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Abstract: An advanced traction power supply system based on a single phase neutral-point-clamped
(NPC) cascaded inverter is studied. The big triangular carrier equivalence method in double
coordinate system is proposed, which can reduce one coordinate system, thus simplifying the
calculation. Based on the big triangular carrier equivalence method, the harmonic characteristics
of a single phase NPC cascaded inverter are calculated by double Fourier transform and voltage
harmonics expressions of 5-level, 9-level and 13-level output waveforms are derived. Finally, the
performance and calculated results of the proposed method were verified by simulations and
experiments. The result provides a theoretical basis for further studies on traction network resonance.

Keywords: advanced traction power supply system; big triangular carrier equivalence method;
double Fourier transform; harmonic analysis

1. Introduction

Harmonics have been an important factor affecting the safe operation of railways [1–5]. In recent
years, high-speed railways have developed rapidly in China and safety is the lifeline of railway
transportation. The traction power supply system is the power source of railway transportation
and it is important to keep the traction power supply system stable. At present, the traction power
supply system of high-speed railways in China is based on single-phase 27.5 kV/50 Hz AC feeding
circuits, shown in Figure 1a. Due to the low output power quality and the existence of neutral sections
in the traditional traction power supply system, the development of high-speed railway is limited.
The co-phase traction power supply system has been proposed [1]. By using this system, power
quality can be improved, but neutral sections between two substations still exist. To cancel the neutral
sections completely, as shown in Figure 1b, the advanced traction power supply system based on
power electronics converter has been proposed [2]. However, since the maximum voltage rating
of existing IGBT is 6.5 kV, it cannot be used directly for 27.5 kV traction substations. In order to
promote engineering applications, the second generation advanced traction power supply system
(APTSS-II) based on a single phase neutral-point-clamped (NPC) cascaded inverter is studied in this
paper [3–5]. The output voltage contains high order harmonics which will cause traction network
resonance. Therefore, it is necessary to study the harmonic characteristics of ATPSS-II, which will
provide the reference to avoid the traction network resonance.
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Figure 1. Traction Power Supply System. (a) Existing traction power supply system. (b) Co-phase 
traction power supply system. (c) Configuration of advanced traction power supply system. 

The harmonic characteristics of traditional traction substations have been studied by a wide 
range of scholars [6–33]. The power electronic converter is non-linear, and the mathematical model 
is difficult to establish. The Fourier theory of jumps is analyzed in [9] and it has been applied in power 
electronics, though the actual equations for the jumps in the algorithms are not derived. Besides, the 
comparison between theoretical results and simulation or practical results is not given [10]. By 
contrast, the Fast Fourier Transform is a computed numerical approach method which searches the 
result of PWM waveform spectrum. Nevertheless, this is typically inaccurate for non-integer ratios 
of the carrier and modulating signal frequencies [11]. A 3-D Fourier integral has been proposed in 
[12–14] for output to input voltage ratio limited to 0.5, but the construction of 3-D unit cell and 
mentions the limits of the Fourier integral for higher ratios are unclear. Ref. [15–17] studied the 
harmonic characteristic of three-phase to single-phase rectifier. However, they are not suitable for the 
single-phase inverter. In the case of multilevel inverter, analytical expression for multilevel PWM 
spectrum has been derived in [18]. However, the derivation is complicated, and the analytical 
solution is hard to apply. Although some scholars have been studying the harmonic characteristics 

Figure 1. Traction Power Supply System. (a) Existing traction power supply system. (b) Co-phase
traction power supply system. (c) Configuration of advanced traction power supply system.

The harmonic characteristics of traditional traction substations have been studied by a wide range
of scholars [6–33]. The power electronic converter is non-linear, and the mathematical model is difficult
to establish. The Fourier theory of jumps is analyzed in [9] and it has been applied in power electronics,
though the actual equations for the jumps in the algorithms are not derived. Besides, the comparison
between theoretical results and simulation or practical results is not given [10]. By contrast, the Fast
Fourier Transform is a computed numerical approach method which searches the result of PWM
waveform spectrum. Nevertheless, this is typically inaccurate for non-integer ratios of the carrier and
modulating signal frequencies [11]. A 3-D Fourier integral has been proposed in [12–14] for output
to input voltage ratio limited to 0.5, but the construction of 3-D unit cell and mentions the limits of
the Fourier integral for higher ratios are unclear. Ref. [15–17] studied the harmonic characteristic of
three-phase to single-phase rectifier. However, they are not suitable for the single-phase inverter. In the
case of multilevel inverter, analytical expression for multilevel PWM spectrum has been derived in [18].
However, the derivation is complicated, and the analytical solution is hard to apply. Although some
scholars have been studying the harmonic characteristics of multi-level converter, research on the
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harmonic characteristic of single phase neutral-point-clamped cascaded inverter [19] could hardly
be found, so it is necessary to study an efficient, simple and accurate harmonics analysis method in
advanced traction power supply systems based on single phase NPC cascaded inverters.

In this paper, the advanced traction supply system based on a single phase NPC cascaded inverter
is studied. According to the characteristics of the single phase NPC cascaded inverter, the big triangular
carrier equivalence method in double coordinate system is proposed, which can reduce one coordinate
system, thus simplifying the calculations. On the basis of the big triangular carrier equivalence method,
the harmonic characteristics of a single phase NPC cascaded inverter are calculated by a double Fourier
series. The performances and calculated results of the proposed method were verified with simulations
and experiments.

2. Configuration

The configuration of ATPSS-II is shown in Figure 2. The industrial IGBT has a maximum
voltage rating of 6.5 kV, while the power supply system of high-speed railways in China is based on
single-phase 27.5 kV/50 Hz AC power supply circuits. In traditional H-bridge topology, each IGBT
should have the ability to endure half of the total input voltage. Thus, the utilization of traditional
H-bridge converters in high voltage applications is rather limited. To solve this problem, multiple
H-bridge converters are connected in cascading construction to share the total input voltage. However,
in high voltage applications, too much cascaded converters will add to the control complexity. In this
case, cascaded NPC topology will be a better choice since each IGBT in one NPC module only needs
to withstand a quarter of the input voltage, which means the number of cascaded modules will be
reduced by half compared to the cascaded H-bridge topology.
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Figure 2. ATPSS-II. (a) Configuration of ATPSS-II. (b) Single-phase NPC cascaded inverter. 
Figure 2. ATPSS-II. (a) Configuration of ATPSS-II. (b) Single-phase NPC cascaded inverter.
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The topology of a single-phase NPC-CI is shown in Figure 2b. One NPC inverter module consists
of two bridge legs, while each bridge leg is composed by four IGBTs. Five voltage levels (±Vdc,
±0.5 Vdc, 0) could be generated by nine valid switching mode combinations as listed in Table 1, where
‘1’ stands for on state while ‘0’ stands for off state. Under the combination effect of N cascaded modules,
the NPC-CI could synthesis a staircase waveform with 4N + 1 voltage levels, which will contribute to
a better sinusoidal output voltage.

Table 1. Voltage level and switch mode.

Level Sa1 Sa2 Sa3 Sa4 Sb1 Sb2 Sb3 Sb4

Vdc 1 1 0 0 0 0 1 1

0.5Vdc
1 1 0 0 0 1 1 0
0 1 1 0 0 0 1 1

0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0

−0.5Vdc
0 0 1 1 0 1 1 0
0 1 1 0 1 1 0 0

−Vdc 0 0 1 1 1 1 0 0

3. Big Triangular Carrier Equivalence Method and Modulation of NPC Cascaded Inverter

3.1. Big Triangular Carrier Equivalence Method

Because of the output uncertainty states when Sa1 and Sa4 are turned on simultaneously, the
carrier phase shifted SPWM cannot be directly applied to single-phase NPC with load. Therefore,
phase opposition disposition SPWM is applied to one leg of a NPC module. For example, phase
opposition disposition SPWM can be realized in Leg a of NPC module 1 as shown in Figure 3a, in
which C1 and C2 are triangular carriers and ua1 represents a modulation wave. The phase difference
between upper carrier C1 and lower carrier C2 is 180◦. Figure 3b shows the carrier phase shifted with
phase opposition disposition SPWM for NPC topology. The carrier of Leg b can be calculated by
reversing the carrier of Leg a. Through the comparison between modulation wave and carrier wave,
the output of Leg a and Leg b can be calculated. As shown in Figure 3b, the output 5-level voltage can
be added through the above calculation. Figure 3c shows big triangular carrier equivalent modulation
for Leg a when it works with no-load. C3 represents carrier for Sa1 and Sa3, and C4 is the carrier for
Sa2 and Sa4. Phase difference between C3 and C4 is 180◦. Within a period of a triangle carrier, the
intersections of modulation wave and two carriers are expressed as θ1, θ2 and θ1

′, θ2
′ in Figure 3c.

Output level of Leg a is the sum of PWM1 and PWM2, which is precisely the same with that of phase
opposition disposition SPWM waveform shown in Figure 3a.
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3.2. Double Coordinate System

When phase opposition disposition SPWM is used, it is cumbersome to deduce the output
spectrum with a double coordinate system. Due to the output equivalence of the big triangular carrier
equivalent modulation and phase opposition disposition SPWM, the latter can be transformed to the
former in the derivation process of switch function, as illustrated in Figure 3a,b.

As shown in Figure 4a,c, phase opposition disposition SPWM is taken as an example to describe
the establishing process of double coordinate system. In the diagram, ϕ-axis is time axis. There are
two layers of carriers located on both sides of ϕ-axis, and peak-to-peak value of the carrier is 2. Then
ϕ-axis is moved to the centers of two triangle carriers and redefined as θ1-axis and θ2-axis. Apparently,
two individual double coordinate systems have to be established for analyzing intersections between
modulation wave and two-tiered carriers of each bridge leg. It is cumbersome to deduce output
spectrum with two individual double coordinate system.

There are two cases of intersections between the carrier and modulation wave, as shown in
Figure 4a. In case 1©, amplitude of modulation wave (A1) is greater than 2. ϕ, ϕ′, and ϕ′′ are defined as
abscissa values of intersections between modulating signal and carrier envelope lines. Vertical ordinate
values of the intersection points shown in case 1© are 2, 0, −2, then ϕ = arccos(2/A1), which is derived
from A1cosϕ = 2. Similarly, ϕ′ = π/2, ϕ′′ = arccos(−2/A1). In case 2©, amplitude of modulation wave
(A2) is less than 2, and ϕ = 0, ϕ′ = π/2, ϕ′′ = π.
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Figure 4. Double coordinate system. (a) Intersections between carrier and modulation waves of
phase opposition disposition SPWM. (b) Intersections between carrier and modulation wave of carrier
phase shifted SPWM. (c) Details of carrier and modulation wave of case 2©. (d) Details of carrier and
modulation wave of case 4©.

Intersections between modulation wave and carrier are figured out in θ-axis. Within a period of
a triangular wave, there are two line segments y1(θ) and y2(θ) shown in Figure 4c. Slope of y1(θ) is
−2θ/π, and slope of y2(θ) is +2θ/π. There are two equations: y1(θ) = A2cosϕ + 1, y2(θ) = A2cosϕ + 1.
Then the abscissa values of two intersection points can be obtained, shown in Figure 4c. Finally, output
level is obtained by comparing the amplitudes of carrier and modulation wave.

When this double coordinate system is used to analyze the equivalent carrier phase shifted SPWM
strategy, only one layer of carrier exists, and the switching function of each bridge in a cascaded
inverter can be deduced in one double coordinate system.

In this case, θ-axis and ϕ-axis will be completely overlapped. Similarly, ϕ is defined as the abscissa
values of the intersections between the modulating signal and carrier envelope line, and θ is defined as
abscissa values of intersections between modulation wave and carrier. However, intersections between
modulation wave and carrier should be analyzed within a period of carrier and a period of modulation
wave, respectively, as shown in Figure 4b,d.

There are two different cases of intersections between carriers and modulation wave, as shown
in Figure 4b. Obviously, if the magnitude of modulation wave is higher than peak value of carriers
(modulation depth M > 1), modulation wave and envelopes intersects the envelope line. When M < 1,
modulation wave is inside the area surrounded by the two envelopes. Within a period of a triangle
carrier, the intersections of modulation wave and two carriers are expressed as θa, θb and θa

′, θb
′, as

shown in Figure 4d. Apparently, the method to determine the spectral characteristics of equivalent
SPWM can be used to simplify spectrum analysis of phase opposition disposition SPWM.

3.3. Modulation of NPC Cascaded Inverter

Phase opposition disposition SPWM for one single-phase NPC module can be realized as shown
in Figure 3c, in which Ca1, Ca2 are triangular carriers of bridge Leg a and Cb1, Cb2 represent that
of bridge Leg b. Modulation strategy for Leg a and Leg b in one module is similar. It should be
emphasized that phase difference between modulation waves of two bridge legs is 180◦. And that
between carriers of two bridge legs is also 180◦. Then five-level waveform is obtained, as shown in
Figure 3c.

As shown in Figure 5, carrier phase shifted SPWM is adopted for single-phase NPC cascaded
inverter because of its performance for cascaded system. Modulation strategy for each single module
is almost the same. It is noted that: When N (number of NPC modules) is odd, the triangular carriers
sequentially move forward 2π/N. When N is even, the triangular carriers sequentially move backward
π/N. Otherwise, output level will decrease and harmonic content will increase. Carrier phase shifted
SPWM can split the duty time of the vector to equalize the voltages of separate cascaded modules with
higher switching frequency.
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4. Output Spectrum of Single-Phase NPC Cascaded Inverter

4.1. Derivation of Switching Function

The output waveform is the function of θ and ϕ. When modulation depth of one NPC module M
> 1, ϕ0 is defined as the intersection between modulation wave and upper carrier envelope line, and
ϕ0
′ is defined as intersection between modulation wave and lower carrier envelope line. Moreover, ϕ0

+ ϕ0
′ = π. When M ≤ 1, there is no intersection between modulation wave and two carrier envelope

lines, which means ϕ0 = 0, as shown in Figure 4c,d.
In this paper, the switching function spectrum is deduced when M < 1, and it means the

single-phase NPC cascaded inverter works in linear conditions. Within a period of a triangle carrier,
the intersections of modulation wave and two carriers, θ1, θ2 and θ1

′, θ2
′ in Figure 3b can be expressed

as follows: {
θ1 = −π(Av cos ϕ+1)

2

θ2 = π(Av cos ϕ+1)
2

(1)

{
θ1
′ = π(Av cos ϕ−1)

2

θ2
′ = −π(Av cos ϕ−1)

2

(2)

According to Section 3, in a double coordinate system, the values of switching function within a
period of carrier and modulation wave are obtained as follows:

F(θ, ϕ) =



0, − π ≤ ϕ ≤ −(π− ϕ0), − π ≤ θ ≤ π

0, − (π− ϕ0) ≤ ϕ ≤ −ϕ0, −π ≤ θ ≤ θ1

1, − (π− ϕ0) ≤ ϕ ≤ −ϕ0, θ1θθ2

0, − (π− ϕ0) ≤ ϕ ≤ −ϕ0, θ2θπ

1, − ϕ0 ≤ ϕϕ0, − πθπ

0, ϕ0 ≤ ϕ ≤ π− ϕ0, − π ≤ θ < θ1

1, ϕ0 ≤ ϕ ≤ π− ϕ0, θ1 ≤ θ ≤ θ2

0, ϕ0 ≤ ϕ ≤ π− ϕ0, θ2θ ≤ π

0, π− ϕ0 ≤ ϕ ≤ π , − πθπ

(3)

4.2. Derivation of Output Spectrum of CPSPOD-SPWM

As shown in Figure 6a, the effective domain of integration is drawn according to the value
distribution of 0 and 1 of F(θ, ϕ), and the gray segment represents the area in which value is 1.
If the initial angle of carrier α shifts 180◦, the effective domain of integration shown in Figure 6b can
be obtained.
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F(θ, ϕ) is a periodic function in terms of θ and ϕ. Therefore, it can be expressed by double Fourier
series as follows:

F(θ, ϕ) = 1
2 A00 +

∞
∑

n=1
[A0n cos nϕ + B0n sin nϕ]

+
∞
∑

m=1

±∞
∑

n=0
[Amn cos(mθ + nϕ) + Bmn sin(mθ + nϕ)]

(4)

Because the carrier wave and sinusoidal modulation wave are symmetric about θ = 0 and ϕ = 0,
the value of Bmn is 0. Then Amn (m = 0, 1, 2 . . . ) can be obtained by inverse transformation of double
Fourier function. In linear modulation region, two PWM waves of bridge Leg a are expressed by
double Fourier series as follows:

FPWM1(ωct, ωvt) = M
4 cos(ωst) + 1

mπ

∞
∑

m=1,3,5,···
[J0(

mMπ
2 )·

sin(m
2 π) cos(mωct)e−jmα] + 1

mπ

∞
∑

m=1,2,···

±∞
∑

n=±1,±2,···
[Jn(

mMπ
2 )·

sin(m+n
2 π)e−jmα cos(mFωvt + nωvt + nπ

2 )]

(5)

FPWM2(ωct, ωvt) = M
4 cos(ωvt) + 1

mπ

∞
∑

m=1,3,5,···
[J0(

mMπ
2 ).

sin(m
2 π) cos(mωct)e−jm(α+π)] + 1

mπ

∞
∑

m=1,2,···

±∞
∑

n=±1,±2,···
[Jn(

mMπ
2 )

· sin(m+n
2 π)e−jm(α+π) cos(mFωvt + nωvt + nπ

2 )]

(6)

where Av is the amplitude of the modulation wave; Ac is the peak value of the triangular carrier; M is
the modulation depth, given by the expression M = Av/Ac; ωv is the angular velocity of the modulation
wave; ωc is the angular velocity of triangular carrier; F is the carrier wave ratio (F = ωv/ωc); and
Jn

mMπ
2 represents the Bessel function as follows:

Jn(
mMπ

2
) =

1
2π

π∫
−π

e−j mMπ
2 · ejnτ · dτ (7)
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Adding (5) and (6), the output spectrum of one bridge leg is deduced as follows:

Fa(ωct, ωvt) = FPWM1(ωct, ωvt) + FPMW2(ωct, ωvt) =
M
2 cos(ωvt) + e−jmα(1 + e−jmπ) 1

mπ

∞
∑

m=1,3,5···
[J0(

mMπ
2 ) sin(m

2 π)

· cos(mωct)] + e−jmα(1 + e−jmπ) 1
mπ

∞
∑

m=1,2,···

±∞
∑

n=±1,±2,···
[Jn(

mMπ
2 )

· sin(m+n
2 π) cos(mFωvt + nωvt + nπ

2 )]

(8)

When m is an odd number, 1 + e−jmπ = 0, hence the second term is eliminated. When POD-SPWM
strategy is adopted, frequency of triangular carriers is doubled, and carrier wave ratio is also doubled,
then F′ = 2F, m′ = m/2. The Equation (8) can be simplified as follows:

Fa(ωct, ωvt) =M
2 cos(ωvt) ± 1

m′πe−jm′α ∞
∑

m′=1,2,···

±∞
∑

n=±1,±3,···
[Jn(

m′Mπ
2 ) · sin(m′F′ωvt + nωvt + nπ

2 )]

(9)

For Leg b, the initial triangular carrier has a 180◦ phase difference compared with the carrier
of Leg a, and modulation wave can be described as −Avcos(ωvt). The derivation of output voltage
spectrum is similar as the Equations (1)–(9).The expression is shown as follows:

Fb(ωct, ωvt) =−M
2 cos(ωvt) ∓ 1

m′πe−jm′α ∞
∑

m′=1,2,···

±∞
∑

n=±1,±3,···
[Jn(

m′Mπ
2 ) · sin(m′F′ωvt + nωvt + nπ

2 )]

(10)

Then, the output voltage spectrum of single-phase NPC is expressed as follows:

FNPC(ωct, ωvt)= Fa(ωct, ωvt)− Fb(ωct, ωvt)

= M cos(ωvt) + e−jm′α 2
m′π

∞
∑

m′=2,4,···

±∞
∑

n=±1,±3,···
[Jn(

m′Mπ
2 ) · sin(m′F′ωvt + nωvt + nπ

2 )]

(11)

When an odd number of NPC modules are cascaded, suppose the initial phase angle of triangular
carrier of the first NPC module α1_1 = 0◦, then that angle of module i αi_1 = 2π(i − 1)/N. If regard
FNPCi as a function of ωct, ωvt, αi_1, combining the derivation of Equation (11), the output spectrum of
module i is obtained:

FNPCi(ωct, ωvt, αi_1) = M cos(ωvt) + e−jm′αi_1 2
m′π .

∞
∑

m′=2,4,···

±∞
∑

n=±1,±3,···
[Jn(

m′Mπ
2 ) · sin(m′F′ωvt + nωvt + nπ

2 )]
(12)

Adding N output spectral expressions of single-phase NPC modules, the total output voltage
spectrum of cascaded structure is expressed as follows:

FNPC_Odd =
N
∑

i=1
FNPCi(ωct, ωvt, αi_1)

= NM cos(ωvt) + (e−jm′αi_1 + e−j m ′αi_2 + ... + e−j m ′αi_N ) 2
m′π .

∞
∑

m′=2,4,···

±∞
∑

n=±1,±3,···
[Jn(

m′Mπ
2 ) · sin(m′F′ωvt + nωvt + nπ

2 )]

(13)
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Defining G = e−jm′αi_1 + e−jm′αi_2 + ... + e−jm′αi_N , the value of G is N when m′ = k·N (k is an
arbitrary integer), in other cases, the value is 0. Therefore, the expression of total output voltage can be
simplified as follows:

FNPC_Odd = NM cos(ωvt) + 2N
m′π .

∞
∑

m′=2N,4N,···

±∞
∑

n=±1,±3,···
[Jn(

m′Mπ
2 ) sin(m′F′ωvt + nωvt + nπ

2 )]

(14)

For the total output voltage FNPC-Even (NPC-Even/Odd indicates even/Odd number of NPCs are
cascaded), because of the difference π/N among initial phase angles of NPC modules, the value of
G is N when m = 2 k·N (k is an arbitrary integer). In other cases, the value is not always 0. Thus, the
expression is same as Equation (14).

5. Simulation and Experiment

In order to verify the theoretical analysis, a simulation is performed in the Matlab/Simulink
environment. By simulations of a single NPC, two NPC modules and three NPC modules cascaded
structures, 5-level, 9-level and 13-level output waveforms are obtained, then the output waveforms
are analyzed by fast Fourier transform (FFT). The simulation parameters are listed in Table 2 and the
results are shown in Figure 7. The simulation parameters are shown in Table 2.

Table 2. Simulation Parameters.

Parameters Value

DC capacitor C1, C2 C3,C4 20 mF
DC bus voltage 3000 V

Frequency of modulated wave 50 Hz
Modulation depth 0.98

Frequency of carrier (f c) 3000 Hz
Simulation step 1 × 10−6 s
Simulation time 0.05 s
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Figure 7. Simulation Results. (a) 1 module. (b) 2 modules cascaded inverter. (c) 3 modules
cascaded inverter.

5.1. Simulation

When three modules are cascaded, the total harmonic distortion (THD) of a five-level output
waveform is 26.98%, and the fundamental amplitude is 2940 V. When five modules are cascaded, THD
of nine-level output waveform is 13.27%, and the fundamental amplitude is 5881 V. When seven
modules are cascaded, THD of thirteen-level is 9.89%, the fundamental amplitude is 8821 V.
For nine-level output waveform (thirteen-level output waveform), the contents of the odd harmonics
in 4f c, 8f c, 12f c (6f c, 12f c, 18f c) side-frequency bands are shown in Table 3.

The simulation results indicate that odd harmonics mainly exist in side-frequency band of which
the frequency is 2N (4N, . . . ) times carrier frequency Compared with single module, the equivalent
switching frequency of the NPC-CI is N times higher, while the THD is much smaller. The output
spectrum barely contains the harmonic of the carrier frequency or the low orders harmonics.

In actual engineering application, the maximum voltage present commercialized IGBTs can
withstand is 6.5 kV. Thus, considering redundant design in cascaded system, the number of cascaded
modules is set to 7 + 1. The output waveform and spectrum of an eight modules cascaded single-phase
NPC-CI are shown in Figure 8.

When the modulation depth is 0.98, a 33-level output waveform is achieved, and the theoretical
maximum output voltage root mean square (RMS) is obtained in this case. When the modulation
depth is reduced to 0.69, the output voltage RMS is nearly 27.5 kV, which is the standard voltage of
a traction net. In this case, even though the voltage level number is reduced and THD is increased,
the output voltage waveform is still sinusoidal. By analyzing the output spectrum, it is found that
decrease of voltage levels has little impact on the harmonic distribution, and harmonics mainly exist in
side-frequency band of which frequency is N × 8 × 2f c (N = 1, 2, 3, . . . ). Thus, switching frequency
and switching loss are decreased with increasing output voltage-levels. Meanwhile, filter circuit of
cophase power supply system can be cancelled.
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Table 3. Output Characteristic Order Harmonics Content of 2 Modules Cascaded Inverter and 3 Modules Cascaded Inverter.

9-level

Order 227 229 231 233 235 237 239 240 241 243 245 247 249 251 253
Content (%) 2.53 4.63 2.34 3.68 0.06 2.36 3.15 0 3.12 2.37 0.08 3.68 2.31 4.62 2.54

Order 467 469 471 473 475 477 479 480 481 483 485 487 489 491 493
Content (%) 0.64 1.35 0.49 0.41 0.97 1.16 1.23 0 1.23 1.15 0.95 0.37 0.49 1.27 0.68

Order 707 709 711 713 715 717 719 720 721 723 725 727 729 731 733
Content (%) 0.68 0.54 0.20 0.15 0.30 0.40 0.50 0 0.47 0.45 0.34 0.10 0.23 0.54 0.70

13-level

Order 347 349 351 353 355 357 359 360 361 363 365 367 369 371 373
Content (%) 1.09 1.81 1.91 0.35 0.92 1.63 1.84 0 1.84 1.63 0.92 0.34 1.88 1.83 1.1

Order 707 709 711 713 715 717 719 720 721 723 725 727 729 731 733
Content (%) 0.52 0.11 0.29 0.55 0.65 0.69 0.72 0 0.72 0.69 0.67 0.58 0.3 0.09 0.49

Order 1067 1069 1071 1073 1075 1077 1079 1080 1081 1083 1085 1087 1089 1091 1093
Content (%) 0.12 0.3 0.37 0.36 0.39 0.37 0.32 0 0.39 0.36 0.4 0.38 0.37 0.29 0.17
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The simulation results of an eight modules cascaded inverter with carrier phase shifted phase
opposition disposition SPWM is shown in Figure 8. According to Equations (10) and (13), with different
values of m and n, the ratio of i-th harmonic amplitude to fundamental amplitude can be calculated,
which is represented as HRUi. When output waveforms are of 5-level, 9-level and 13-level, HRUi of
first, third and fifth harmonics in side-frequency band of characteristic harmonic are counted in Table 4.
By comparison, simulation results are consistent with theoretical results.

Table 4. Comparison between Simulation Results and Theoretical Results.

Output Level
Simulation Results Theoretical Results

HRUi n = 1 n = 3 n = 5 n = 1 n = 3 n = 5

5-level
m = 2 7.92 2.17 11.96 7.89 2.18 12.10
m = 4 3.14 2.39 0.09 3.12 2.36 0.08

9-level
m = 4 3.12 2.37 0.08 3.12 2.36 0.08
m = 8 1.23 1.15 0.95 1.25 1.17 0.93

13-level
m = 6 1.84 1.63 0.92 1.83 1.61 0.96
m = 12 0.72 0.69 0.65 0.71 0.70 0.66

5.2. Low Power Experiment

Low power experimental platform is shown in Figure 9a. Basically, it consists of a control board,
fiber board and IGBT driver board and DC source, etc. The carrier frequency is 1.4 kHz and modulation
wave frequency is 50 Hz. Modulation depth is set to be 0.85.
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Figure 9. Experimental platform. (a) Prototype of Single-phase NPC-CI. (b) Control Strategy.

Taking a three-modules prototype for example, the control strategy is shown in Figure 9b.
At present, because the number of fiber ports is limited, experimental platforms of one single module,
cascaded structures consisted of two modules and three modules are set up to verify the deduction.
Expressions of output voltage of single module and cascaded structure are expanded by FFT, as shown
in Figure 10. Output characteristic order harmonics content of a two modules cascaded structure and a
three modules cascaded structure are counted in Table 3. Experimental results are consistent with our
theoretical analysis.
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6. Conclusions

An advanced traction power supply system based on a single phase NPC cascaded inverter is
studied in this paper. The big triangular carrier equivalence method in double coordinate system is
proposed, to simplify the complexity of the calculations. On the basis of the proposed method, the
harmonic characteristics of single phase NPC cascaded inverter are calculated by a double Fourier
series. The performances and calculation results of the proposed method were verified by simulations
and experiments. The conclusions are as follows:

(1) The equivalent switching frequency of the output voltage increases by adding a certain number
of cascaded single-phase NPC module-based cascaded structures, and the frequency of the odd
harmonics which exist in the side frequency band of mainly is 2N (4N, . . . ) times higher than the
carrier frequency, where N represents the number of NPC modules;

(2) The output spectrum barely contains the harmonics of the carrier frequency or lower order
harmonics. Meanwhile, the output voltage becomes better regulated and the THD becomes much
lower with the increasing number of cascaded modules.

(3) The method proposed in the paper to analyze the harmonic characteristic is proved to be correct
by simulations and experiments. The harmonic characteristics of an advanced traction power
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supply system based on a single phase NPC cascaded inverter analyzed in this paper provides a
theoretical way to avoid railway traction network resonance.
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