScout 18 Multi-Circuit Power Submeters. For model training and initial experiments,
we prepared a new synthetic dataset using seeds from real dataset [65] by ISSDA-The Irish Social
Science Data Archive. The synthetic dataset contains over 1.2 million records of energy time series at
1 min time resolution from one house containing data about 21 appliances. Table 8 shows an example
of extracted raw data for data mining for one appliance. The entire system was developed using
Python, where data is stored in MySQL and MongoDB databases on a ubuntu 14.04 LTS 64-bit system.

4. Conclusions and Future Work

This work demonstrates the impact of consumers’ behavior and personal preferences on energy
consumption decision patterns, which can be inferred from appliance-appliance and appliance-time
associations learned from energy time series. These patterns can facilitate sustainable energy saving
plans for consumers, balance energy supply, and demand through optimizing scheduling and
allocation, plan energy purchasing policies and maintenance routines and on a broader scale balance
the smart grid’s production and strategic planning.

Furthermore, this paper presented unsupervised incremental frequent mining and forecasting
model utilizing the Bayesian network and dynamic programming principles. Exhaustive experiments
using various time periods such as 15 min, 30 min, 1 h, 2 h, 6 h, and 12 h have revealed fairly
comparable results that supported our incremental mining approach. Therefore, we introduced a new
parameter to select the time quanta, which can be chosen during data transformation step to define the
smallest possible mining time period. The model transforms data in such a fashion that a dynamic
switch in time quantum can be accommodated without having to restart the process. By altering the
time quantum, it is possible to reduce the number of appliances and data size under consideration for
data mining.

Furthermore, the proposed model is evaluated using real-world context-rich energy time
series datasets. We showed that our system outperforms Support Vector Machine (SVM) and
Multi-layer Perceptron (MLP). For future work, we are planning to conduct further refinement on
the proposed model and introduce real-time distributed learning of big data mining of energy time
series from multiple houses. This will allow utilities to perform online/real-time energy predictions
to momentarily engage consumers upon realizing consumption changes for an improved smart grid
energy saving programs.
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Abbreviations

The following abbreviations are used in this manuscript:
AMPds2 The Almanac of Minutely Power dataset (Version 2)
AoI Appliances of Interest
BN Bayesian Network
FP Frequest Pattern
IR Imbalance Ratio
Kulc Kulczynski measure
MLP Multi-Layer Perceptron
SVM Support Vector Machine
UK-Dale UK Domestic Appliance Level Electricity dataset
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