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Abstract: The existing optimization approaches regarding network-constrained unit commitment
with large wind power integration face great difficulties in reconciling the two crucial but
contradictory objectives: computational efficiency and the economy of the solutions. This paper
proposes a new network-constrained unit commitment approach, which aims to better achieve
these two objectives, by introducing newly proposed reserve models and simplified network
constraints. This approach constructs the reserve models based on a sufficiently large number
of stochastic wind power scenarios to fully and accurately capture the stochastic characteristics of
wind power. These reserve models are directly incorporated into the traditional unit commitment
formulation to simultaneously optimize the on/off decision variables and system reserve levels,
therefore, this approach can comprehensively evaluate the costs and benefits of the scheduled
reserves and thus produce very economical schedule. Meanwhile, these reserve models bring in very
little computational burden because they simply consist of a small number of continuous variables
and linear constraints. Besides, this approach can evaluate the impact of network congestion on
the schedule by just introducing a small number of network constraints that are closely related
to network congestion, i.e., the simplified network constraints, and thus concurrently ensures its
high computational efficiency. Numerical results show that the proposed approach can produce
more economical schedule than stochastic approach and deterministic approach but has similar
computational efficiency as the deterministic approach.

Keywords: network-constrained unit commitment; wind power; stochastic characteristics; reserve
models; network congestion

1. Introduction

Wind power is recognized as an important part of the renewable energy mix to achieve global
climate and sustainability objectives and has undergone a substantial growth in many power systems
in recent years [1,2]. However, due to its intrinsic intermittent and uncertain nature [3], wind power
can only be predictable to such a limited extent such that large wind power integration aggravates
the operational risks of power systems [4,5]. Day-ahead unit commitment (UC) is one of the crucial
short-term operation problems and can manage many kinds of operational risks, including the risks
imposed by wind power variability, by scheduling flexible resources.

The existing optimization approaches regarding UC with large wind power integration can be
mainly classified into four types: deterministic UC (DUC) [6–8], robust UC [9–11], interval UC [12–14],
and stochastic UC (SUC) [15–21]. For UC approaches, computational efficiency and the economy of
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solutions are two crucial objectives, which are quite difficult to achieve concurrently using the existing
approaches. DUC follows the traditional UC framework to maintain computational efficiency and sets
additional predefined system reserve levels to accommodate the operational risks imposed by wind
power, but DUC fails to evaluate the costs and benefits of such reserves and may result in bad economic
performance [22]. Robust UC minimizes the worst-case costs regarding all possible outcomes of the
uncertain parameters and produces very conservative solutions [23]. Interval UC represents wind
power characteristics through only three non-probabilistic scenarios and imposes feasibility constraints
on the transitions among these scenarios. The extreme transitions have a very low probability and lead
to very conservative solutions [14]. SUC represents wind power characteristics by many stochastic
scenarios containing the probability information and simultaneously optimizes the on/off decision
variables and system reserve levels, instead of the predefined system reserve levels in the DUC,
so as to comprehensively evaluate the costs and benefits of such scheduled reserves [24]. Therefore,
it produces more economical solutions, compared to the above three kinds of approaches, but suffers
from a much heavier computational burden. SUC often resorts to scenario reduction techniques to
attain computational feasibility at the cost of partially sacrificing its economic performance. Reduced
scenarios inevitably discard some stochastic characteristics information of wind power, especially
when the adopted scenarios are very few, the loss of stochastic characteristics information will be
so severe that it may largely impair the advantage of SUC in the economic performance over other
approaches [25]. Such occasions may frequently happen when SUC is applied to large-scale power
systems due to computational efficiency limits.

One remarkable challenge faced by UC with significant wind power penetration comes from
reserve optimization, which has been a crucial part of the research regarding the power system
operation with large wind power integration. There are abundant research achievements concerning
reserve optimization, including the related research incorporated in the unit commitment problems and
also some specialized research [18,26,27]. An important contribution presented in [22] recognized that
economical reserve strategy should comprehensively evaluate the costs and benefits of the scheduled
reserves. Such evaluations are more easily realized by simultaneously optimizing the system reserve
levels and on/off decision variables and are thus suitable to be incorporated in the UC problems.
However, as we have discussed above, the existing UC approaches face great difficulties in reconciling
the contradiction between computational efficiency and the economy of the solutions (including the
reserve strategy).

One motivation of this work is to find a more concise and effective way to describe the
relationships between the costs and benefits of the scheduled reserves so that the above two objectives
(computational efficiency and the economy of the solutions) can be better achieved. The relationships
between the costs and benefits of the reserves are translated in this paper into the relationships between
the system reserve levels and the lost load (or wind power curtailment) caused by reserve shortage so
that such relationships can be described by newly proposed reserve models. The reserve models can
then be incorporated into the traditional UC formulation to evaluate the costs and benefits of reserves.
Furthermore, the reserve models simply consist of a small number of continuous variables and linear
constraints and thus bring in very little computational burden.

The above reserve optimization focuses on the total amount of system reserve requirements
caused by wind power but neglects that the scheduled reserves may be blocked in real-time operation
due to network congestion. In addition, network congestion may not only affect reserve applicability
but also occur in the case that has no relationship with reserve applicability, such as the day-ahead
schedule under the expected wind power production. The impact of network congestion is usually
studied in the network-constrained unit commitment (NCUC) problems, which are also called
security-constrained unit commitment problems in some articles, but the latter terminology may
lead to unnecessary misunderstanding for some readers. The NCUC problems can be solved by the
above-mentioned four types of UC approaches, but only SUC can evaluate the costs and benefits of
lost load (or wind power curtailment) caused by network congestion under different wind power
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scenarios through scenario-related network constraints and thus produce more economical schedule.
However, the network constraints in the SUC need to account for all the periods and all the adopted
wind power scenarios, resulting in huge computational burden.

The other motivation of this work is to evaluate the impact of network congestion on the schedule
at much less computational burden compared to SUC. In practice, network congestion only occurs in a
small proportion of periods and scenarios for the actual power systems that have been well planned.
Therefore, picking out such periods and scenarios enables to evaluate the impact of network congestion
on the schedule (including reserve strategy) through a much smaller number of network constraints
compared to SUC. In addition, inspired by [7], only a small number of transmission lines that are easily
congested are considered in the proposed approach to further decrease the computational burden.
The contributions of this work are threefold:

(1) This work proposes a new NCUC approach that introduces newly proposed reserve models and
simplified network constraints. This new approach aims to produce very economical schedule at
high computational efficiency.

(2) This work proposes reserve models which fully reflect the impact of the stochastic characteristics
of wind power on the reserve optimization but bring in very little computational burden.
The reserve models can be directly incorporated into the traditional UC formulation and thus
enable the new NCUC approach to evaluate the costs and benefits of the scheduled reserves in a
concise and effective way and thus to produce very economical schedule.

(3) This work proposes the simplified network constraints, which enable the new NCUC approach
to evaluate the impact of network congestion on the schedule at low computational burden.

The organization chart of other parts of this paper is shown in Figure 1. Section 2 proposes the
reserve models fully considering the stochastic characteristics of wind power. Section 3 analyses the
impact of network congestion and proposes the simplified network constraints accordingly. The newly
proposed reserve models and simplified network constraints are incorporated into the formulation of
the proposed NCUC approach, which is presented in Section 4. Section 5 validated the effectiveness of
the proposed approach. Conclusions are drawn in Section 6.

Energies 2018, 11, 435 3 of 21 

 

the network constraints in the SUC need to account for all the periods and all the adopted wind power 
scenarios, resulting in huge computational burden. 

The other motivation of this work is to evaluate the impact of network congestion on the 
schedule at much less computational burden compared to SUC. In practice, network congestion only 
occurs in a small proportion of periods and scenarios for the actual power systems that have been 
well planned. Therefore, picking out such periods and scenarios enables to evaluate the impact of 
network congestion on the schedule (including reserve strategy) through a much smaller number of 
network constraints compared to SUC. In addition, inspired by [7], only a small number of 
transmission lines that are easily congested are considered in the proposed approach to further 
decrease the computational burden. The contributions of this work are threefold: 

(1) This work proposes a new NCUC approach that introduces newly proposed reserve models and 
simplified network constraints. This new approach aims to produce very economical schedule 
at high computational efficiency. 

(2) This work proposes reserve models which fully reflect the impact of the stochastic characteristics 
of wind power on the reserve optimization but bring in very little computational burden. The 
reserve models can be directly incorporated into the traditional UC formulation and thus enable 
the new NCUC approach to evaluate the costs and benefits of the scheduled reserves in a concise 
and effective way and thus to produce very economical schedule. 

(3) This work proposes the simplified network constraints, which enable the new NCUC approach 
to evaluate the impact of network congestion on the schedule at low computational burden. 

The organization chart of other parts of this paper is shown in Figure 1. Section 2 proposes the 
reserve models fully considering the stochastic characteristics of wind power. Section 3 analyses the 
impact of network congestion and proposes the simplified network constraints accordingly. The 
newly proposed reserve models and simplified network constraints are incorporated into the 
formulation of the proposed NCUC approach, which is presented in Section 4. Section 5 validated 
the effectiveness of the proposed approach. Conclusions are drawn in Section 6. 

Reserve models Network congestion 
analysis

Proposed NCUC approach

Section 2

Numerical results

Conclusions

Section 3

Section 4

Section 5

Section 6  
Figure 1. Organization chart of other part of this paper. 

2. Reserve Models Fully Considering Stochastic Characteristics of Wind Power 

For description convenience, net load, load minus wind power output, is used here to describe 
the reserve requirements incurred by wind power. The net load change in the consecutive periods 
can be illustrated in Figure 2, in which the white circles represent the forecasted net load and the 
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requirements incurred by net load can be classified into two aspects: one is the reserve requirements 
incurred by the forecasting errors of net load in a single period; the other is the ramping reserve 
requirements incurred by the change of net load in two consecutive periods. Correspondingly, 
reserve optimization consists of two aspects: one is the single-period reserve optimization, which 
aims to optimize the range of net load that the single-period reserves covers (shown as black circle in 
Figure 2); the other is the ramping reserve optimization, which aims to optimize the ramping 
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2. Reserve Models Fully Considering Stochastic Characteristics of Wind Power

For description convenience, net load, load minus wind power output, is used here to describe
the reserve requirements incurred by wind power. The net load change in the consecutive periods can
be illustrated in Figure 2, in which the white circles represent the forecasted net load and the shaded
circles represent the boundaries of the net load considering the uncertainty. Reserve requirements
incurred by net load can be classified into two aspects: one is the reserve requirements incurred by
the forecasting errors of net load in a single period; the other is the ramping reserve requirements
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incurred by the change of net load in two consecutive periods. Correspondingly, reserve optimization
consists of two aspects: one is the single-period reserve optimization, which aims to optimize the
range of net load that the single-period reserves covers (shown as black circle in Figure 2); the other
is the ramping reserve optimization, which aims to optimize the ramping amplitude of net load
in two consecutive periods that the ramping reserves covers (the amplitude of ramping up reserve
requirements is between zero and the amplitude of the black dashed lines, the amplitude of ramping
down reserve requirements is between zero and the amplitude of the black dotted lines, shown in
Figure 2).
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Reserve models are constructed to implement the above single-period reserve optimization and
ramping reserve optimization by reflecting the relationships between the system reserve levels and
lost load (or wind power curtailment) caused by reserve shortage. To assess specifically the effect of
characteristics of wind power, no uncertain demand and no equipment failure are considered in this
paper. Therefore, the change of net load can be recognized to be caused by the stochastic nature of wind
power. Reserve models are constructed based on the stochastic characteristics of wind power, which
is presented in Section 2.1. Reserve models consist of single-period reserve models and additional
ramping reserve models, which are presented in Sections 2.2 and 2.3, respectively. The linearization of
all these reserve models is introduced in Section 2.4.

2.1. Stochastic Characteristics of Wind Power

From the perspective of reserve optimization, the stochastic characteristics of wind power can be
classified into two aspects: wind power uncertainty in a single period and wind power change in two
consecutive periods. The former one is caused by wind power prediction errors, called single-period
wind power characteristics hereinafter. The latter one is affected by the combined effect of wind
power prediction errors and wind power variability, also abbreviated as ramping event hereinafter.
Wind power stochastic characteristics can be described by the stochastic wind power scenarios tagged
with probability information. Wind power scenarios are the time-dependent series of wind power
production, including the ramping events as well as the single-period wind power characteristics.

The number of scenarios is a crucial factor that affects the approximation precision of the stochastic
characteristics of wind power. Reduced scenarios inevitably discard some stochastic characteristics
information of wind power, especially when the adopted scenarios are very few, the loss of stochastic
characteristics information is severe. Moreover, reference [28] has verified that scenario reduction
techniques fail to concurrently maintain both the single-period wind power characteristics and
ramping events.

In order to fully and accurately capture the wind power stochastic characteristics, a sufficiently
large number of scenarios are used in the following to construct the reserve models because the number
of the adopted scenarios does not affect the complexity of the reserve models. Therefore, reserve
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models enable the proposed UC approach has a great advantage over SUC that adopts a very limited
number of scenarios, in accurately modeling the wind power stochastic characteristics.

Scenario generation method in [29] is applied in this paper to generate the required number of
scenarios with equal probability πs = 1/S that constitute the scenario set W = {Ws, s = 1, · · · , S}, in
which Ws = {wts, t = 1, · · · , T}. Ws is the sth wind power scenario, wts is wind power production
in period t and scenario s with the probability πts = 1/S. This scenario generation method accounts
for both the interdependence relationship of prediction errors among different periods and the
single-period probability distributions of wind power. Therefore, it can well describe both the
single-period wind power characteristics and ramping events.

2.2. Single-Period Reserve Models

2.2.1. Single-Period Reserve Requirements

For description convenience, this subsection uses the probability density function (PDF) of wind
power production to describe the single-period wind power characteristics. Theoretically, the set
constituted by the wind power production of all the scenarios in the same period can be recognized
as the discrete approximation of the PDF of wind power production in that period. Without losing
generality, the PDF of wind power production can be assumed to accord with some kind of function
fw(wt), the illustrated diagram of which is shown in Figure 3. Here, wind power production denotes
the sum of wind power production at every bus node. The PDF of wind power production in Figure 3
is truncated at the boundaries, the probability density of which is shown in Equation (1), because
wind power production should be not less than zero and not greater than the installed capacity wmax.
In Figure 3, wF

t and wE
t represent the point forecast value and the expected value of wind power

production. The expected value wE
t can be expressed as Equation (2), including the integral form and

accumulation form:

fw(0) =
∫ 0

−∞
fw(wt)d(wt); fw(wmax) =

∫ +∞

wmax
fw(wt)d(wt) (1)

wE
t =

∫ wmax

0
fw(wt)wtd(wt) = ∑

s
πtswts (2)

Energies 2018, 11, 435 5 of 21 

 

both the interdependence relationship of prediction errors among different periods and the single-
period probability distributions of wind power. Therefore, it can well describe both the single-period 
wind power characteristics and ramping events. 

2.2. Single-Period Reserve Models 

2.2.1. Single-Period Reserve Requirements 

For description convenience, this subsection uses the probability density function (PDF) of wind 
power production to describe the single-period wind power characteristics. Theoretically, the set 
constituted by the wind power production of all the scenarios in the same period can be recognized 
as the discrete approximation of the PDF of wind power production in that period. Without losing 
generality, the PDF of wind power production can be assumed to accord with some kind of function 

w ( )tf w , the illustrated diagram of which is shown in Figure 3. Here, wind power production denotes 
the sum of wind power production at every bus node. The PDF of wind power production in Figure 
3 is truncated at the boundaries, the probability density of which is shown in Equation (1), because 
wind power production should be not less than zero and not greater than the installed capacity maxw . In 

Figure 3, F
tw  and E

tw  represent the point forecast value and the expected value of wind power 

production. The expected value E
tw  can be expressed as Equation (2), including the integral form 

and accumulation form: 

( ) ( ) ( ) ( ) ( ) ( )+∞

−∞
= =∫ ∫ max

0 max
w w w w0 ;t t t tw

f f w d w f w f w d w  (1) 

( ) ( ) π= = ∑∫
max

E
w0

w
t t t t ts tssw f w w d w w  (2) 

 
Figure 3. The PDF of wind power production. 

From the viewpoint of a single period, reserve requirements are used to compensate the 

deviation of actual wind power production from the reference value that is set as E
tw . Single-period 

up reserve (SPUR) requirements can be recognized as the negative deviation of actual wind power 
production, i.e., + = −E

t t tr w w . Single-period down reserve (SPDR) requirements can be recognized 

as the positive deviation, i.e., − = − E
t t tr w w . The PDFs of the SPUR and SPDR requirements are 

illustrated in Figure 4a,b. The functions +
r+ ( )tf r  and −

r- ( )tf r  should be truncated at their left 

boundaries because + ≥ 0tr  and − ≥ 0tr , the probability density of which is amended as Equations (3) 
and (4), respectively. 

( ) ( )= ∫
max

Er+ w0
t

w
t tw

f f w dw  (3) 

Figure 3. The PDF of wind power production.

From the viewpoint of a single period, reserve requirements are used to compensate the deviation
of actual wind power production from the reference value that is set as wE

t . Single-period up reserve
(SPUR) requirements can be recognized as the negative deviation of actual wind power production,
i.e., r+t = wE

t − wt. Single-period down reserve (SPDR) requirements can be recognized as the positive
deviation, i.e., r−t = wt − wE

t . The PDFs of the SPUR and SPDR requirements are illustrated in
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Figure 4a,b. The functions fr+(r
+
t ) and fr−(r

−
t ) should be truncated at their left boundaries because

r+t ≥ 0 and r−t ≥ 0, the probability density of which is amended as Equations (3) and (4), respectively.

fr+(0) =
∫ wmax

wE
t

fw(wt)dwt (3)

fr−(0) =
∫ wE

t

0
fw(wt)dwt (4)
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2.2.2. Construction of Single-Period Reserve Models

The power system has to shed load when the SPUR requirement r+t exceeds the given SPUR
level rv+t (0 ≤ rv+t ≤ wE

t ), i.e., r+t > rv+t . The expected load not served (ELNS) rd+t caused by
SPUR shortage can be expressed as Equation (5), including the integral form and accumulation form.
In the accumulation form, the condition r+t > rv+t is transformed as wts ≤ wE

t − rv+t , the symbol
s|wts ≤ wE

t − rv+t represents the scenario set that contains all the scenarios that meet the condition
wts ≤ wE

t − rv+t . This way of representing the scenario set is also adopted hereinafter. Equation (5)
denotes the relationship between the SPUR level and the ELNS caused by SPUR shortage, called the
SPUR model.

Similarly, the power system has to curtail wind power production when the SPDR requirement
r−t excesses the given SPDR level rv−t (0 ≤ rv−t ≤ wmax − wE

t ), i.e., r−t > rv−t . The expected wind
power curtailment (EWC) rd−t caused by SPDR shortage can be expressed as Equation (6). Equation (6)
denotes the relationship between the SPDR level and the EWC caused by SPDR shortage, called the
SPDR model:

rd+t
(
rv+t

)
=
∫ wE

t

rv+t
fr+
(
r+t
)(

r+t − rv+t
)
dr+t = ∑s|wts≤wE

t −rv+t
πts

(
wE

t − rv+t − wts

)
(5)

rd−t
(
rv−t

)
=
∫ wmax−wE

t

rv−t
fr−
(
r−t
)(

r−t − rv−t
)
dr−t = ∑s|wts≥wE

t +rv−t
πts

(
wts − wE

t − rv−t
)

(6)

Note that the SPDR model may fail to accurately estimate the EWC caused by SPDR shortage
if the expected value wE

t excesses the maximum wind power production wm
t that the power system

can accommodate, i.e., wE
t > wm

t , shown in Figure 4b. The revisions concerning such a case will be
described in detail Section 4.2.3.
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2.3. Additional Ramping Reserve Models

Before constructing additional ramping reserve models, we should first recognize that some
ramping reserve requirements have already been satisfied through other ways and should be excluded
in the construction of additional ramping reserve models to avoid overlapping of the ramping reserves.

Ramping reserve requirements are caused by the following factors (shown in Figure 5, taking
ramping up reserve in two consecutive periods as an example): variation of expected net load
(ndE

t − ndE
t−1), wind power prediction deviation (r̃v+t ), and additional ramping reserve requirements

(ra+t ). Ramping reserve requirements caused by expected net load, including load variation (ldt− ldt−1)
and expected wind power variation (wE

t−1−wE
t ), can be covered by system power balancing constraint.

Ramping reserve requirements caused by wind power prediction deviation can be covered by
single-period reserve levels r̃v+t , r̃v−t , which should be calculated in advance before constructing the
additional ramping reserve models. Additional ramping reserve requirements are used to construct
the additional ramping reserve models.
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2.3.1. Additional Ramping Reserve Requirements

The existing ramping capacity can cover the expected wind power variation and wind power
prediction deviation. Additional ramping reserve requirements can be calculated by subtracting such
existing ramping capacity from the actual wind power variation in two consecutive periods (the
amplitude of ramping event). The existing ramping up reserve capacity for expected wind power
variation and wind power prediction deviation is rp+t = max(r̃v+t , r̃v+t +(wE

t−1−wE
t )) and the existing

ramping down reserve capacity is rp−t = max(r̃v−t , r̃v−t + (wE
t − wE

t−1)). Then, additional ramping up
reserve (ARUR) requirement of scenario s is ra+ts = wt−1,s − wts − rp+t and additional ramping down
reserve (ARDR) requirement is ra−ts = wts − wt−1,s − rp−t . The value of ra+ts , ra−ts should be set at zero
when wt−1,s −wts < rp+t or wts −wt−1,s < rp−t because only non-negative additional ramping reserve
requirements need to be taken into account.

Additional ramping reserve requirements are calculated after given single-period reserve levels
r̃v+t , r̃v−t , which can cover the wind power range Iw

t = [wE
t − r̃v+t , wE

t + r̃v−t ]. Because the lost load (or
wind power curtailment) caused by wind power scenarios beyond the range Iw

t has been considered
in the single-period reserve models, therefore, additional ramping reserve requirements should be
limited to the range Iw

t to avoid the repeated calculation of such lost load (or wind power curtailment).
For additional ramping reserve requirements, wind power production beyond this range should be
adjusted to the corresponding nearer boundaries of the range Iw

t . After adjustment, wind power
production wts, wt−1,s is rewritten as w′ts, w′t−1,s. Accordingly, the ARUR requirement is rewritten as
ra+ts = w′t−1,s − w′ts − rp+t and the ARDR requirement as ra−ts = w′ts − w′t−1,s − rp−t .
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2.3.2. Construction of Additional Ramping Reserve Models

The power system has to shed load when the ARUR requirement ra+ts excesses the given ARUR
level rva+t , i.e., ra+ts > rva+t . The ELNS rda+t caused by ARUR shortage can be expressed as Equation (7).
Equation (7) denotes the relationship between the ARUR level and the ELNS caused by ARUR shortage,
called the ARUR model.

Similarly, the power system has to curtail wind power production when the ARDR requirement
ra−ts excesses the given ARDR level rva−t , i.e., ra−ts > rva−t . The EWC rda−t caused by ARDR shortage
can be expressed as Equation (8). Equation (8) denotes the relationship between the ARDR level and
the EWC caused by ARDR shortage, called the ARDR model. Note that ARDR model faces the same
problem as the SPDR model when wE

t > wm
t , which will be solved together in Section 4.2.3:

rda+t
(
rva+t

)
= ∑

s|ra+ts>rva+t

πts
(
ra+ts − rva+t

)
(7)

rda−t
(
rva−t

)
= ∑

s|ra−ts>rva−t

πts
(
ra−ts − rva−t

)
(8)

According to the definition of additional ramping reserve requirements, a non-negative additional
ramping reserve requirements means that the amplitudes of the corresponding ramping events should
excess the corresponding existing ramping capacity, thus, such ramping events have large amplitudes
but theoretically low probability. Meanwhile, additional ramping reserve requirements have relatively
low value because they are calculated by subtracting the existing ramping capacity from the amplitudes
of ramping events. Therefore, additional ramping reserve models constructed based on additional
ramping reserve requirements have much less impact on the solutions, compared to the single-period
reserve models, and can be regarded as the supplements of the latter ones to further enhance the
reliability of the schedule to withstand the risks of both load shedding and wind power curtailment.

2.4. Linearization of Reserve Models

The reserve models in Sections 2.2 and 2.3 are non-linear and thus are not conducive to being
incorporated into the UC formulation. But these models can be linearized by the piecewise linear
functions Equations (9) and (10) [30] because they have convex statistical characteristics, illustrated in
Figure 6. For simplicity, variables rd+t , rd−t , rda+t , rda−t are replaced by variable rdt in Equations (9) and
(10), rv+t , rv−t , rva+t , rva−t by rvt:

rdt(rvt) = rdt(0) + ∑
k

αtk · rvtk, 0 ≤ rvtk ≤ rvmax
t /N (9)

rvt = ∑
k

rvtk (10)

where rvtk is the k-th segment of rvt, αtk = (rdt(rvmax
tk )− rdt(rvmax

t,k−1)) · N/rvmax
t , rvmax

tk = rvmax
t · k/N,

N is the number of the segments.
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3. Network Congestion Analysis

The above reserve models focus on the optimization of system reserve levels but neglect that the
scheduled reserves may be blocked in real-time operation due to network congestion. In addition,
network congestion may not only affect reserve applicability but also occur in the case that has no
relationship with reserve applicability, such as the day-ahead schedule under the expected wind power
production. Network congestion may result in the increase of real-time operating costs caused by the
unexpected lost load or wind power curtailment. However, it is also not an economical choice or even
infeasible to avoid such unexpected lost load and wind power curtailment in all the possible wind
power scenarios. The ideal remedy is to evaluate the costs/benefits of such lost load (or wind power
curtailment) caused by network congestion and to optimize the schedule accordingly. SUC adopts this
remedy by introducing many scenario-related network constraints to evaluate the impact of network
congestion on the reserve applicability, resulting in heavy computational burden.

To avoid the heavy computational burden caused by many scenario-related network constraints,
this section only selects the network constraints (simplified network constraints) that are closely
related to network congestion, instead of all the network constraints adopted in the SUC. Further, this
section proposes the estimating functions of lost load and wind power curtailment caused by network
congestion so that the following UC formulation can evaluate the costs/benefits of such lost load and
wind power curtailment.

3.1. Simplified Network Constraints

Evaluating the impact of network congestion needs to resort to the scenario-related network
constraints because evaluating reserve applicability should simulate the possible realizations in the
real-time operation through stochastic scenarios and because judging network congestion should be
on the basis of power flow calculation, which depends on the injected power at every node in the same
period and the same scenario. Because the expected wind power production is the expected value of
all the stochastic wind power scenarios, scenario-related network constraints can naturally reflect the
impact of network congestion on the day-ahead schedule under the expected wind power production.

The network constraints in the SUC needs to contain the power flow constraints of all lines in all
periods and scenarios. In the actual power systems that have been well planned, however, network
congestion only occurs in a small proportion of periods and wind power scenarios, furthermore,
it mainly occurs in a small number of transmission lines. By identifying the set SNc of such pairs
of period and scenario (t, s) and the set Lc of lines that easily suffer network congestion, only a
small number of network constraints are required to reflect the impacts of network congestion on the
schedule. The process to obtain such sets will be explained in Section 4.2.2.
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The simplified network constraints Sgd include power balance constraint Equation (11),
transmission capacity constraint Equation (12), power output constraint of the unit Equation (13), and
boundary constraints for load shedding and wind power curtailment Equation (14):

∑
i

pits = ∑
j

(
ldjt − wjts − lsjts + wcjts

)
, (t, s) ∈ SNc. (11)

− p f max
l ≤ Al

(
Yg × Pts + WPts −WCts − LDt − LSts

)
= p fls ≤ p f max

l , l ∈ Lc, (t, s) ∈ SNc. (12)

pit − rg−it ≤ pits ≤ pit + rg+it , ∀i, (t, s) ∈ SNc. (13)

0 ≤ wcjts ≤ wjts, 0 ≤ lsjts ≤ ldjt, ∀j, (t, s) ∈ SNc. (14)

3.2. Estimating Functions of ELNS and EWC Caused by Network Congestion

Estimating the ELNS and EWC caused by network congestion should exclude the impact of
the reserve shortage so as to avoid the overlapping calculation of the ELNS and EWC. Because
additional ramping reserves have much less impact compared to single-period reserves, for simplicity,
this subsection only considers the impact of the single-period reserves, neglecting that of additional
ramping reserves.

The ELNS and EWC caused by network congestion are related to wind power range Iw
t . Given the

range Iw
t , there are two cases, namely, wts ∈ Iw

t and wts /∈ Iw
t . If wts ∈ Iw

t , load shedding lsN
ts or wind

power curtailment wcN
ts is solely caused by network congestion. The variable lsN

ts is the sum of load
shedding lsjts at every bus j, i.e., lsN

ts = ∑j lsjts, and wcN
ts is the sum of wind power curtailment wcjts at

every bus j, i.e., wcN
ts = ∑j wcjts. If wts /∈ Iw

t , load shedding or wind spillage is caused by the combined
effect of network congestion and single-period reserve shortage. The amount of load shedding caused
by reserve shortage can be expressed as wE

t − r̃v+t −wts and the amount of corresponding wind power
curtailment is wts − wE

t − r̃v−t . Then the amount of load shedding caused by network congestion
is lsN

ts = ∑j lsjts − (wE
t − r̃v+t − wts) and the amount of corresponding wind power curtailment is

wcN
ts = ∑j wcjts − (wts − wE

t − r̃v−t ).
In addition, the amount of wind power curtailment should be revised when wE

t > wm
t . In such a

case, the amount of wind power curtailment caused by reserve shortage is wts − wm
t , then the amount

of wind power curtailment caused by network congestion is wcN
ts = ∑j wcjts − (wts − wm

t ).
In conclusion, the ELNS lsN

t caused by network congestion can be expressed as Equation (15) and
the EWC wcN

t is Equation (16):

lsN
t = ∑s|wts∈Iw

t
πtslsts + ∑s|wts /∈Iw

t
πts

[
lsts −

(
wE

t − r̃v+t − wts

)]
(15)

wcN
t = sit∑s|wts∈Iw

t
πtswcts + sit∑s|wts /∈Iw

t
πts
[
wcts −

(
wts − wE

t − r̃v−t
)]

+ (1− sit)∑s πts[wcts − (wts − wm
t )] (16)

where sit is the auxiliary parameter to indicate the case wE
t > wm

t , in which it is set at zero, otherwise,
sit = 1. The method to calculate sit and wm

t is provided in Section 4.2.3. The former two items in
Equation (16) take effect when wm

t ≥ wE
t and the last one takes effect when wE

t > wm
t .

4. NCUC Approach Based on Reserve Models

This proposed NCUC approach introduces the newly proposed reserve models and simplified
network constraints into the traditional UC formulation. The reserve models enable this approach to
fully capture the impact of the stochastic characteristics of wind power on the reserve optimization
and simultaneously optimize the system reserve levels and on/off decision variables. In this way,
this approach can comprehensively evaluate the costs and benefits of the scheduled reserves and thus
produce very economic schedules. Meanwhile, the reserve models simply consist of a small number of
continuous variables and linear constraints and thus bring in very little computational burden. Besides,
the simplified network constraints enable this approach to evaluate the impact of network congestion
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on the schedule at low computational burden. Section 4.1 presents the mathematical formulation of
the NCUC based on reserve models (RMUC), Section 4.2 presents the methodology to solve RMUC.

4.1. Mathematical Formulation

The mathematical formulation of RMUC is described as follows:

Min ∑i,t[dtci(pit) + csu
i (ui,t−1, uit)] + ∑t dtvltlsE

t + ∑t dtvwtwcE
t (17)

lsE
t = rd+t + rda+t + lsN

t , ∀t. (18)

wcE
t = sitrd−t + sitrda−t + wcN

t , ∀t. (19)

s.t:

∑i pit = ldt − wE
t + swt, ∀t. (20)

∑i rg+it ≥ rv+t + rva+t , ∀t. (21)

∑i rg−it ≥ rv−t + rva−t , ∀t. (22)

pit + rg+it ≤ Pmax
i uit, ∀i, t. (23)

pit − rg−it ≥ Pmin
i uit, ∀i, t. (24)

pit − pi,t−1 + rg+it ≤ SURi(1− ui,t−1) + dtRUiui,t−1, ∀i, t. (25)

pi,t−1 − pit + rg−it ≤ SDRi(1− uit) + dtRDiuit, ∀i, t. (26)

0 ≤ rg+it ≤ dtRUi, ∀i, t. (27)

0 ≤ rg−it ≤ dtRDi, ∀i, t. (28)(
rd+t , rd−t

)
∈ Srv

(
rv+t , rv−t

)
, ∀t. (29)(

rda+t , rda−t
)
∈ Srva

(
rva+t , rva−t

)
, ∀t. (30)(

pits, wjts, lsjts, wcjts
)
∈ Sgd

(
uit, pit, rg+it , rg−it

)
, (t, s) ∈ SNc. (31)

The objective function Equation (17) seeks to minimize the total operating costs, including fuel
costs, start-up costs, penalty costs of ELNS, and penalty costs of EWC. Fuel cost functions are usually
expressed as quadratic functions, which are approximated by the piecewise linear functions [30].
Start-up cost functions are the functions of commitment variables, in which the start-up cost of each
time is set to constant [17]. Equations (18) and (19) are used to calculate the total ELNS and the total
EWC, respectively, both of which contain three parts and are caused by three factors: the single-period
reserve shortage, additional ramping reserve shortage, and network congestion. Equation (19) also
introduces parameter sit to identify the case wE

t > wm
t as Equation (16) does. When wE

t > wm
t , the EWC

caused by the single-period reserve shortage and the additional ramping reserve shortage is excluded
through setting sit = 0 to avoid the overlapping calculation of such EWC. More detail about the
revision of EWC will be explained in Section 4.2.3. Note that parameters vlt, vwt are not predefined
and are calculated according to the operating costs in each period. The calculations of vlt, vwt are
explained in Section 4.2.2.

Note that the penalty costs of ELNS and EWC in the objective function Equation (17) is quite
different from those in the objective function of DUC due to their different calculations of load
shedding and wind power curtailment. Traditional DUC can only consider the load shedding and
wind power curtailment under the expected (or point forecasted) wind power scenario. But the ELNS
and EWC in the objective function Equation (17) represent the total expected load shedding and the
total expected wind power curtailment, respectively, caused by both reserve shortage and network
congestion. In this way, the penalty costs of ELNS and EWC in the objective function Equation (17)
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can be used to express the potential benefits of both the scheduled reserves and mitigating network
congestion, or in more straightforward words, the potentially reduced penalty costs of ELNS and EWC
due to both the scheduled reserves and mitigating network congestion. The increased costs of both the
scheduled reserves and mitigating network congestion can be calculated by the former two terms of
objective function Equation (17), i.e., fuel costs and start-up costs. Therefore, objective Equation (17)
can comprehensively evaluate the costs and benefits of both the scheduled reserves and eliminating
network congestion, but the objective in the DUC is incapable of doing that.

RMUC is restricted by the following constraints: power balance constraint Equation (20), system
up and down spinning reserve requirements Equations (21) and (22), upper and lower power limits of
the unit Equations (23) and (24), ramping up and down reserve limits of the unit Equations (25) and
(26), reserve boundaries of the unit Equations (27) and (28), single-period reserve models Equation (29),
additional ramping reserve models Equation (30), and simplified network constraints Equation (31).
Constraint Equation (20) introduces the slack variable swt to attain the feasibility of the model when
the case wE

t > wm
t occurs. Constraints Equations (21) and (22) regard system up and down spinning

reserve requirements as decision variables, which are correlated to the ELNS Equation (18) and EWC
Equation (19) through reserve models Equations (29) and (30) and thus can be optimized based on
the cost/benefit analysis. Single-period reserve models Equation (29) consist of Equations (5) and (6).
Additional ramping reserve models Equation (30) consist of Equations (7) and (8). The single-period
reserve capacity and additional ramping reserve capacity are deployed as the spinning reserves in this
paper, for simplicity, temporarily neglecting the non-spinning reserves. Simplified network constraints
Equation (31) consist of Equations (11)–(14). In addition, RMUC includes other technique constraints
such as minimum up- and down-time limits, which are not provided in this paper for the sake of
brevity and can be referred to [31].

It is important to emphasize that there are two remarkable aspects of differences between the
RMUC and typical DUC [6], despite the fact they both follow the traditional UC framework to achieve
high computational efficiency. On the one hand, system up and down spinning reserve requirements
are decision variables in the RMUC, instead of the predefined value in the DUC. Similar to SUC, RMUC
can evaluate the costs and benefits of the system spinning reserve requirements and thus produce very
economical reserve strategy. On the other hand, RMUC can evaluate the impact of network congestion
on the reserve applicability through the network constraints Equation (31). But typical DUC simply
considers the network constraints under the expected (or point forecasted) wind power scenario and
thus fails to consider that the scheduled reserves may be blocked in the real-time operation due to
network congestion.

4.2. Methodology of Solving RMUC

The methodology of solving RMUC is illustrated in Figure 7. RMUC requires some essential
parameters such as Iw

t , SNc, and Lc, which should be calculated in advance. Initial UC (IUC) provides
the parameter Iw

t and also provides the initial schedule for economic dispatch (ED) simulations. ED
simulations can simulate the real-time operation to provide some other required parameters such as
SNc and Lc.Energies 2018, 11, 435 13 of 21 
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4.2.1. Solving IUC

Compared to RMUC, IUC does not contain additional ramping reserve model Equation (30) and
network constraints Equation (31) and should replace Equations (18) and (19), Equations (21) and (22)
by Equations (32)–(35). Parameters vlt, vwt in the IUC are taken as the empirical value. IUC is simple
and quite computationally efficient. After solving IUC, the wind power range Iw

t can be obtained
according to rv+t , rv−t :

lsE
t = rd+t , ∀t. (32)

wcE
t = rd−t , ∀t. (33)

∑i rg+it ≥ rv+t , ∀t. (34)

∑i rg−it ≥ rv−t , ∀t. (35)

4.2.2. ED Simulations

ED simulations can simulate the possible realizations of real-time operation through stochastic
scenarios to analyze the possible impact of network congestion on the schedule and to estimate
the expected operating costs regarding all the possible realizations. Each ED model in the ED
simulations corresponds to one stochastic scenario and can be regarded as the SUC model under a
single scenario with the given commitment decision variables provided by IUC. The ED model is
a linear programming problem that is quite computationally efficient. Besides, ED models under
different scenarios are mutually independent and thus can be paralleled solved to further improve the
computational efficiency.

ED simulations can assess the impact of network congestion on the schedule and thus obtain the
parameters SNc and Lc. In ED simulations, if there is any pair of scenario and period in which the lost
load (or wind power curtailment) caused by network congestion satisfies the condition lsN

ts > 0 (or
wcN

ts > 0), such pair of scenario and period will be included into the set SNc. The functions to calculate
the value lsN

ts , wcN
ts can be referred to Section 3.2, the required variables in these functions can be

approximately obtained by the corresponding data from the solutions of the IUC and ED simulations.
In ED simulations, if any transmission reaches its transmission capacity, such line will be included into
the set Lc.

Besides, ED simulations can calculate the expected operating costs regarding all the scenarios
in every period and thus can calculate the parameters vlt, vwt. The value of loss load vlt is set at the
fixed times of the operating costs per load demand in period t. The value of wind power curtailment
vwt is set at the operating costs per net load (load minus wind power) in period t, representing the
opportunity costs of curtailed wind power.

However, ED simulations cannot adopt as many scenarios as reserve models do because too many
scenarios in ED simulations may lead to that the scale of the set SNc is too large when the network is
heavily congested. Though the set SNc accounts for a small proportion of all the pairs of period and
scenario considered in the SUC, its proportion still rises with the aggravation of network congestion,
moreover, the scale of the set SNc is proportional to the number of scenarios. A large set SNc impairs
the computational efficiency of RMUC, therefore, ED simulations should reduce the scenarios of the
set W adopted in reserve models. The k-means clustering technique is applied in this paper to reduce
the scenarios [28].

4.2.3. Solving RMUC

Besides the parameters mentioned in the above two processes, the parameters sit and wm
t should

also be calculated in advance before solving RMUC. The parameter sit is used to identify the case
wE

t > wm
t , in which the EWC caused by reserve shortage can be roughly approximated by wE

t − wm
t ,

i.e., the value of swt in the power system balance constraint Equation (20). This approximation of EWC
is not accurate but has little impact on the economy of the schedule due to the low value of wind power
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curtailment. In such a case, the EWC caused by the single-period reserve shortage and additional
ramping reserve shortage has been included in the system power balance constraint Equation (20) and
therefore Equation (19) need to exclude such EWC by setting sit = 0. Because wE

t − wm
t is equal to swt,

sit can be approximated by value of swt (sw0
t ) in the IUC. When sw0

t > 0, sit is set at zero and wm
t is

wE
t − sw0

t , otherwise, sit is set at one and wm
t is zero. After solving RMUC, the EWC can be calculated

by Equation (36):
wcE

t = sitrd−t + sitrda−t + (1− sit)swt + wcN
t , ∀t. (36)

The above processes provide a simple way for RMUC to calculate its required parameters,
which may slightly depart from their optimal value. However, the above processes can provide a good
approximation of the core parameters, including Iw

t , Lc, and SNc. The parameter Iw
t mainly affects the

additional ramping reserve models, which are the supplements of single-period reserve models and
have much less impact on the schedule compared to single-period reserve models. The parameters Lc

and SNc are used to manage the possible network congestion and will not vary apparently if the set Lc

is carefully selected. The set Lc can be well selected by ED simulations and can be better selected with
the help of historical operation data.

5. Numerical Results

Numerical simulations use the modified version of 118-bus test system from motor.ece.iit.edu/
data/ltscuc, so as to better accord with the engineering practice. The modified system consists of
54 units with a total installed capacity of 14,470 MW and with the peak load of 13,000 MW. Ten wind
farms are integrated into the modified system at ten different bus nodes, each with 450 MW of installed
capacity. Wind data are from [32]. The initial value of wind power curtailment is 40 $/MW·h for
the IUC. The value of lost load is fixed at 1000 $/MW·h for the sake of comparisons among different
UC approaches. Ten-piece piecewise linear functions are used to approximate the fuel cost functions,
fifty-piece piecewise linear functions to approximate the single-period reserve models, and ten-piece
piecewise linear functions to approximate the additional ramping reserve models.

All numerical simulations are coded with YALMIP toolbox under the MATLAB platform and
are solved by the commercial solver GUROBI 6.0.5 with a pre-specified optimal gap of 0.1% on a
Windows-based server equipped with a Xeon ES-1650 (3.50 GHz, six6 cores) processor. The simulation
results are presented in the following two parts: Section 5.1 compares the economic performance of
schedules produced by different approaches, including DUC, SUC, and RMUC; Section 5.2 compares
their computing performance.

5.1. Economic Performance Analysis

DUC is represented by the traditional 3σ approach, which sets the system up reserve level as three
times the standard deviation (3σ) of the wind power forecasting errors. The SUC formulation used
for comparison is derived from [19]. Three thousand (3000) scenarios, which constitute the original
scenario set W, are generated by the method in [29] to fully approximate the stochastic characteristic
of wind power. The original scenario set is used to construct the reserve models and then is reduced
to a small scenario set containing 20 scenarios by the k-means clustering method [28]. The reduced
scenario set is used in the SUC and in the ED simulations of RMUC. More scenarios adopted in the
reduced scenario set may contribute to the better economic performance of SUC, but more scenarios
require so many computational resources that are beyond the ability of our simulation environment.

The day-ahead schedules directly produced by different UC approaches are not comparable
because these approaches adopt different means of modeling wind power characteristics. But these
approaches can be compared when their day-ahead schedules have been implemented real-time
simulations, i.e., ED simulations under the original scenario set Wt. Economic performance results
of the three different approaches are provided in Table 1, including total operating costs (TOC),
total fuel costs (TFC), expected load not served (ELNS), and expected wind power curtailment
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(EWC). The column RT represents the real-time expected results calculated by the results of real-time
simulations, ∆ represents the difference between the real-time expected results and the day-ahead
schedule results. Moreover, Table 1 gives the results of the three approaches under different severity
degrees of network congestion. The suffixes (1.0, 1.2, and 1.4) in the first column are congestion
factors ρ, which are used to represent the severity degree of network congestion. Assuming the initial
transmission capacity of line l is p f max

l , then the transmission capacity of the corresponding line for
the test system with the congestion factor ρ is p f max

l /ρ. The congestion factor is larger, there are more
lines that are prone to congestion.

Table 1. Economic performance results of three approaches.
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SUC_1.4 8.213 0.184 7.819 0.031 159 153 8232 125 
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As shown in Table 1, RMUC has the lowest total operating costs compared to DUC and SUC, 
furthermore, has the lowest differences (Δ) regarding the two most important indexes, i.e., the total 
operating costs and the ELNS. The penalty costs of ELNS greatly affect the total operating costs 
because the value of lost load is very high. Therefore, accurately estimating the ELNS in the day-
ahead schedule is crucial for the economic performance of a UC approach. DUC and SUC heavily 
underestimate the ELNS in the day-ahead schedule, resulting in the remarkable increase of total 
operating costs in the real-time expected results. Instead, RMUC can better estimate the ELNS in the 
day-ahead schedule and thus produce more economical schedule. 

As shown in Table 1, RMUC has the lowest total operating costs compared to DUC and SUC,
furthermore, has the lowest differences (∆) regarding the two most important indexes, i.e., the total
operating costs and the ELNS. The penalty costs of ELNS greatly affect the total operating costs because
the value of lost load is very high. Therefore, accurately estimating the ELNS in the day-ahead schedule
is crucial for the economic performance of a UC approach. DUC and SUC heavily underestimate the
ELNS in the day-ahead schedule, resulting in the remarkable increase of total operating costs in the
real-time expected results. Instead, RMUC can better estimate the ELNS in the day-ahead schedule
and thus produce more economical schedule.

On the other hand, RMUC is much less sensitive to the severity degree of network congestion
compared to DUC. This is because DUC ignores the impact of network congestion on the reserve
applicability. If the network congestion aggravates, the economic performance of DUC worsens.
When the congestion factor is ρ = 1.4, DUC needs the more total operating costs by 1.99% and 2.71%
compared to SUC and RMUC.

5.2. Computing Performance Analysis

The number of variables and the number of constraints are the important and intuitional indexes
that reflect the model scale of the UC approach. The model scale remarkably affects the computing
time of the UC approach, however, computing time is also affected by other complex factors such
as the algorithm. The impact of the algorithm on the computing time is complicated and is beyond
the scope of this paper. All the formulations of these three UC approaches are solved by the same
commercial MILP solver of GUROBI in this paper.

The model scales of different approaches are shown in Figure 8, including the number of
integer variables (NIV), the number of continuous variables (NCV), the number of constraints (NCT).
The values of these indexes are written in the form of logarithm. Note that the model scales of DUC
and SUC have no relationship with the severity degree of network congestion so they have no suffixes
indicating the severity degree of network congestion in Figure 8. The computing performance of
different approaches is illustrated in Table 2, including the number of the pairs of scenario and period
(NSP), the number of lines (NL), and computing time (CPT).
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Table 2. Computing performance of different approaches.

Approach NSP NL CPT(s)

DUC_1.0 24 186 44
SUC_1.0 480 186 2410

RMUC_1.0 4 3 28
DUC_1.2 24 186 24
SUC_1.2 480 186 2676

RMUC_1.2 43 11 29
DUC_1.4 24 186 37
SUC_1.4 480 186 6594

RMUC_1.4 165 15 118

As shown in Figure 8, RMUC has much smaller model scale compared to SUC especially when
the network congestion is slight. The model scale of RMUC increases when the congestion factor
enlarges, but even when ρ = 1.4, the number of continuous variables of RMUC is only 1/7 of that
of SUC and the number of constraints is only 1/9. The advantage of RMUC in the model scale over
SUC attributes to that RMUC can pick out the scenarios, periods, and lines that are easily suffered to
network congestion and thus has much smaller NSP and NL, which is verified in Table 2, avoiding
many inactive constraints adopted in the SUC. Therefore, RMUC has a more reasonable model scale
that varies depending on the severity degree of network congestion, compared to SUC.

When ρ = 1.0 or ρ = 1.2, RMUC has the similar computing time as DUC and has much less
computing time compared to SUC. When ρ = 1.4, RMUC consumes a little more computing time
compared to DUC. It is important to note that the SUC consumes much more time when ρ = 1.4
compared to when ρ = 1.0 though the model scale keeps the same. This is because more network
constraints take effect when the network congestion aggravates. When ρ = 1.4, the computing time of
RMUC is only 1/56 of that of SUC.

6. Conclusions

This paper proposes a new NCUC approach that introduces the newly proposed reserve
models and simplified network constraints. This approach constructs the reserve models based
on a sufficiently large number of stochastic wind power scenarios to fully and accurately capture
the stochastic characteristics of wind power. These reserve models are directly incorporated into
traditional UC formulation to simultaneously optimize the system reserve levels and on/off decision
variables. Therefore, the proposed approach can better perform the cost/benefit analysis in the reserve
optimization and thus produce very economical schedule. These reserve models bring in very little
computational burden because they simply consist of a small number of continuous variables and
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linear constraints. Besides, this approach can reflect the impact of network congestion on the schedule
by introducing only a small number of network constraints, i.e., the simplified network constraints,
and thus can concurrently ensure its high computational efficiency.

Numerical simulations have been performed to compare the economic performance and computing
performance of DUC, SUC, and RMUC. The following conclusions can be drawn accordingly:

(1) RMUC can better estimate the real-time expected results, containing total operating costs and
expected load not served, in the day-ahead schedule compared to DUC and SUC. However, DUC
and SUC fail to accurately estimate the expected load not served in the day-ahead schedule,
resulting in the remarkable increase of total operating costs in the real-time simulations.

(2) RMUC can produce more economical schedule compared to DUC and SUC and effectively cope
with the impact of network congestion on the schedule. When the network congestion aggravates,
RMUC has much more advantage in economic performance over DUC.

(3) RMUC is much more computationally efficient than SUC and has similar computational efficiency
as DUC. This is partly because RMUC has a more reasonable model scale that varies depending on
the severity degree of network congestion, compared to SUC, avoiding many inactive constraints
adopted in the SUC.

This proposed approach focuses on the spinning reserves and neglects the non-spinning reserves.
The extension of this approach should be further studied to make it more widely applicable.
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Abbreviations

ARDR Additional Ramping Down Reserve
ARUR Additional Ramping Up Reserve
CPT Computing Time
DUC Deterministic Unit Commitment
ED Economic Dispatch
ELNS Expected Load Not Served
EWC Expected Wind Power Curtailment
IUC Initial Unit Commitment
NCT Number of Constraints
NCUC Network-Constrained Unit Commitment
NCV Number of Continuous Variables
NIV Number of Integer Variables
NL Number of Lines
NSP Number of the Pairs of Scenario and Period
PDF Probability Density Function
RMUC Network-Constrained Unit Commitment Based on Reserve Models
SPDR Single-Period Down Reserve
SPUR Single-Period Up Reserve
SUC Stochastic Unit Commitment
UC Unit Commitment
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Nomenclature

Indices

i Index of generating units.
j Index of buses.
k Index of the segments of the piecewise linear functions.
l Index of lines.
s Index of scenarios.
t Index of time periods.

Variables

ci(·) Fuel cost function of unit i.
csu

i (·) Start-up function of unit i.

fr+ (·), fr− (·)
Probabilistic distribution function of single-period up/down
reserve requirements.

fw(·) Probabilistic distribution function of wind power production.
lsjts Lost load in period t and scenario s at bus j.
lsE

t Total expected load not served in period t.
lsN

t Expected load not served in period t caused by network congestion.

pit
Power output of unit i in period t under the scenario of expected wind
power production.

pits Power output of unit i in period t and scenario s.
p fls Active power flowing through line l in scenario s.
r+t , r−t Single-period up/down reserve requirements in period t.
ra+t , ra−t (ra+ts , ra−ts ) Additional ramping up/down reserve requirements in period t (in scenario s).

rd+t , rd−t
Expected load not served or expected wind power curtailment in period t caused
by the single-period up/down reserve shortage.

rda+t , rda−t
Expected load not served or expected wind power curtailment in period t caused
by the additional ramping up/down reserve shortage.

rdt Simplified expression of variables rd+t , rd−t , rda+t , rda−t .

rg+it , rg−it
Up or down reserve of unit i in period t under the scenario of the expected wind
power production.

rp+t , rp−t Existing ramping up/down reserve capacity in period t.
rv+t , rv−t Single-period up/down reserve levels in period t.
rva+t , rva−t Additional ramping up/down reserve levels in period t.
rvt Simplified expression of variables rv+t , rv−t , rva+t , rva−t .
rvtk The kth segment of rvt.
swt Slack variable in period t.
uit Commitment variable of unit i in period t.
vlt Value of loss load in period t.
vwt Value of wind power curtailment in period t.
wt Total wind power production in period t.
wcjts Wind power curtailment in period t and scenario s at bus j.
wcE

t Total expected wind power curtailment in period t.
wcN

t Expected wind power curtailment in period t caused by network congestion.

Constants

dt Duration of period t.
ldt Forecasting load in period t.
ldjt Forecasting load in period t at bus j.
N Number of the segments.
ndE

t Difference between the load and expected wind power production in period t.
Pmax

i , Pmin
i Maximum or minimum power output of unit i.

p f max
l Transmission capacity of line l.
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RUi, RDi Ramping up/down limit of unit i.
rvmax

t Maximum value of rvt.
rvmax

tk Maximum value of rvtk.

r̃v+t , r̃v−t
Value of single-period up/down reserve level calculated by the initial unit commitment
model in period t.

S Number of scenarios.
sit Auxiliary parameter to indicate the case wm

t < wE
t in period t.

sw0
t Value of slack variable calculated by the initial unit commitment model in period t.

SURi, SDRi Startup or shutdown ramping limit of unit i.
T Number of periods.
wts, w′ts Wind power production or adjusted wind power production in period t and scenario s.
wjts Wind power production in period t and scenario s at bus j.
wE

t Total expected wind power production in period t.
wF

t Total point forecasting wind power production in period t.
wm

t Maximum wind power production that the power system can accommodate in period t.
wmax Total installed capacity of wind power.
αtk Slope of the k-th segment of the piecewise linear function in period t.
ρ Congestion factor.
πts Probability of scenario s in period t.

Vectors and sets

Al The l-th row vector of the branch-bus adjacency matrix.
Iw

t Wind power range tσhat is covered by single-period up and down reserve in period t.
Lc Set of lines that easily suffer network congestion.
LDt Forecasting load vector in period t.
LSts Forecasting load vector in period t and scenario s.
Pts Unit’s power output vector in period t and scenario s.
SNc Set of the pairs of scenario and period (t, s) that suffer network congestion.
W Original wind power scenario set.
WCts Wind power curtailment vector in period t and scenario s.
WPts Wind power vector in period t and scenario s.
Yg Branch-bus adjacency matrix.
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