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Abstract: The paper proposes a simple systematic procedure to target thermodynamic power
generation limits from a set of heat source streams. The procedure takes the form of an algebraic
targeting approach commonly applied in process heat integration. It allows the designer to quickly
determine the maximum amount of power that can theoretically be generated from the available
heat in thermodynamic cycles. The paper describes the procedure and is applicability in the context
of common data availability for heat source streams in the form of a Composite Curve or Total
Site Profile (hot composite curves) commonly developed in heat integration. The application of the
procedure is illustrated with examples.
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1. Introduction

In light of the continuing shift towards sustainable industrial systems, low to medium grade heat
to power conversion has become of increasing importance for low emissions electricity supply [1–3].
Low to medium temperature heat source streams can be found in many systems including industrial
processes, geothermal energy, biomass, and solar energy [4]. Particularly in the processes of the
basic materials industries, many heat source streams exist that transfer excess heat into cold utilities
such as cooling water or air at different temperatures. Rather than directly transferring heat into
cold utilities, these streams could supply heat to thermodynamic cycles for zero emissions power
generation. This work aims to quantify the maximum amount of power that could be generated from
these hot streams to help in quickly establishing the thermodynamic limits ahead of any detailed
design work.

Targeting for minimum energy or mass requirements is a common activity in conceptual or
process integration studies. Heat integration through Pinch Analysis has become a standard procedure
to determine the maximum possible heat recovery within a process together with the minimum heating
and cooling requirements [5]. Similar procedures have been proposed to analyze heat integration
across multiple processes in an integrated site through Total Site Analysis [6–9]. In both Pinch and
Total Site Analysis, multiple heat source streams are represented as composite profiles in T-H space
from which targets can be easily determined from existing procedures from corresponding algebraic
approaches [10,11]. There have been extensions to the heat integration approaches to assess heat and
power options in process heat integration. Linnhoff and Dhole proposed exergy composite curves to
analyze low-temperature processes [12]. Most works consider site utility systems operating steam
Rankine cycles. Mavromatis [13] developed the turbine hardware model to account for different
variables including turbine size, load, and operating conditions. However, the proposed method
turbine hardware model is very intensive as it needs several parameters to accurately model the
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system. El-Halwagi et al. presented an approach to identify quick targeting of power cogeneration
before the detailed design [14].

While the above process integration approaches are very well developed for targeting of process
energy recovery and co-generation in utility systems, i.e., within a processing facility or a site, simple
targeting approaches do not exist to quickly quantify the thermodynamic limits for power generation
from a set of hot streams. The situation that excess heat is ejected beyond the boundaries of an industrial
facility or site, e.g., into air or cooling water, is often encountered in macroscopic energy systems
analysis. This excess heat is typically ejected from multiple hot streams. Instead of heat being ejected,
this heat can be used to generate power. Our proposed approach aims to quickly answer the following
question: How much power could theoretically be generated from the set of hot streams?

Several works aimed to determine the maximum amount of power that can be generated from
a single heat source stream. In an early contribution, Curzon and Ahlborn analyzed power generation
potentials assuming a Carnot cycle [15]. Later, Ondrechen et al. [16] determined the power generation
limit from a finite hot temperature reservoir and an isothermal cold temperature reservoir using
an infinite number of parallel Carnot cycles. Ibrahim et al. [17] and Park and Min [18] employed
a similar approach to determine numerically the maximum theoretical efficiency for a system with
both a finite hot temperature reservoir and a finite cold temperature reservoir. These methods did not
consider power generation from multiple heat sources. A method to maximize power production from
multiple streams using exergy analysis has been developed by Marmolejo-Correa and Gundersen [19].
However, their approach uses the definition of exergy which is not very intuitive. The objective of this
paper is to determine the maximum amount of power that can be generated from a set of heat source
streams using basic thermodynamic relationships.

This work proposes a simple algebraic procedure to determine the maximum amount of power
that can be generated from a T-H composite of multiple heat source streams commonly developed in
process heat integration. Similar to existing process energy integration approaches, this information
can be helpful to decision makers when performing an initial, high-level assessment of options for
sustainable energy solutions. The next section will provide a clear problem statement together with
basic relationships. The novelty in this approach is the ability to determine the maximum amount
of power from multiple heat source streams instead of just one heat source stream. The proposed
approach is then described in detail and examples are presented to illustrate its application.

2. Material and Methods

The problem addressed in this work is formally stated as follows. Given is a set of hot streams
that eject excess heat into the ambient. The composite T-H profile of these streams is available in the
form of a hot composite curve developed using standard heat integration approaches described in
El-Halwagi [7]. The composite T-H profile (Figure 1) has multiple segments, one in each temperature
interval. The objective is to develop a simple algebraic procedure to determine the thermodynamic
limit on the amount of power that can be generated from this profile.

The most efficient thermal power generation process is the Carnot cycle, which is a basic element
of this work and will be used to determine the maximum theoretical power generation from the heat
sources. The Carnot cycle consists of four steps, i.e., isothermal heat addition from a heat source at
temperature TH, isentropic expansion, isothermal heat removal into a heat sink at temperature TL,
and isentropic compression. In order for power to be generated in the cycle, TH needs to be greater than
TL. The Carnot cycle assumes that there is no energy lost due to friction, no exchange of heat between
various parts of the engine, and no transfer of heat from the cycle to the surrounding environment.
The efficiency of the Carnot cycle can be calculated as

η = 1 − TL

TH
(1)
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Figure 1. Composite curves. 
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To increase power generation from the heat source profile, multiple Carnot cycles can be deployed, 

as illustrated in Figure 3. As the number of cycles approaches infinity, the hot temperature reservoirs 
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Figure 1. Composite curves.

In the problem addressed in this work, heat is transferred from a composite heat source profile
through Carnot cycles to a low temperature reservoir. In a given temperature interval j from Ti to Ti+1,
the heat available from the source profile segment is given by

Qj = CPj(Ti − Ti+1) (2)

Qj = Hv,j (3)

Equation (2) is applied for non-isothermal intervals where CPj is the heat capacity flowrate
(kW/K) of the profile segment, Ti is the inlet temperature (K) and Ti+1 is the exit temperature (K) of
the heat source composite after heat has been removed. The heat capacity flow rate is the product of
the heat capacity and the flow rate of the stream. Equation (3) is applied for isothermal intervals where
Hv,j is the latent heat (kW). For maximum power generation, the low temperature reservoir is assumed
to be an isothermal utility at ambient temperature (TL) with an infinite heat capacity flow rate.

While the Carnot cycle assumes the heat source to be isothermal, a typical heat source composite
segment is not isothermal. As a result, for a single Carnot cycle, the hot reservoir would take the lowest
source temperature in the temperature interval as illustrated in Figure 2, i.e., TH = Ti+1. This will forfeit
power generation potential and therefore present a lost opportunity for power generation. To increase
power generation from the heat source profile, multiple Carnot cycles can be deployed, as illustrated
in Figure 3. As the number of cycles approaches infinity, the hot temperature reservoirs of the Carnot
cycles will approach the heat source profile and power generation will be maximized.
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Over an infinitesimal temperature difference, the power that can be generated with a Carnot
cycle is

dW = ηdQ = CPj

(
1 − TL

T

)
dT (4)

The maximum amount of power from a generated from a non-isothermal heat source composite
segment is determined via integration over the temperature range of the interval from Ti+1 to Ti

Wmax
j =

∫
dW =

∫ Ti

Ti+1

CPj

(
1 − TL

T

)
dT (5)

The analytical solution of Equation (6) is given by

Wmax
j = CPj (Ti − Ti+1)− CPj TL

[
ln
(

Ti
Ti+1

)]
(6)

Equation (6) can be used to find the maximum amount of power that can be generated and can be
found in the literature [16,18,19].

For the special case of an isothermal interval with Ti+1 = Ti, the maximum work becomes:

Wmax
j = Hv,j

(
1 − TL

Ti

)
(7)

Equation (6) is also known as availability. An alternative derivation of the equation is presented
in Appendix A. Since heat flows are given from the T-H profiles and power generation needs to
be determined, it is convenient to develop expressions for temperature interval power generation
efficiencies. The efficiency for a non-isothermal interval and an isothermal interval are given by
Equations (8) and (9):

ηmax
j =

Wmax
j

Qj
=

CP(Ti − Ti+1)− CPTL

[
ln
(

Ti
Ti+1

)]
CP(Ti − Ti+1)

= 1 −
TL

[
ln
(

Ti
Ti+1

)]
(Ti − Ti+1)

(8)

ηmax
j =

Hv,j

(
1 − TL

Ti

)
Hv,j

= 1 − TL

Ti
(9)
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In process energy integration (Pinch Analysis), the heat capacity is assumed to be constant due to
relatively small variations over typical temperature ranges. If the heat capacity needs to be expressed
as a function of temperature, numerical integration of Equation (5) can be performed to determine the
maximum amount of power that can be generated from an interval.

This section presents an algebraic procedure to calculate the maximum amount of power
generated from a heat source profile comprised of multiple streams. The procedure takes the form of
a problem table algorithm and is similar in structure to approaches available for heat integration [7].
The maximum power generation can be quickly determined with the procedure, which involves only
a few very quick calculations and can easily be completed in a spreadsheet.

The problem table is constructed from high to low temperature and considers each temperature
interval of the problem as a row. Temperature intervals are determined from the T-H composite profile
(Figure 3). Starting from the highest temperature and moving towards lower temperatures, the first
temperature interval ends and the next interval starts, when a change in the slope of the composite
occurs, i.e., a change in the presence of individual streams that comprise the composite segments
occurs. The intervals are traced until the lowest temperature of the T-H composite is reached. In terms
of temperature data, the start/end temperature of each interval is recorded in the problem table.
Figure 4 shows a schematic of a basic problem table in its general form with N temperature intervals
corresponding to N + 1 temperature values. Each temperature interval is a row in the problem table,
for which the following information is determined:

(a) The heat transferred from the hot streams (or composite) present in the interval into the cycle is
determined using Equation (2) in the case of a non-isothermal interval, or using Equation (3) in
the case of an isothermal interval.

(b) The interval power generation efficiency is determined using Equation (8) in the case of
a non-isothermal interval, or using Equation (9) in the case of an isothermal interval.

(c) The maximum amount of power that can be generated from the heat available in the interval is
determined as the product of available heat from (a) and interval power generation efficiency
from (b).

The above calculations are performed for all temperature intervals, yielding the maximum power
that can be generated from each interval hot stream composite segment. The total amount of power
for the entire set of streams comprising the composite is obtained as the sum of power generation
over all intervals. Finally, we calculate the overall maximum theoretical (Carnot) efficiency of power
generation from the set of heat source streams represented in the hot composite, i.e., over all N
temperature intervals, as follows:

ηmax
sys =

∑N
j=1 Wmax,j

∑N
j=1 Qj

(10)

The cooling duty of the problem, i.e., the heat ejected from the hot streams for the initial case of
no power generation, is reduced by the amount of power generated. This information may be useful
to a designer interested in estimating possible reductions in cooling related footprints, e.g., cooling
tower makeups or thermal pollution from marine discharges.
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3. Results and Discussion

The targeting procedure is illustrated with three example cases, for which the hot composite
curves are shown in Figure 5. The data for the individual streams that make up the hot composites are
summarized in Table 1. The temperature of the low temperature reservoir is assumed to be 298 K for all
cases. The total amount of heat that needs to be removed from the hot streams is identical for all three
cases (13,700 kW). Similarly, the streams in all three cases operate within the same temperature range.
This means that a single Carnot cycle with a hot reservoir temperature at the lower temperature of the
range (350 K), would have an efficiency of 14.9% and produce the same amount of power (2035 kW)
for all three cases.
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Table 1. Streams Data for illustrative examples.

Example Stream CP (kW/K) Tin (K) Tout (K) Q (kW)

Case 1
Stream 1-1 7 560 350 1470
Stream 1-2 9 560 490 630
Stream 1-3 290 600 560 11,600

Case 2

Stream 2-1 ∞ 500 500 6700
Stream 2-2 10 500 350 1500
Stream 2-3 15 560 500 900
Stream 2-4 10 600 500 1000
Stream 2-5 90 600 560 3600

Case 3

Stream 3-1 ∞ 450 450 6300
Stream 3-2 20 450 350 2000
Stream 3-3 30 400 350 1500
Stream 3-4 26 600 450 3900
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The problem table for each case was developed using the procedure outlined in the previous
section. The problem table for Case 1 is shown in Figure 6. As can be seen from the data and composite
curve for Case 1 (Table 1 and Figure 5), there are three changes in the streams that comprise the
composite, resulting in three temperature intervals. All temperature intervals are non-isothermal
and the heat removed from the composites is determined from Equation (2) for all three intervals.
For instance, in the second interval, the combined heat capacity flow rate of the composite segment
comprised by streams 1 and 2 is 16 kW/K and the interval ranges from 560 K to 490 K, i.e., has an
interval temperature difference of 70 K. This results in a combined heat removal from the hot streams
in the interval to be 1120 kW. Next, the interval efficiency for the non-isothermal interval is determined
from Equation (8) using the interval temperatures:

ηmax
2 = 1 −

298K
[
ln
(

560K
490K

)]
(560K − 490K)

= 0.432 (11)
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The resulting maximum power generation potential from the heat in the interval becomes 483 kW.
These calculations are repeated for each interval and the totals are determined. Over all three intervals,
Case 1 has the potential to produce a maximum of 6399 kW of power from the 13,700 kW of heat
ejected from the streams, which results in an overall maximum power generation efficiency of 46.7%.
The problem tables for Cases 2 and 3 are developed accordingly and shown in Figures 7 and 8. The third
temperature interval of Case 2 (Figure 7) and the second temperature interval of Case 3 (Figure 8) are
isothermal with a heat capacity flow rate approaching infinity. The heat ejected from the hot streams in
these intervals and the maximum power generation efficiency is determined using Equations (3) and
(9), respectively. Comparing the three cases, Case 1 ejects most heat at higher temperatures (Figure 5),
which results in the highest maximum theoretical work (6399 kW), followed by Case 2 (5744 kW) and
Case 3 (4607 kW). This highlights the importance of developing case specific targets that consider the
temperature vs. heat removal profiles of the multiple heat sources associated with a given problem.
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Another illustrative example will be presented to validate the proposed method against those
in literature. Although this procedure is novel to calculate maximum power generation for a set of
hot streams, it can be validated by the exergy targeting procedure used by Marmolejo-Correa and
Gundersen [19]. As exergy is defined as the maximum power that can be generated, the maximum
power generated using the proposed approach will be compared to the exergy target from
Marmolejo-Correa and Gundersen’s exergy targeting procedure. Table 2 shows the streams that
will be used in this illustrative example.

Table 2. Validation case study.

Stream CP (MW/K) Tin (K) Tout (K) Q (MW)

Stream 1 0.15 523 313 31.5
Stream 2 0.25 473 353 30.0

In this example, the temperature of the low temperature reservoir was 288 K. Figure 9 shows the
problem table for the illustrative example.
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It was found that 18.25 MW of power can be generated from the two hot streams.
Marmolejo-Correa and Gundersen found that the exergy of the two streams to be 18.25 MW.
This confirms our results and validates the proposed procedure.

The procedure can be used to determine the maximum power generation potential (target)
from composites of multiple heat source streams quickly and reliably without the need for intensive
calculations. All three cases of the illustrative examples, regardless of the number of temperature
intervals involved, could be solved from scratch in MS Excel in a few minutes, which makes the
procedure practical and attractive to develop maximum power generation potentials (targets) from
excess (process) heat for use in high-level screening studies in line with the process integration
philosophy of developing targets before design.

4. Conclusions

In this paper, a procedure was proposed to determine the maximum amount of power that can be
generated from a set of waste heat streams. The method was based on the Carnot efficiency and basic
thermodynamic relationships between heat and power. The proposed procedure is similar in procedure
to problem tables used in process integration. The procedure can be used to quickly calculate the
theoretical maximum power generation to set a target for actual power generation. Three illustrative
examples were used to show the simplicity of the procedure. Based on the targets, decisions can be
taken to justify time for the development of specific power generation systems designs to generate
power from the heat ejected from the multiple hot streams involve.
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Nomenclature

CPj Heat capacity flow rate of hot composite in non-isothermal interval j
Hv,j Latent heat of hot composite in isothermal interval j
Hi Enthalpy of hot composite at interval inlet temperature
Hi+1 Enthalpy of hot composite at interval exit temperature
Qj Heat ejected from hot composite in interval j
Sgen

j Entropy generation in interval j
Si Entropy of hot composite at interval inlet temperature
Si+1 Entropy of hot composite at interval exit temperature
Ti Initial temperature of hot composite in interval j
Ti+1 Final temperature of hot composite in interval j
TH Temperature of the high temperature reservoir
TL Temperature of the low temperature reservoir
T0 Dead state temperature
Wmax

j Maximum theoretical power generation in interval j
ηmax

j Maximum power generation efficiency in interval j
ηmax

sys Maximum power generation efficiency across all temperature intervals
Ψ Availability

Appendix

This Appendix presents an alternative derivation of Equation (10) to determine the maximum theoretical
work from a composite segment in a temperature interval [20]. The steady state energy and entropy balances for
interval j are given by:

0 = Hi − Hi+1 − Wmax
j + Qj (A1)
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0 = Si − Si+1 +
Qj

T0
+ Sgen

j (A2)

Combining Equations (A1) and (A2) yields

Wmax
j + T0Sgen

j = (Hi − Hi+1)− T0(Si − Si+1) (A3)

The entropy generated from the system (Sgen
j ) will be zero as all stages in the Carnot cycle are reversible.

Hence, the maximum amount of work that can be generated is

Wmax
j = (Hi − Hi+1)− T0(Si − Si+1) (A4)

Equation (A5) is known as availability (Ψ), i.e., the maximum work output associated with any steady
state process:

∆Ψ = ∆H − T0∆S (A5)

Using partial derivatives, the relationship between the availability and temperature at constant pressure can
be determined for interval j. (

∂Ψ
∂T

)
P
=

(
∂H
∂T

)
P
− T0

(
∂S
∂T

)
P

(A6)

(
∂H
∂T

)
P
= CPj (A7)

(
∂S
∂T

)
P
=

CPj

T
(A8)

Integration of Equation (A6) determines yields

∆Ψj =
∫ Ti

Ti+1

(
CPj

)
− T0

(CPj

T

)
dT (A9)

∆Ψj = CPj(Ti − Ti+1)− CPj TL

[
ln
(

Ti
Ti+1

)]
(A10)

Equations (6) and (A10) are equivalent, i.e., the difference in availability equals the work obtained from
an infinite number of Carnot cycles.
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