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Abstract: This paper presents a review of ensemble-based data assimilation for strongly nonlinear
problems on the characterization of heterogeneous reservoirs with different production histories.
It concentrates on ensemble Kalman filter (EnKF) and ensemble smoother (ES) as representative
frameworks, discusses their pros and cons, and investigates recent progress to overcome their
drawbacks. The typical weaknesses of ensemble-based methods are non-Gaussian parameters,
improper prior ensembles and finite population size. Three categorized approaches, to mitigate these
limitations, are reviewed with recent accomplishments; improvement of Kalman gains, add-on of
transformation functions, and independent evaluation of observed data. The data assimilation in
heterogeneous reservoirs, applying the improved ensemble methods, is discussed on predicting
unknown dynamic data in reservoir characterization.

Keywords: ensemble-based method; ensemble Kalman filter; ensemble smoother; data assimilation;
heterogeneous reservoir

1. Introduction

Data assimilation, as a methodology for integrating various kinds of data, is defined as an analysis
technique in which the observed information is accumulated into the model state, by taking advantage
of consistency constraints with laws of time evolution and physical properties. The technique uses
measured data and the theoretical information of the system to improve knowledge of the past, present,
or future system states. The framework of typical data assimilation is a recursive method by updating
the model state, i.e., ensembles, since the new estimate is a function of the previous estimate, and
thereby it updates the ensembles to match the observed data [1,2].

Data assimilation techniques can be categorized as variational schemes, statistical schemes,
or hybrid schemes [3,4]. The variational schemes are based on least squares estimation for maximum
likelihood, while the statistical methods estimate minimum variance for least uncertainty. The variational
schemes, originating from optimal control theory, minimize some cost function that expresses the
distance between observations and corresponding model values, using the model equations as
constraints [5]. Typical variational methods are 3D-Var, 4D-Var [6], and Nudging [7]. The statistical
schemes emanate from estimation theory, and use the error covariances of the observations and of
the model predictions to find the most likely linear combination of the two [5]. The classic approach
is the Kalman filter for linear problems, whereby for strongly nonlinear problems, it is extended to
the ensemble Kalman filter (EnKF), ensemble smoother (ES), ensemble Kalman smoother (EnKS),
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and other variants. Lastly, the hybrid method integrates both of the above schemes to combine their
different strengths. Ensemble of data assimilation (EDA), NDEnVAR [8] and Iterative Ensemble
Kalman Smoother (IEnKS) [9] are categorized as hybrid schemes.

Since the real reservoirs are very uncertain, data assimilations in reservoir characterization have
focused on uncertainty quantification and reliable data integration with available dynamic and static
datasets. Thus, in the field of reservoir engineering, statistical schemes, such as EnKF and ES, have
been actively researched. They assume the initial state of the reservoir (pressures, temperatures, and
saturations) and the joint probability of reservoir parameters are known, and that the future state
can be generated by updating the current and past states [10]. The dynamic data consisting of the
assimilation objectives are continuously updated, and thereby reliable revision of plausible or optimal
reservoir models is still challengeable. As the amount of data increase, the more reliable reservoir
characterization has demanded intensive data integration to match all available spatiotemporal data,
as well as newly updated data. However, the different-scaled data, high nonlinearity, and limited
available information cause difficulties for more reliable data assimilations with mathematical clearness,
and also for improved predictions of unknown properties.

The statistical assimilation for high nonlinear problems in reservoir characterization is fundamentally
based on mathematical modeling with linear algebra, and thereby its assumptions cause a few
limitations as follows: non-Gaussian model parameters, improper prior ensembles, and finite ensemble
size (the number of ensemble members). First, an assimilation equation assumes the model parameters
follow a Gaussian distribution. One of the strengths of ensemble-based data assimilation is a wide
range of applications, since there are few applicable constraints of model parameters in state vectors,
e.g., permeability, facies, aquifer size, and relative permeability. However, most properties in reservoir
engineering do not satisfy this Gaussian condition, e.g., some facies models in channelized reservoirs
follow bimodal distributions. To make this matter worse, the updated model parameters tend to
follow a normal distribution (see Figure 1a). This violates preservation of geological realism, and
static information from well logging, core, and seismic data. The second weakness is the improper
ensembles: the improper prior ensembles might induce unreliable estimation of posterior solutions.
The mean value of initial ensembles is assumed to be true, in spite of inevitable error. A misfit between
individual geomodel and true reservoir calculates an estimate error covariance, but a lot of actual fields
are lacking in available data for making suitable prior datasets. To make this matter worse, the severe
reservoir heterogeneity hinders the proper design of prior models. The uncertainty range of prior
ensembles cannot even include observed data (see Figure 1b). Initial geomodels that are far off from
the actual reservoir result in false convergence of updated models. The last is the problem of setting the
proper size of ensemble. As regards the computation cost, the number of ensemble members must be
small enough to be applicable in real fields, but it is difficult to confirm that the fixed ranges contain the
true. When the ensemble size is too small, a cross-covariance can be mistakenly assessed [11,12]. Also,
an ensemble collapse problem may occur due to small variance [13]. Therefore, the set of appropriate
ensembles is essential. It is generally known that more than two hundred ensemble members are
required for stable assimilation [14]. If geological uncertainty is too wide, or the inversion problem
is very complex to assimilate recursively different-scaled dynamic data, more than four hundred
ensemble members are needed [14].

For another research topic, the applicability of ensemble-based history matching has been expanded
to various types of reservoirs. The principle of ensemble-based history matching is identical for all
types of reservoirs. However, for each reservoir, detailed design and implementation of the method
have evolved in different directions, reflecting their individual characteristics. It should be noted
that different design and implementation of ensemble-based history matching, such as construction
of a state vector, generation of initial ensembles, ensemble size, and supplementary techniques,
are considered according to the reservoir type.

This paper introduces state-of-the-art ensemble-based methods with nonlinear problems, concentrates
on EnKF and ES as frameworks in reservoir characterization, and also analyzes the aspect of
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overcoming weaknesses and developing schemes. The structure of this review is as follows: First,
the mathematical frameworks of EnKF and ES are presented, together with their pros and cons.
To mitigate the problems, recent progress is explained for strongly nonlinear problems. The case
studies implementing ensemble-based data assimilation, categorized as reservoir characteristics like
naturally fractured reservoir, channelized reservoir, and tight reservoir with hydraulic fracturing, are
reviewed. In the conclusions, the recent progress of ensemble-based data assimilation is summarized,
and future works are discussed.
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Figure 1. Examples of unreliable results after assimilating the dynamic data through ensemble-based
data assimilation: (a) The reservoir properties of the true case follow a non-Gaussian distribution
(bimodal distribution), but the assimilated result shows a Gaussian distribution; (b) When prior models
(grey lines) contain the true performance (red line), ensemble-based methods estimate the reliable
assimilation for their mean values to converge the true profile.
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2. Theoretical Framework of Ensemble–Based Data Assimilation

2.1. Mathematical Formulation

Ensemble-based methods consist of prediction and assimilation steps. After generating initial
(or prior) values using the static data given, they are implemented by reservoir simulator to predict
reservoir performances at observation time of dynamic data as Equation (1):{

md
i,t

di,t

}
= f

(
ms

i,prior, md
i,prior

)
, i = 1, Ne, t = 1, No (1)

where, the function f represents a forward model, i.e., reservoir simulation. The input parameter,
ms

i , stands for the i-th model parameters, which will be calibrated through ensemble-based methods,
e.g., permeability, porosity, and facies. As initial condition, md

i means dynamic conditions, such as
pressure and saturation, for each grid, and d denotes dynamic data as the results of simulation, which
will be compared with the observed data. Subscripts i and t mean indication of ensemble member
and observed time step, respectively. Therefore, Ne indicates the number of total ensemble, and No

represents the number of observation steps.
In this assimilation step, all equations are derived with the concept of state vector:

yi,t =

 ms

md

d


i,t

(2)

This state vector is updated by the product of the misfit between the observed data and the
simulated data and the Kalman gain, K:

ya
i,t = yp

i,t + Kt

(
dobs

i,t − Hty
p
i,t

)
(3)

where, the superscripts a and p denote the assimilated and the prior state vector, respectively. H means
the measurement matrix operator, which extracts simulation information from the state vector to
compare with the observed data. The Kalman gain is constant for all ensembles, even though the
observed data are also perturbed by the measurement error covariance, CD. Equation (4) for Kalman
gain is derived by minimizing the posterior estimate error covariance, Ca

yt . For the purpose, the prior
estimate error covariance, Cp

yt , is calculated by Equation (5). In the equation, the estimate error
covariance is defined with the estimate error, e, which is the difference between the individual ensemble
member and the true value. In ensemble–based methods, the mean of the state vector becomes the
true vector, ŷt, due to their inherent assumption. Therefore, initial ensemble design is one of the key
factors for successful application of ensemble-based history matching:

Kt = Cp
yt HT

t

(
HtC

p
yt HT

t + CD,t

)−1
(4)

Cyt = E
[
eteT

t

]
=

1
Ne − 1

Ne

∑
i=1

ei,teT
i,t, ei,t ≡ yi,t − ŷt (5)

where, superscripts T and −1 mean the transpose and the inverse of the matrix, respectively.
Basically, the above procedures are used for EnKF and ES in common, but they can be distinguished

in terms of the number of updating the state vector and composition of the state vector. As described in
Figure 2, prior models for EnKF are simulated and assimilated repeatedly until each measurement time,
while prediction and assimilation for ES are conducted once until the last observation time, according
to its global update strategy. In EnKF, after the updated state vector is obtained by Equations (3) and
(4), they replace the prior state vector in the prediction step of Equation (1) to predict the reservoir



Energies 2018, 11, 445 5 of 23

performances at the next observation time. This two-step process is repeated until the last observation
time step, No. ES, on the other hand, performs the prediction and assimilation process only once, with
the observation data of all the time steps.
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Figure 2. Comparison of sequence between (a) EnKF, and (b) ES: y and d mean a state vector and an
observation vector, respectively. Superscripts p and a denote ‘prediction’ and ‘assimilation’, which
processes are represented by arrow and solid line. The subscript number is the time step for the process.
d1:dn means an observation vector, which consists of observations from the 1st to the n-th time steps.
An open circle means a prediction step, while a dark circle is an assimilation stage.

2.2. Characteristics of EnKF and ES

Conceptually, smoothing, filtering, and predicting can be explained in the time domain as below.
These are determined depending on the relationship between the assimilation time, t and observation
time, tn. If the assimilation time is larger than the observation time, it is a data smoothing problem;
whereas, if assimilation is conducted at observation time, it is considered a filtering problem. The other
case is a prediction problem, when the assimilation time is less than the observation time [4]:

• If tn < t: Smoothing (interpolation)
• If tn = t: Filtering
• If tn > t: Predicting

Both of the ensemble-based methods have strengths in common over other data assimilation
methods, as below:

• Easy-coupling with forward models
• Various applications for model parameters
• Uncertainty analysis
• Well-established in mathematics
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Table 1 summarizes the relative strengths and drawbacks of EnKF and ES. The only difference
between EnKF and ES is whether the method is optimized considering the time dimension. EnKF
repeats covariance minimization at each assimilation time, whereas ES includes the time dimension
for optimization at a specific time. It is generally known that EnKF is superior to ES for nonlinear
dynamic models. That is why EnKF has been widely used in the data assimilation of reservoir models,
rather than ES [15].

Table 1. Comparison between EnKF and ES.

EnKF ES

Strength
· Real-time assimilation
· Superior to ES for nonlinear

dynamic models

· Computationally cheap
· Easier coupling with forward models than EnKF
· More flexible parameterization

Drawback · Severe approximation
· Computationally expensive

· Less numerically stable for nonlinear models

In terms of simulation time, EnKF requires the number of Ne × No times of reservoir simulations,
while ES needs Ne times of them. The difference in the number of reservoir simulations is very large,
because normally the number of ensembles is around two hundred, and observations are available on
a monthly basis. In the case of ES, the size of the state vector is larger than that of EnKF, due to the
simulated data in Equation (1). However, this does not significantly affect the assimilation calculation,
because the number of static and dynamic parameters in the state vector is much larger than the
simulated data [16].

3. Methods to Overcome the Limitations of Ensemble–Based History Matching

Many researches have been conducted to solve the aforementioned limitations, e.g., non-Gaussian
model parameters, improper prior ensembles, and finite ensemble size. The methodological efforts to
improve the ensemble-based method are divided into three categories: (1) Kalman gain; (2) model
parameters; and (3) observed dynamic data (see Figure 3). Figure 3 shows that the performance of
ensemble-based method can be improved effectively through refinement of these key factors.

3.1. Importance of the Kalman Gain

Kalman gain is one of the most important factors in the ensemble-based method, because the
assimilation equation is induced to minimize a posterior estimate error covariance. The Kalman gain is
a weight of how much to reflect the difference between simulated and observed data to updated model
parameters (see Equation (3)). Improvements of Kalman gain are covered as follows: localization,
multiple Kalman gains, and regeneration of ensembles.

The goal of localization is to handle a spurious correlation between model parameters and
observed data. In other words, localization is to identify the region that might be affected by observed data,
rather than the whole reservoir. Model parameters near observation wells are properly correlated with
the observed values, but parameters at distant locations are ambiguous to establish the relationship.
Localization is a kind of weight function for an estimated error covariance. It alleviates the filter
divergence problem, because it increases the degrees of freedom for observed data [17]. It is also one of
the effective solutions when the ensemble size is small [11,18]. As the number of ensembles decreases,
a cut-off radius decreases. The concept of localization can be divided into three categories, according
to the following criteria:

• Distance (cut-off)
• Streamline or tracer simulation
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Drainage area A covariance localization, as a solution to reduce ensemble size at the first suggested
time, simply used a cut-off criterion based on the distance from the location of observed data to the
location of a given state variable [11]. For example, the model parameters outside a certain area were
excluded from data assimilation. Later, Schur product was applied to calculate a localized Kalman
gain [18], which was an elementwise product between a correlation function and an estimate error
covariance matrix. This concept gave more smoothed posterior parameters, than those from a cut-off
localization. At gas reservoirs with aquifer, the exponential distance as a correlation function was
investigated as the more suitable equation for localization [19].Energies 2018, 11, 445  7 of 24 
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Streamline-based covariance localization was implemented as an effective method to maintain
geological realism, which used streamline trajectories to define the specific area influenced by a
dynamic dataset [12,13,20]. It was able to reduce computation cost with small ensemble size (<100),
by eliminating an area unrelated to the observed data [12]. The localization based on streamlines was
more significant than a weight based on distance, because the streamlines were relevant to production
data. Watanabe and Datta-Gupta expanded the concept of streamline localization according to fluid
phase, and defined a correlation function from a phase streamline for each production data [13].
For example, water-cut (WCT) and gas-oil ratio (GOR) were coupled with water and gas streamlines,
respectively. This flow-relevant localization could maintain geological realism, and gave a reliable
uncertainty range without ensemble collapse. Jung and Choe distinguished the production-influenced
area efficiently by comparing time-of-flight (TOF) from a phase velocity with the observation time of
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dynamic data [20]. As a limitation of steamline-based covariance localization, when a prior model
covariance had a long correlation length, it would cause large local changes with loss of geological
realism [17,21]. The requirement of different localization matrices came to the fore as a covariance
comparison, i.e., covariance between the observed data and model parameters, and that between
the observed data and primary variables [21]. In addition, the consideration of critical length was
important at the high-order correlation function, e.g., fifth-order compact correlation function [22], and
had to be determined including the degree of sensitivity of each observed data, and the correlation
length of the geological model [17].Energies 2018, 11, 445  9 of 24 

 

 
(a) 

 
(b) 

Figure 4. The concept of correlation function for drainage area: (a) Definition of drainage area for each 

production well; (b) Construction of correlation function. WOPR is well oil production rate, and 

WWPR stands for well water production rate. P represents ‘the production well’, and the subscripts 

1, 2, and n mean the indication number for each production well. 

Another idea for Kalman gain is to utilize multiple Kalman gains, instead of a unified value  

[26–30]. It is reported that the role of Kalman gain is similar to that of a sensitivity matrix in the 

maximum posterior and randomized maximum likelihood [26,27]. However, the unified Kalman 

gain in the previous ensemble-based method is applied to the whole ensembles, although each 

ensemble member has a different sensitivity matrix. Multiple Kalman gains were introduced to EnKF 

[28] and ES [29,30], to apply more reliable Kalman gain for each ensemble member in Equation (3).  

This concept assumes that reservoir models can be grouped by their similarity. To satisfy the 

assumption, distance-based clustering was utilized. After clustering, the reservoir models within the 

same cluster had more similar sensitivity matrices than those of other clusters (see Figure 5). Kalman 

gain is calculated for each cluster separately. This idea is especially useful for the channelized 

Figure 4. The concept of correlation function for drainage area: (a) Definition of drainage area for
each production well; (b) Construction of correlation function. WOPR is well oil production rate, and
WWPR stands for well water production rate. P represents ‘the production well’, and the subscripts 1,
2, and n mean the indication number for each production well.
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The covariance localization based on drainage area, determined by the pseudo-tracer of each
well, was proposed [23–25]. The estimation of drainage area with drainage radius was shaped into
a circle, but the reservoir heterogeneity could make for irregular shape [24]. Some schemes were
studied to fix this matter, e.g., different localization concepts allocated at individual layers [24], and oil
velocity field [25]. Figure 4 describes the concept of correlation function using hundreds of ensemble
members [25]. Figure 4a shows a total Ne of 2D models with production well P1 in the lower left corner.
When the drainage area is configured by a phase velocity from reservoir simulation, each model has
a different drainage area, as shown in Figure 4. Although each model has a discrete drainage area,
their mean has continuous values between 0 and 1. The vector of the unified drainage area for each
production well in Figure 4b becomes a correlation function for localization. Here, the procedure
for converting 2D models to column vectors, and for converting the vectors to the correlation matrix
is exactly the same as the generation of a state vector and the estimated error covariance matrix in
Equations (2) and (5).

Another idea for Kalman gain is to utilize multiple Kalman gains, instead of a unified value [26–30].
It is reported that the role of Kalman gain is similar to that of a sensitivity matrix in the maximum
posterior and randomized maximum likelihood [26,27]. However, the unified Kalman gain in the
previous ensemble-based method is applied to the whole ensembles, although each ensemble member
has a different sensitivity matrix. Multiple Kalman gains were introduced to EnKF [28] and ES [29,30],
to apply more reliable Kalman gain for each ensemble member in Equation (3).
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This concept assumes that reservoir models can be grouped by their similarity. To satisfy the
assumption, distance-based clustering was utilized. After clustering, the reservoir models within the
same cluster had more similar sensitivity matrices than those of other clusters (see Figure 5). Kalman
gain is calculated for each cluster separately. This idea is especially useful for the channelized reservoir,
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because its heterogeneity is very high, and the difference in reservoir parameters between sand and
shale facies is large. Also, channelized reservoirs can be transformed into a discrete model based on
facies, so it is easy to apply image recognition algorithms. In previous research, the Hausdorff distance
was successfully applied to 2D and 3D channel models. The larger the Hausdorff distance between
the two models, the greater the difference between the two models. After calculating the distance,
unsupervised learning algorithms, such as k-means or self-organizing map, can classify similar models
based on the distance. However, this approach requires additional calculation for clustering, and the
result of assimilation is sensitive for the clustering.

The last method for Kalman gain is to regenerate the ensembles whenever the covariance becomes
smaller than a predetermined criterion [31,32]. In the process of data assimilation using EnKF progresses,
an estimated error covariance becomes small, although the average of ensembles approaches the true
field [31]. If this phenomenon gets worse, there will be a filter divergence problem where the ensembles
become too similar. The estimated error in Equation (5) becomes very small, which results in small
Kalman gain. Consequently, the state vector in Equation (3) cannot be calibrated, because the Kalman
gain is small, even if the difference between the observed data and the simulated data is large. That is,
there is no correction effect, even if there are additional observation data.

To solve this problem, a re-sampling method to mitigate filer divergence was developed, re-generating
a set of ensembles, using both hard data and pseudo-hard data [32]. Here, hard data means given static
well data, which data were used for building prior models by geostatistics. Pseudo-hard data can be
generated from the updated ensemble member at the current time step. If the uncertainty of the value
of the specific grid is small in the calibrated model, the value of the grid is used as input data to the
geostatistics. Newly generated models replace updated models at the current time step, and the next
prediction and assimilation are implemented with the new models. These procedures are repeated
during recursive updates, whenever the covariance became smaller than a predetermined criterion.

3.2. Modification of Model Parameters

The typical assumptions of ensemble-based methods cause constraints on model parameters:
Model parameters should follow Gaussian distribution, the mean of which is assumed as the true
value of the given parameter, even though there is inevitable error. Previous researches have solved
the concept of transformation and initial ensemble design. The most common conversion of model
parameters is a log-normal distribution transformation. When permeability was a concerned model
parameter in state vector, it was converted to a normal distribution by the transformation, because
permeability is known to follow a log-normal distribution. Updated logarithmic permeability was
transformed inversely to the original distribution on the prediction step (see Equation (1)). Recently,
a lot of transformation or feature extraction techniques have been used for the conversion of model
parameters, as follows:

• Normal score transform (NST)
• Discrete cosine transform (DCT)
• Level set function (LSF)

To assess the geological uncertainty, NST was used to convert non-parametric permeability to
Gaussian distribution. The empirical cumulative distribution function (CDF) of model parameter was
transformed into the corresponding quantile in CDF of standard normal distribution. This approach is
useful, because any distribution could be converted to a standard normal distribution, which satisfies
the Gaussian assumption in ensemble-based methods [33,34]. DCT is a method of representing audio
or image information as a sum of cosine functions of different frequencies. The coefficient of the
cosine function has overall information at a low frequency, and stores detailed information at a high
frequency. It has been known to be an efficient tool to extract some significant features similar to
principal component analysis (PCA), with respect to computational cost and prior information of
error covariance [35–38]. Reservoir characterization with geological realism implemented DCT in
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channelized reservoir [34], and heavy oil reservoir [38]. Figure 6 describes the workflow of DCT by
updating coefficients to update model parameters, instead of using the original model parameters [38].
LSF has been applied to separate a certain domain or shape into subdomains, which are set positive
or negative signs with a zero-level set boundary. In reservoir characterization, it has been performed
to parameterize facies models, as an effective scheme to convert a Gaussian distribution with facies
preservation [39–41]. The concept of preservation of facies ratio was utilized for the transformation
of updated parameters, not prior parameters [42]. After the updated parameter for each grid was
arranged in descending order, facies were assigned to each grid based on the facies ratio. This method could
not only preserve the facies ratio, but also mitigate the overshooting problem. These transformation
methods could satisfy the Gaussian assumption in the assimilation step, but they had a problem in
applying to discrete model parameters, such as facies, due to continuous values after assimilation.
Also, the cut-off for determination of low frequency was not clear for transformation.Energies 2018, 11, 445  12 of 24 
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Figure 6. The workflow of ensemble-based method with DCT. (a) An ensemble member can be
transformed to a matrix (original information); (b) The original information is converted to coefficients
through DCT; (c) Only the low frequency area (upper left triangle) is used for assimilation by the
ensemble-based method; (d) The coefficients in the low frequency area are updated; (e) The updated
coefficients are inversely converted to the updated information. IDCT stands for inverse discrete
cosine transform.

Many reports have underlined the importance of ensemble design to the ensemble-based
method [14,15,43–45]. Some emphasized posterior ensembles obtained by combining prior
ensembles [15,43]. When initial models are built by different geostatistical parameters, e.g., training
image (TI) from the reference field, updated ensembles cannot provide reliable uncertainty ranges [14].
As an assimilation progresses, ensembles gradually converge to the mean of ensembles different from
the reference model, which can require a sufficiently large number of ensembles to ensure reliable
performance. The easiest way to include the true model in the range of initial models is to generate lots
of ensembles that reflect geological uncertainties. Previous researches into uncertainty quantification
built initial models through wide ranges of geostatistical parameters. In two-point simulation,
correlation length and anisotropy parameters were utilized to design ensemble models [44,46].
In multiple-point simulation, lots of TIs were used to make hundreds of facies models [47,48]. However,
the larger the geological uncertainty, the greater the ensemble size needed. This caused a burden of
simulation cost. Researches on ensemble design are categorized as follows:

• Sampling
• Assimilation of uncertain geological factors
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The use of a sampling scheme was to represent the characteristics of initial ensembles with low
computational costs, reducing the reservoir simulations. The representative methods were singular
value decomposition (SVD) [49], and distance-based clustering [50,51]. The selected models using
these sampling methods were simulated with time-consuming reservoir simulators, instead of all
models in the population set [51].

Geostatistical approaches, e.g., variogram and TI, have dealt with geological uncertainty, but the
variables used in these methods are uncertain. An assimilation of variogram variables using EnKF
failed to search the proper geomodels, due to the high nonlinearity between variogram variables
and flow responses [44]. A lot of equiprobable models could make this matter worse, by increasing
computing time. Some works calibrated the grid properties, e.g., grid permeability, facies ratio, or
mean value of permeability allocated to each facies [33,34]. However, it was hard to directly modify
parameters for geostatistics from dynamic data, due to high nonlinearity. Also, it was difficult to get a
converged model, because during model generation, there were still lots of equiprobable models using
updated geostatistical parameters.

3.3. Adjustment of Observed Dynamic Data

The last controllable parameter in an assimilation equation (refer to Equation (2)) is related to
observed dynamic data. The topics of previous researches can be grouped as selective usage of
observed data, and measurement error. It was recommended to use all available static data due to lack
of data, while the dynamic data were preferable to utilize only essential observed data from sensitivity
analysis [30,31]. A reliable data-analysis should exclude meaningless, erroneous, or inconsistent data.
Figure 7 shows the unexpected effects of production performances in waterflooding at the channelized
reservoir. The waterfront significantly changed the oil production and watercut before and after water
breakthrough. This abrupt change of production performances regardless of spatial characteristics with
static data could cause failure of data assimilation, and thereby result in unrealistic history matching.
To solve this problem, some researchers used a few chosen performances, instead of all available
dynamic data, e.g., exclusion of BHP during the shut-in period [30], or well flowing bottom hole
pressure reaching the operational constraints [52].
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Figure 7. Example of selective usage of different observed data: As water breakthrough occurs,
distinct separation of oil production rates from watercut is observed. Before the breakthrough,
the oil production rates are the target of data assimilation; but after the water volume produced
is significantly increased, the data assimilation should use watercut data, to obtain the reliability of
ensemble-based methods.
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One of the advantages of the ensemble-based method is that various observed data are used
together efficiently. In other words, the observed data in Equation (3) consist of various measurement
data, such as pressure, rate, and dimensionless-parameters, and they are not required pre-processing
like normalization. Proper measurement error has to be set depending on the type of observed data,
because the common range or magnitude of the observed data is different for each type.

4. Applications of Ensemble-Based History Matching in Reservoir Simulation

Early studies on assisted history matching using the ensemble based method were concentrated on
synthetic fields, such as PUNQ-S3 [26,30,52–55], Brugge [56–58], or other synthetic fields customized for
research objectives [59–61]. They tried to represent the advantages of EnKF and ES over gradient-based
methods, such as genetic algorithm, simulated annealing, or other conventional methods. After the
methods were verified in the history-matching problem, many researches have been targeted on
resolving typical problems of ensemble-based history matching, as investigated in the previous section.
At the same time, other efforts have been made to improve its applicability to various reservoir types.

Initial applications of ensemble-based history matching were limited to typical heterogeneous
reservoirs, which have porous formation, with conventional completion and production mechanisms.
However, many researches have been expanded to various types of reservoirs, such as naturally fractured
reservoirs [60,62,63], channelized reservoirs [28,29,34,36,64,65], unconventional reservoirs [61,66,67],
gas reservoirs [19,37,50], and others. Depending on the type of reservoir, the particular parameters, in
addition to rock properties, can be included in the state vector. Facies ratio for channelized reservoir,
fracture half-length for unconventional reservoir, and aquifer strength for gas reservoir are good
examples of this. In addition, 4D seismic data, acoustic impedance, or Poisson’s ratio have been used
for assimilation, as well as production data [68–70]. Recently, history-matching with production data
has been successfully conducted in a large field with 60 million active gridblocks [71]. The full-field
model was decomposed into six sector models by streamline maps, and each individual sector model
was assimilated with local observations. Then, the assembled full-field model was assimilated again
with observations from the full-field. This incurred tremendous computing costs, but computing time
could be reduced significantly by decomposition and parallel computing scheme with ES.

Application examples of three reservoir types, naturally fractured reservoir, channelized reservoir,
and tight reservoir with hydraulic fracturing, are presented. Reservoir parameterization and initial
ensemble generation according to the reservoir type will be demonstrated in detail.

4.1. Naturally Fractured Reservoirs

Numerical simulation for the naturally fractured reservoir was usually conducted by the dual
porosity-dual permeability model [72]. This can mimic production behaviors affected by the fracture
network in the reservoir. It assumed that the matrix acts as hydrocarbon storage toward fracture, and
fracture takes the role of conduits for fluid flow. Static data for the dual-porosity model consists of
permeability and porosity for fracture, porosity for the matrix, and other parameters. The dual-porosity
model has two additional parameters, interporosity flow coefficient and storativity ratio, which
explain the phenomena in naturally fractured reservoirs. The interporosity flow coefficient can
describe how quickly hydrocarbon fluid can flow from matrix to fracture through different porosities.
As the coefficient is decreased, the transition from matrix to fracture is delayed. The other parameter,
storativity ratio, represents the ratio of the reserves inside the fractures, to all the reserves. For history
matching representing complex production behavior in naturally fractured reservoirs, more static
data, as well as these additional parameters, are added into the state vector in Equation (1). The large
number of unknown parameters increases the degree of freedom; thus, generation of the initial
ensemble honoring static data is the most important factor for reliable history-matching reducing
the uncertainty.

Table 2 compares the application examples of ensemble-based history matching for naturally
fractured reservoirs. The component of a state vector can be different, depending on the generation
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method of the initial ensemble. When considering anisotropy using the discrete fracture network
(DFN), the state vector includes the permeability tensor. Sigma factor, which is one of the parameters
of dual porosity model for the fractured reservoir, can optionally be included in a state vector,
as considered in [62]. Covariance localization [60], or refinement with velocity [63], can ensure
numerically stable results, in spite of the small size of ensemble of around fifty.

Table 2. Applications of ensemble based history matching for naturally fractured reservoirs.

Jung [60] Ghods and Zhang [62] Tanaka et al. [63]

No. of ensemble 40 60 40
state vectors

· Model static
x-permeability
y-permeability

Fracture porosity

Fracture permeability
Fracture porosity
Matrix porosity

Sigma factor

x-permeability
y-permeability

· Model dynamic Water saturation
Reservoir pressure - Water saturation

Reservoir pressure

· Observation
Bottom hole pressure

Oil rate
Water-cut

Gas rate
Water rate

Bottom hole pressure
Oil rate

Number of producer 8 4 4
Number of injector 1 - 1
Forward simulator ECLIPSE 100 ECLIPSE 100 Streamline-based
Ensemble generation DFN Random SGS and DFN
Assimilation method EnKF EnKF EnKF
Supplemental Technique Localization - Refinement with velocity

An ensemble-based history matching was applied in naturally fractured tight reservoirs.
The objective of the study was to prove the applicability of the proposed method to naturally fractured
reservoirs. The authors created a simple synthetic reservoir, assuming that the orientation and location
of the fractures were known approximately from seismic, microseismic, and core samples. The reservoir
has a simple fracture network with several perpendicular fractures, and four production wells. Two of
them share the fracture network connected to each other, one is completely in the isolated fracture,
and the other is located in the matrix.

First of all, the dual porosity-dual permeability (DPDP) model was proposed as a simulation
model for the naturally fractured reservoirs. This made a reservoir simulation simpler, compared to the
discrete fracture network model using local raid refinement (LGR). Since the orientation and location
of fractures were assumed known, the next parameters to affect production behavior were the matrix
permeability, matrix-fracture transmissibility, and fracture permeability. Thus, the state vector for EnKF
was composed of matrix permeability, fracture permeability, fracture porosity, and matrix-permeability
transmissibility (sigma factor).

This study demonstrated that history matching with EnKF has the capability for fracture characterization
and reserve estimation. When it estimated future production after history matching with only 20%
of total production life, the production forecast showed good agreement with the true production
behavior. Even though the application was simple, it validated the applicability of EnKF for history
matching in naturally fractured reservoirs.

An application of EnKF to history matching considering the uncertainty of a naturally fractured
reservoir [60] was published. Figure 8 shows its workflow that integrates fracture properties. Available
static data that can be gathered in naturally fractured reservoirs include statistical data about the
fracture network, such as fracture density, half-length, orientation, and aperture size. These data are
just distributions in a certain region, and do not contain geographic reservoir properties of the whole
region. That is why a geographic history-matching calibrating fracture distribution is needed.
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In the research, an initial ensemble was constructed by DFN model from fracture statistical data,
and converted into an equivalent model to the porous reservoir by the Oda method [73]. The converted
model, which consists of permeability tensor, porosity for matrix and fracture, and interporosity flow
coefficient, can be simulated, just like conventional reservoirs. These equi-probable reservoir models
for initial ensemble honor statistical fracture data from the aspect of regional average properties, but
heterogeneity within the region is not reflected at all. Thus, history-matching using dynamic data
should be needed. Covariance localization was selected to overcome the typical limitations of EnKF.
The concept is a selective assimilation that each type of observation identifies each influenced region by
the time of flight (TOF) of the streamline simulation, and then assimilates reservoir properties within
the influenced region through EnKF. The correlation function is calculated by averaging the influence
region of ensemble members, as shown in Figure 4.

The method was applied to a producing inverted 9-spot reservoir with one injector and nine
producers. The research verified the proposed scheme integrating DFN and EnKF for naturally fractured
reservoirs. Covariance localization by streamline simulation can make EnKF more stable and reliable
against overshooting or the filter divergence problem, notwithstanding the small ensemble size of 40.
It could reproduce a reservoir model that is consistent with the true reservoir, and accurately estimate
reserves of the field with an uncertainty assessment. As the results of production were forecast for
880 days after history-matching with production data for the initial 120 days, the coefficient of variant
for reserves estimated of the history-matched ensemble member was reduced to 32%, compared to
those of the initial ensemble member.

Another application for naturally fractured reservoirs is a study to estimate fracture effective
permeability by upscaling using EnKF [63]. Its assumptions are quite different from the previously
mentioned study. The authors assumed that the information of the fracture network is already known,
and tried to characterize the permeability distribution of the matrix. The number of ensemble members
was only 40, and each initial ensemble was generated by overlap of the assumed fracture network on
the realization of matrix permeability using sequential Gaussian simulation (SGS). The integration was
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conducted by the local-global upscaling (LGU) method, which calculates coarse scale permeability
using local boundary conditions determined from global coarse-scale flow solutions. History matching
using production data was accomplished for the coarse-scale field by EnKF. Additionally, to overcome
the limitation of the typical weakness of EnKF, the effective permeability distribution was refined with
the velocity field after history matching.

This scheme was applied to a synthetic field, which is a 2-dimensional model of 1000 ft by 1000 ft.
The reservoir produced oil with an inverted 5-spot system. Thus, the oil rate from four producers and
bottomhole pressure from an injector were used for history matching as observation data. This study
was designed to investigate the effects of LGU, EnKF, and refinement with velocity field (RVF). EnKF
with LGU accomplished the history matching with low error between the estimated and actually
observed dynamic parameters. However, the velocity and water saturation fields showed different
shapes with smearing edges, compared to the reference field with fine-grid system. This weakness
was improved by additional implementation of RVF. It was concluded that RVF can calibrate naturally
fractured reservoir models more accurately, reflecting contrast characteristics of flow behavior between
matrix and fracture.

4.2. Channelized Reservoir

A channelized reservoir consists of two kinds of deposits; one is high permeable sand with
a longitudinally propagated narrow band, and the other is less permeable shale background.
The permeability of this kind of reservoir is a bimodal distribution. The characteristics of the production
behavior depend on the connectivity of the sand channel stream. Only when a producer is connected
to a water injector, can it be expected that pressure support and oil are incremental with the results
of water injection. Due to these geologically complex characteristics of the channelized reservoir,
application of ensemble-based history-matching for these reservoirs has been a challenging topic.
Many technical approaches linked with EnKF or ES have been adopted to resolve this problem;
DCT, discrete wavelet transform (DWT), and other geostatistical methods reflecting the properties of
channelized reservoirs.

Meanwhile, Table 3 summarizes other considerations for channelized reservoir that are already
customized. The state vector in the majority of researches for channelized reservoir consisted of
only permeability. This is because parametrization for the channelized reservoir is simple, and
permeability is the best parameter to distinguish permeable sand from shale background. SNEsim
(single normal equation simulation), which is one of the most representative algorithms in multiple
point simulation, was commonly used for generating initial ensembles. Recently, new schemes of
assisted history-matching, such as iterative adaptive Gaussian mixture filter (IAGM) [64], or ensemble
smoother with clustered covariance (ESC) [65], have been conducted for efficient and reliable results.

Jafarpour and McLaughlin derived important implications for proper ensemble design, when
EnKF was applied for history matching in channelized reservoirs [14]. The authors designed several
experiments to quantify the effects of the ensemble generation method and number of ensemble
members. Generally, initial ensembles for channelized reservoirs are generated by the multipoint
geostatistical simulation method, and its accuracy is dependent on training images, which are used for
the geostatistical method. When it is applied for EnKF, the training image to generate initial ensemble
members should include uncertainties of width, tortuosity, connectedness, and complexity. If the initial
ensemble did not include properties of the true field, the results of history matching were not reliable.

In the same context, the ensemble size should be designed to be large enough for each ensemble
member to cover geological uncertainty. As the ensemble size increases, the initial ensembles can
provide wider geological uncertainty. That is why ensemble size can affect the robustness and accuracy
of EnKF. The study suggested that an ensemble size of 100 was too small for reliable results, while an
ensemble size of 300 was sufficient for the case.

To complement a diversity of ensemble members, a probability weighted re-sampling coupled
with EnKF was suggested [32]. The main idea of the study was to generate new ensemble members
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that reflect both the geological characteristics, and the early production data. The procedures were
composed of generating the initial ensemble by SNESim, updating with EnKF, ensemble re-sampling
with probability weighting, selecting re-sampling points and generating new ensemble members,
and updating with EnKF for the next time step, repeatedly.

Table 3. Applications of ensemble based history matching for channelized reservoirs.

Jafarpour and McLaughlin [14] Nejadi et al. [32] Lee et al. [65]

No. of ensemble 100, 200, 300, 400 100 200
State vector
· Model static Permeability Permeability Permeability
· Model dynamic - - -

· Observation
Bottom hole pressure

Oil rate
Water rate

Water injection rate
Oil rate

Water cut

Oil production rate
Water-cut

Number of producer 1 (45 ports) 1 (6 ports) 8
Number of injector 1 (45 ports) 1 (7 ports) 1
Forward simulator ECLIPSE 100 Not Specified ECLIPSE 100
Ensemble generation SNESim SNESim SNESim
Assimilation method EnKF EnKF ES

Technical
supplementary - Re-sampling Clustered covariance

Selective update

The method was implemented to a synthetic channelized reservoir with two distinct facies: sand
and shale. An injector and a producer, drilled horizontally and completed with inflow control valves
(ICV), were applied for a production scheme. History matching was conducted every month for the
initial 9 months. Because ensemble variance diminished drastically after the 5th update, 20 ensemble
members by re-sampling with the observed petrophysical properties were added. Re-sampling coupled
with EnKF resulted in the reproduction of spatial continuity, and facies ratio consistent with the true
field property.

One of the recent researches for channelized reservoirs is the ensemble smoother with clustered
covariance as an assisted history-matching, proposed by Ref. [65]. The authors maintained that the
proposed method could produce good performances for history-matching and production forecasts, by
comparison with other methods, EnKF and ES. It differentiated assimilation procedures by clustering
ensemble members. Clustered covariance can provide reliable Kalman gains, as shown in Equation (3).

The procedures of the method were initial facies modeling, clustering, and dynamic data
assimilation using ES, as schematized in Figure 9. Initial facies models are generated with TIs and core
data by SNESim, as mentioned before. The next process of the method is clustering. This consists of
distance definition, dimension reduction, and clustering with K-means. Initial ensemble members are
classified into several groups, and the criterion for classification is Hausdorff distance. The Hausdorff
distance matrix was converted into an orthogonal coordinate system by multi-dimensional scaling.
According to the converted distance in the orthogonal coordinate system, the ensemble members were
clustered by K-means clustering. The main concept of the method was that each group of clustered
models was assimilated by its own Kalman gain calculated from each group.

The research reported in [65] attempted to characterize the reference field on the assumption
of the initial facies ratio. An initial ensemble of 200 members was generated, and then clustered
into 10 groups. While the standard ES yielded an overshooting problem, the standard EnKF and
the proposed ESC produced reliable results, representing the channel connectivity of the reference
field without any numerical problem. However, the standard EnKF failed to conserve a bimodal
distribution for permeability, and to accurately predict future production behavior. In spite of the initial
assumption of lower facies ratio for sand over the reference field, the proposed ESC characterized the
channelized reservoir with accurate facies ratio. Moreover, it represented production forecasts that were
well-matched to the reference field, and efficient computation time, only 4.2% of the standard EnKF.
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Figure 9. Typical workflow to forecast production performances integrating data clustering with
ensemble-based methods at channelized reservoirs [65].

4.3. Tight Reservoir with Hydraulic Fracturing

In most of the tight reservoirs, hydraulic fracturing is a key factor for a commercially successful
project. Optimization for a multi-stage fracturing process, such as design, implementation, and monitoring,
is essential. Post-evaluation of hydraulic fracturing can be a most reliable basis to optimize the process
of hydraulic fracturing. Despite its importance, there are not many researches on post-evaluation
through history-matching in unconventional reservoirs. However, the environment of low oil price
has yielded several researches on post-evaluation in multi-stage fractured reservoirs.

Table 4 summarizes three researches on ensemble–based history-matching for unconventional
reservoirs. It was commonly assumed that reservoir properties are homogeneous, and that the fracture
location for each stage is known. The reservoir model was calibrated by only the fracture half-length
and permeability. A state vector can be constructed with the fracture half-length and permeability.
In the case of Ref. [61], the fracture half-length can be defined by calibrated permeability, thus only the
permeability was included in a state vector. However, observations were different, depending on the
data gathering method. The methods of the three examples are different from each other: distributed
temperature sensing (DTS), tracer test, and production logging tool (PLT). The observation parameter
of each method corresponds to temperature, tracer concentration, and production rate, respectively.

Tracer test is widely conducted in the hydraulic fractured well, due to the convenience. It can
diagnose the well performance in a very early stage of the production period, with relatively low cost.
History matching with tracer test data for a hydraulic fractured reservoir was published in Ref. [67].
The reservoir model for this study assumed 4 stages of hydraulic fracturing.

A sensitivity study of fracture half-length and fracture permeability was performed, and the
following conclusions made: the longer the fracture half-length, the larger the stimulated reservoir
volume. Because the production data is dependent on SRV, the production data can be sensitive
to the fracture half-length. Meanwhile, the fracture permeability did not affect the stimulated
reservoir volume, but only the early production time of tracers. Thus, the tracer data is sensitive to
fracture permeability.

The study quantified the effects of tracer and production data for ensemble-based history matching.
The authors conducted three numerical experiments of history matching; with tracer data, production
data, and both of them. History matching with tracer data characterized the fracture permeability
accurately, but not the fracture half-length at all. In contrast, the production data characterized the
fracture half-length accurately, but not the fracture permeability. The results of history matching
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with tracer and production data showed that the predicted fracture half-length and permeability
showed good agreement with the true values. From the experiments, it was concluded that the tracer
data during flowback and production data can be mutually complementary for characterization of
hydraulic fractures by EnKF.

Table 4. Applications of ensemble-based data assimilation for unconventional reservoirs.

Tarrahi et al. [66] Elahi and Jafarpour [67] Jung [61]

No. of ensemble 100 Not specified 100
State vector

· Model static Fracture half-length
Fracture permeability

Fracture half-length
Fracture permeability Permeability

· Model dynamic - - -

· Observation Temperature Tracer concentration
Cumulative oil

Oil rate
Water-cut

Number of producer 1 (8 stages) 1 (4 stages) 1 (7 stages)
Number of injector - - -
Forward simulator ECLIPSE 300 ECLIPSE 100 ECLIPSE 100
Ensemble generation Random Random Random
Assimilation method EnKF EnKF ES

Technical supplementary - Ensemble inflation
Localization -

The applicability of EnKF was expanded to hydraulic fracture reservoir characterization using
DTS [66]. DTS can be installed at wellbore, and provide temperature profile in real time during
treatment, flow-back, and production period. In the case of DTS, temperature observation can be
used in ensemble-based history-matching in unconventional reservoirs. In the research, temperature
was observed at various locations of hydraulic fractures, and used as a history matching parameter.
That is why they performed non-isothermal reservoir simulation by ECLIPSE 300 (Schlumberger,
Houston, TX, USA). A sensitivity analysis was conducted to investigate the impact of DTS data with
regard to reservoir and fracture parameters. The results of the analysis revealed that the impacts of the
parameters in order are the number of fractures, reservoir permeability, fracture half-length, height,
width, and fracture permeability, respectively. The purpose of the study was to estimate the hydraulic
fracture geometry by integrating DTS observations. The authors selected two fracture parameters; one
was the fracture permeability with small sensitivity, and the other was the fracture half-length with
medium sensitivity. They organized an experiment to characterize the two parameters simultaneously
with EnKF. Two parameters were assumed to be unknown, and the others constant.

The reservoir size and grid configuration of the example field were 3100 ft by 600 ft by 150 ft, and
100 by 40 by 30, respectively. The LGR was applied to neighboring grid blocks with hydraulic fractures
for numerical stability. The total number of fracture stages was assumed to be eight, and the porosity
and permeability of the reservoir were 30% and 0.2 md, respectively. The authors constructed an
inverse model with fracture half-length and permeability as unknown parameters, and temperature as
observation. The fracture half-length for the initial ensemble was generated randomly from a uniform
distribution from (5 to 300) ft. The other unknown parameter, fracture permeability, was also generated
randomly between (100 and 5000) md. The initial ensemble was calibrated by temperature profiles
at seven time steps using EnKF. A wide range of uniform distributions with wide range at the initial
stage turned into true values of fracture half-length and permeability as recursive updates. The study
showed that the proposed scheme could make accurate estimates of fracture properties within only
five updates during 100 days.

The last is an example using PLT data for ensemble-based history matching [61]. PLT has the
advantage that it can gather production data of each fracture stage at bottomhole, not combined at the
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wellhead. However, PLT survey cannot be frequently conducted, due to the cost. A practical method
was proposed to characterize each stage of hydraulic fractures, by integrating PLT data and production
data with ES.

The key point of the study is how often PLT surveys are conducted. Frequent PLT data can
improve the accuracy of history matching with ES. The author tried to seek a cost effective scheme to
be applied in the industry. A controlled experiment was designed to quantify the effects of the number
of PLTs on history matching with ES. In the study, there were three cases of data assimilation; with
three times of production data, three times of PLT surveys, and one PLT survey and two production
data. The results showed that only single PLT could significantly improve characterization of the
fracture properties. Moreover, its estimate error was a similar level, compared to the case using two
more PLT data.

5. Conclusions

This paper reviewed the historical development, as well as the recent progress, of ensemble-based
history matching methods with data assimilation to solve nonlinear problems of static and dynamic
data. The typical strengths of these methods are the easy integration of various data and mathematical
clearness to reduce error covariance, while the weaknesses are the influences of the initial ensembles,
e.g., non-Gaussian model parameters, improper prior ensembles, and finite ensemble size. To overcome
these drawbacks, the studies have been to improve Kalman gains, the model parameters, and the
observed dynamic data. Recent research trends can be categorized as two different directions: One
trend is to improve the accuracy by mathematically resolving the inherent problems. The other trend
is to enhance the field applicability by finding a proper combination of model parameterization, initial
ensemble generation, and supplementary techniques, according to various reservoir types.

As regards representative challengeable works, new approaches to enhance the computation
efficiency and to secure field applications are suggested. To improve accuracy, some methods have a
tendency to sacrifice computational efficiency, by increasing the number of assimilation and ensemble
member. As ES, compared with the computational efforts of EnKF, was developed to dramatically
reduce the assimilation number, the paradigm shift to reduce simulation number can become a
major research theme for ensemble-based techniques. A more reliable assisted-history matching
tool, applicable to heterogeneous facies models, is required as well. To increase the applicability of
heterogeneous reservoirs, the nonlinear relationships among static properties, dynamic variables, and
observed scale-different data should be considered. Some unsolved problems should be included
in current ensemble-based data assimilation, e.g., the preservation of geological realism, the reliable
correlations between geological scenarios and reservoir properties, and uncertainty quantification with
the results of many-objective history matching.
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