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Abstract: Hydro-thermal-wind generation scheduling (HTWGS) with economic and environmental
factors is a multi-objective complex nonlinear power system optimization problem with many equality
and inequality constraints. The objective of the problem is to generate an hour-by-hour optimum
schedule of hydro-thermal-wind power plants to attain the least emission of pollutants from thermal
plants and a reduced generation cost of thermal and wind plants for a 24-h period, satisfying the
system constraints. The paper presents a detailed framework of the HTWGS problem and proposes a
modified particle swarm optimization (MPSO) algorithm for evolving a solution. The competency of
selected heuristic algorithms, representing different heuristic groups, viz. the binary coded genetic
algorithm (BCGA), particle swarm optimization (PSO), improved harmony search (IHS), and JAYA
algorithm, for searching for an optimal solution to HTWGS considering economic and environmental
factors was investigated in a trial system consisting of a multi-stream cascaded system with four
reservoirs, three thermal plants, and two wind plants. Appropriate mathematical models were used
for representing the water discharge, generation cost, and pollutant emission of respective power
plants incorporated in the system. Statistical analysis was performed to check the consistency and
reliability of the proposed algorithm. The simulation results indicated that the proposed MPSO
algorithm provided a better solution to the problem of HTWGS, with a reduced generation cost and
the least emission, when compared with the other heuristic algorithms considered.

Keywords: hydrothermal scheduling; emission and economic dispatch; heuristic algorithms

1. Introduction

The role of optimal generation scheduling of a thermal-renewable power generation system
aiming economic and environmental benefits is vital in the current scenario of increasing power
demand, escalating the fuel price and high pollution rate. The optimal generation scheduling of a
hydro-thermal-wind system aims to distribute the power demand among the generating plants in
such a way that the net energy cost and emission of pollutants are minimised, while satisfying the
various constraints of power plants. Earlier, the combined operation of hydro-thermal plants was
successfully scheduled to reduce the fuel cost, as well as the emission of pollutants. Now, with the
development and readiness of new and cost-effective technologies, the penetration of wind power
plants in the energy sector has become significant, necessitating its inclusion in the scheduling process.
But, research publications describing the optimal generation scheduling of such hybrid energy sources
are scanty.

The HTWGS is a non-linear optimization problem with two conflicting objectives. The first
approach for solving the HTWGS problem is adopting calculus-based solution techniques

Energies 2018, 11, 353; d0i:10.3390/en11020353 www.mdpi.com/journal/energies


http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-9855-2051
http://dx.doi.org/10.3390/en11020353
http://www.mdpi.com/journal/energies

Energies 2018, 11, 353 2 of 19

(conventional method) such as linear programming [1], dynamic non-linear programming [2],
lagrangian relaxation [3], and differential dynamic programming [4], etc. These methods are iterative
techniques, containing composite mathematical expressions and long computational steps. Also,
they have a limited space to address discrete and non-differentiable problems. The second approach
is to adopt heuristic optimization methods which mimic the natural behaviour of certain things or
physical phenomena of certain items. This approach gained wide popularity due to the easiness
of implementation, adaptability in searching for the best solution, and ability to address non-linear
optimization problems. It can be broadly classified as, evolutionary algorithms, swarm intelligence
based methods, and algorithms based on the principle of other natural phenomena.

A comprehensive review of short-term hydrothermal scheduling (STHTS) using different classes
of heuristic algorithms has been elaborated in [5]. The Genetic Algorithm is applied to generate optimal
generation scheduling of a short-term hydrothermal system in [6,7]. An evolutionary algorithm is
employed for addressing STHTS in [8,9]. Following evolutionary algorithms, swarm intelligence-based
optimisation algorithms received wide acceptance due to the lower number of computational steps
and control variables involved. One popular algorithm in this category is particle swarm optimization
(PSO). In [10], the PSO method was proposed for STHTS of the multi-reservoir cascaded system.
The predator prey optimisation (PPO) technique, which is an extended version of PSO, was suggested
in [11] as a solution for STHTS. There are several reports on the use of heuristic algorithms to optimize
wind-thermal plant scheduling. An artificial bee colony optimization algorithm was employed for
emission and economic dispatch on a wind-thermal system in [12]. A modified particle swarm
optimization algorithm influenced by the gravitational search method was adopted to effect emission
level reduction in [13]. Many other heuristic algorithms based on natural phenomena and the random
optimization process such as Harmony search (HS) and JAYA algorithms have been reported. The HS
algorithm [14] mimics the improvisation procedure of an orchestra. A solution to STHTS using the
HS algorithm was also proposed in [15]. In [16], a newly introduced population-based heuristic
algorithm (JAYA algorithm) was applied for optimal power flow solution. The optimal generation
scheduling of a hybrid system consisting of hydro-thermal-wind plants has not often been reported
in the literature. The intermittent behavior of wind power is the main hurdle in the massive
incorporation of wind plants into the hydrothermal system. Many researchers have addressed the
unpredictable nature of wind power using fuzzy logic, neural network, and time series analysis,
etc. The Weibull distribution function [17] is suitable for modelling wind speed characteristics with
minimum parameters. An incomplete gamma function term is used in [18] to illustrate the wind power
impact. In [19], the stochastic wind power was considered as a constraint. The fluctuating nature
of wind power can be considerably mitigated by the wind-hydro joint operation since hydropower
can be altered rapidly. Some of the associated works on HTWGS were described in [20-24]. Security
constrained hydrothermal generation scheduling accounting for the discontinuity and uncertainty
of wind power is addressed in [20]. But, in this model, the emission of pollutants from the thermal
plant is not accounted for. In [21], the NSGA-III technique is used for computing the optimal allocation
load among the hydro-thermal-wind power units. In this paper, the thermal power is modelled
as a quadratic polynomial where only limited generator constraints are considered. Reference [22]
presents a bee colony optimization method for finding short-term economic/environmental HTWGS,
incorporating wind power uncertainty, along with non-linear generator constraints, into the approach.
A distributionally robust optimization method is proposed in [23] for solving the hydro-thermal-wind
economic dispatch problem. In this paper, the S-lemma method is used to incorporate the wind power
uncertainty within a confined set. In [24], the spinning reserve was considered and allocated between
the hydro-thermal units to mitigate the challenges that occurred due to the uncertain nature of wind
power during HTWGS.

This paper investigates the capability of selected algorithms representing different heuristic groups
for searching for the optimal solution for HTWGS considering economic and environmental factors.
Here, well accepted and suitable mathematical functions were chosen for addressing the generation
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cost, emission of pollutants, and water discharge. An improvement is proposed to conventional
PSO, named as modified particle swarm optimization (MPSO), and employed to obtain hour-by-hour
optimal generation scheduling of integrated hydro-thermal-wind power plants. An optimum solution
was searched for using the proposed method (MPSO) and four other algorithms (BGA, PSO, IHS,
and JAYA) with a trial system consisting of a multi-reservoir cascaded system with four hydro, three
thermal, and two wind power plants. The two objective functions dealing within the problem, namely
economic and emission, are of a conflicting nature. Therefore, a balanced optimal operating point was
searched for by combining the two objectives and treating it as one function by means of a penalty
factor. This approach reduced the computational burden and provided a better compromised solution.
A comparison of the results obtained from the various algorithms used has been presented. Among the
algorithms employed, the MPSO method exhibited a better performance and capability for searching
for a more optimal solution in the test case.

The paper is organized as follows: Section 2 presents the modeling of hydro-thermal-wind
generation scheduling considering economic and emission factors. Section 3 illustrates the outline of
GA PSO, HS, and JAYA algorithms. Section 4 gives a short description of the MPSO method. Section 5
presents the computational steps of MPSO. The application of the proposed method in a test system
and its results are discussed in Section 6. Section 7 summarizes the conclusions.

2. Hydro-Thermal-Wind Generation Scheduling Considering Economic and
Environmental Factors

HTWGS deals with the optimal distribution of power demand among existing generation plants
so as to reduce the overall generation cost and pollutant emission during the specified period, satisfying
the power limit of plants and water constraint of hydro plants of the integrated generation system.

The total cost of generation comprises the coal cost of the thermal plant and rate of wind power
only, since the hydro power cost is independent of generation output. Hence, the objective function
to be minimized involves the generation cost of thermal and wind power plants and the emission of
pollutants. This problem is basically a nonlinear constrained multi-objective optimization problem.
The overall objective function is given by:

Minimize Cr(Fr, Wr, Et) 1)

where Cr is the overall cost of the generation of thermal-wind plants, Fr is the total fuel cost of thermal
plants, Wr is the wind power generation cost, and Er is the net pollutant emission from thermal plants.
Subject to a number of equality and inequality constraints as follows:

a. System active power balance:
Nt Ny Ny
Zpgj,r‘i‘zphm,r"';wl,r:PD,T+PLoss,T (TZ],Z,...,T) (2)
] m

where N1, Ny, and Ny are number of thermal, hydro, and wind power plants, respectively; ng,T
is the power output of the jth thermal power plant; Py, . is the power output of the mth hydro
power plant; w; ; is the power output of the Ilth wind power plant in the sub-interval 7; Pp ; is
the load demand during the sub-interval T; P, 7 is the transmission loss in the sub-interval t;
and T is the scheduling period.

b.  The dynamic water balance in the reservoir:

Rllﬂ!

Vime = Vi1 + Iz — th,r - Shm,T + Z (th(rftlm) + Shl(rftlm)) ®3)
=1
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where V},,,, - and Qy,, 1 are the storage volume and water discharge rate of the mth hydro plant in
the sub-interval 7, respectively; I, - and Sy, - are the inflow rate and spillage of the mth hydro
power plant in the sub-interval T, respectively; R, is the number of upstream hydro plants
directly above the mth hydro power plant; and t;,, is the water transport delay from reservoir !
to m.

C. Initial and final reservoir storage volume:
th,O = th,begin (4)

th,T = th,end (5)

where Vi pegin and Vi eng are the initial and final storage volume of mth hydro
plant, respectively.
d.  Thermal power plant generation limit:

PN < Py; < PP (j=1,2,...,Nr) (6)

where P™I" and ng‘ax are the minimum and maximum power output of the jth thermal power
plant, respectively.
e. Hydro power plant generation limit:
Pt < Py < PR (m=1,2,...,Ny) @)

hm

where PMiM and P2 are the minimum and maximum power output of the mth hydro power
plant, respectively.
f. Wind power plant generation limit:

nglfwrll (121,2,,Nw) (8)

where w,; is the rated power output of the /th wind power plant.

g.  Reservoir storage volume and discharge limit:
Vimit < Vi, < Vinex ©)
an;#/lf < th,r < thn?,);— (10)

where V2T, ViR and Q" Qe are the minimum and maximum reservoir volume and

water discharge of the mth hydro plant, respectively.

The hydro units power output is expressed as a function of reservoir volume and head [25] given by:

th,T = Clm thm,T + CZm Qim;{ + C3m th,Tth,T + C4m th,T + C5m th,'r + C6m (11)

where C1,,, Com, Cam, Cam, Csi, and Cepy, are the generation coefficients of the mth hydro plant in the
sub-interval T.

In the present work, the multi-objective HTWGS considering economic and emission factors is
modified into a single objective optimization problem using a penalty factor [26]. The penalty factor
converts the emission to the indirect cost of emission and hence allows treating fuel costs and emission
together. Thus, the total cost of the thermal system is the sum of the fuel cost and the indirect cost of
emission. The penalty factor £; is given by the equation:

Fy(pmax)
hi=-28_ " ¢/p 12
] E],(Pér]}ax) ( )
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Thus, the objective function (1) can be modified as:
Minimize Cr(Fy+h= Er, Wr) (13)

The fuel cost function of the thermal plant is expressed as a quadratic function of the real power
output [27]. The valve-point effects are taken into account by incorporating a sinusoidal term in the
cost function [28]. Consider a grid system with Ny hydro, Nt thermal, and Ny wind power plants.
The objective of the problem is to reduce the energy cost of the hydro-thermal-wind system through
optimal generation scheduling considering economic and emission factors. The fuel cost function of
thermal power plant is denoted by:

T Nt T .
Fr=1)) F(Pyc) =), 2“1 gjc + biPejc + ¢j + |ejsin(h(Pgi™ — Pejr)) (14)
7=1j=1 7=1j=1

where F;(Pg; ;) is the fuel cost function of the jth thermal power plant in the sub-interval 7 in $/h.
Pg; ¢ is the power output of the jth thermal power plant in the sub-interval T in MW. g;, b;, ¢; are the
fuel cost coefficients and 7;, ¢; are the coefficients of the valve point effect of the jth power thermal
plant. P;]-““ is the minimum power output of the jth thermal plant.

The pollutant emission from a coal-based power plant depends on the power output of that plant.

The total emission of pollutant E can be expressed [22] as:

T T
Er=1), ZE 8jt Z Z"‘] g]r+5fpgjr+71+’7] Feic b /h (15)
= 1] =1 ]_

where &, ,B], Yir i and (5 are the coefficients of emission of the jth thermal plant.

The total operatmg cost of a wind-powered generator consists of three components: (a) direct
cost, (b) cost for not utilizing existing wind power (underestimation), and (c) overestimation cost [13].
The cost function of a wind generator is formulated as:

T Ny
Wr =YY (Cap(wir) + Cout(Wigor — i) + Cot (w10 — Wigor)) (16)
T=11=1

where C; is the direct cost function of the wind power plant I. wj ; is the scheduled wind power
output of plant [ in the sub-interval 7 in MW. C,,; is the penalty cost function for underestimation and
C,,1 is the penalty cost function for overestimation of the /th wind power plant. W, is the available
power of the /th wind power plant.

Direct cost is involved when the utility is purchasing the power from the wind farm, which is
expressed as a linear cost function of actual power usage.

Cd,l(wl,T) = dlwl,T (l = 1,2,...,Nw,' T = 1,2,...,T) (17)

where d is the coefficient of direct cost of the Ith wind plant.

The underestimation and overestimation of wind power are mainly due to the uncertainty
involved in the available wind power. The power output of a wind turbine depends on the blowing
strength of the wind, which relies on many environmental parameters. Hence a reliable and accurate
prediction of wind energy is difficult. In this paper, the uncertain nature of the wind generation is
accounted for by a probability distribution function. The wind speed frequency distribution can supply
a clear-cut picture about the wind speed pattern of a given location. Then, a proper statistical function
can be fitted to express the wind speed distribution mathematically.

The penalty cost due to the underestimation of wind energy occurs when the available wind
power is more than the predicted power (or actual wind power used), and the system operator
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should then pay a reasonable amount to the utility to compensate for the wastage of available wind
power. Conversely, if the available wind power is less than the expected power (or actual wind power
needed), then the system operator should purchase power from alternative sources or the load must
be shut down.

The expression for penalty cost corresponding to underestimation and overestimation of wind
power presented in [17] was used in this work. The penalty cost function for underestimation of
the wind power plant [ in the sub-interval T is expressed as a linear relation showing the difference
between available wind power and actual wind power, and is given by:

Wyl v

Cu g (Wi gor — wy 1) = kyp / (w—w ) X fw(w) dw (18)

Wi,r
where k, ; is the cost coefficient of underestimation of wind power plant . w; ; ; is the rated wind
power output of the unit / in the sub-interval T. fiy(w) is the probability density function (PDF) of
wind power.

The penalty cost function for overestimation of the /th wind power plant in the sub-interval 7 is
given by:

'ZU[,T
Co,l(wl,r - Wl,avl) = ko,l X /0 (wl,r - w) X fW (ZU) dw (19)

where k, ; is the cost coefficient of overestimation of the wind power plant [.

Modelling of Wind Speed and Power

The numerical value of the underestimation and overestimation cost is obtained only by assuming
a proper statistical function for the wind power output. Weibull distribution is the most popular
distribution function, which closely follows the wind speed profile [17,19]. The Weibull probability
density function is expressed as:

K vy (k=1) vy (x)
=(Z b —(2)
fu(v) (C)x(c) X exp ,0<v <o (20)
where v is the wind speed of the given location. x and c are the shape parameter and scale
parameter, respectively.

The wind turbine power output can be mathematically expressed [22] as:

0 (v < vy and v > vy)
w = wy X ((;r_,l;l:;)) (vin <v< vr) (21)
wy (vr <v <)

where w is the power output of the wind turbine (kW or MW); w;, is the rated wind power output;
and vj,, vy, and v, are the cut-in, rated, and cut-out wind speed, respectively.

Thus, the wind turbine power output is a combination of discrete and continuous random
variables, ie, wind turbine power output is a discrete random variable between v, and v, and also a
continuous random variable between v;,, and v;.

The Weibull probability distribution function can be obtained for three portions of wind power
output, described in Equation (23).

P(w=0) =P(v<uvy)+Pv>uv,)
= Fy(vin) + (1 = Fv(vo)) (22)

(x)

Yin () vo
=1— expf(T) +exp7(7)
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and
Plw=w,) =P(vy<v<uv,)
— Fy(vo) — Fy (vy) (23)
— exp~ (" ()"
=exp ‘¢ +exp e

The Weibull PDF for the continuous range of wind power output equation is expressed as:

_ Kkoviy (L4 ¢o) x 0y, \FT a0y, @
fw(w) = wc ( - exp )
where ¢ = & and 0 = W

3. Outline of GA PSO, HS, and JAYA Algorithms

3.1. Genetic Algorithm (GA)

GA is an evolutionary-based computation technique that mimics the genetic evolution process.
Initially, a set of chromosomes called a population, representing the encoded control parameters,
are randomly generated within the search space. The chromosomes are evaluated based on the fitness
value derived from the objective function and a new population is generated. The process is repeated
until the global optimum point is reached.

3.2. PSO Algorithm

The PSO algorithm is the mathematical simulation of the social behavior of fish schooling or birds’
flocking [26]. The particles constitute a swarm (or group), moving along the solution space searching
for an optimal solution. Each particle knows its earlier position (xi), and the best value (pbest) achieved
so far. Among the best position of individuals, the optimal value is denoted as gbest. Each individual in
the subsequent search attempts to improve the earlier status through the present speed, best position,
and gbest.

The following equations are used to compute the new velocity and position of each particle.

o ) = C |wt 0" + cyrandy (pbestk — x,(:)) + corandy (gbestk - xl(cr)ﬂ @5

D) = xl(:) 4o D) (26)

(r)

where Cyis the constriction factor; rand; and rand, are the random numbers between 0 and 1; v, and
x,(:) are the velocity and position of the kth particle at rth iteration, respectively; wt is the inertia weight;
and ¢y, ¢ are the learning factors.

The constriction factor is used to improve the search procedure [28], given by:

Cr

2
= (27)
2—y— -4y
where p =c1 + ¢, P > 4.
In order to attain a balance among the local and global search, an inertia weight parameter is
introduced, which is given by the equation:

wt — Wtmpin) X 7
wt — wtmax _ ( max mm)

(28)

max

where 7 is the iteration count and 7max is the maximum number of iterations.
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3.3. Harmony Search (HS) Algorithm

The HS algorithm simulates the improvisation procedure of music players to obtain better
harmony among the instruments by adjusting the pitches of the instrument [29]. The harmony of
instruments resembles the optimization of variables and the improvisation procedure of an orchestra
is akin to the local and global search process. A harmony memory (HM) is initialized with randomly
generated control variables within the search space. New HM (NHM) is created on the basis of the
memory consideration rate (HMCR), pitch alteration (PAR), band width (bw), and random choice.
The fitness of each NHM vector is evaluated on the basis of objective function and the corresponding
HM vector is replaced, if improvement is exhibited in the NHM vector.

PAR and bw parameters are significant in refining the solution vectors and influence the
convergence rate of the algorithm. The Improved Harmony Search algorithm uses a dynamically
varying PAR and bw in the search process.

3.4. JAYA Algorithm

JAYA is a population-based optimization algorithm developed by Venkata Rao [30] in 2016.
This algorithm does not involve any specific tuning parameters. The optimization process follows the
procedure of solution search by shifting towards the optimum solution, avoiding the inferior solution.
A population consisting of candidate solution vectors is randomly generated within the search space.
The fitness of each candidate solution is evaluated, and the best and worst candidates are identified.
Each candidate solution is updated based on the best and worst solutions using Equation (29).

!
Xiix = Xjijk+ rand (Xj,best,k - ‘Xj,i,k

) — randy (Xj,worst,k - ‘Xj,i,k ) (29)
where X; ;1 is the value of the jth variable for the ith candidate during the kth iteration; X]’ i is the
updated value; X; pest x and X; worst k are the best and worst solutions, respectively; and rand; and rand,
are the two random numbers in the range [0, 1].

4. Modified Particle Swarm Optimization (MPSO)

The conventional PSO keeps the randomness of search by maintaining normal random values in
the velocity computation equation of each particle. In this case, the velocity calculation of each particle
assigns different random values. In the proposed modified particle swarm optimization algorithm,
a unique random value is assigned to individual search (pbest) part of the velocity calculation for the
population in one iteration. Also, in the global search (gbest) part of the velocity equation, each particle
is assigned different random values. This modification shows improvement in the individual search
process and is able to explore more optimal solutions compared with conventional PSO.

In MPSO, the equation to update velocity is modified as below.

0t = Cy [wt 0" + cyrand ™) (pbestk — x,Er)) + czmnd,(:) (gbestk — x,@)} (30)

where rand?) is a uniform random number between 0 and 1 for the rth iteration of the population.
rand; " is the random number of the kth particle in the rth iteration.

5. Solving HTWGS Considering Economic and Emission Factors Using MPSO

The solution technique begins with the illustration of the candidate solution (or decision variables)
denoted as the particle. In this study, the decision variables in the optimization process are the
thermal power output, the quantity of water discharged, and wind power output (i.e., Pg; ¢, Gm,z,
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and wy, ). Thus, each particle carries a solution to these variables and searches for optimal values in
the subsequent iteration. Hence, for a scheduling period T, the kth particle x; is expressed as:
q1,Nym W11, .. W1, Ny I

Poa1j -+ Pang Tiam
: (31)

Yk = : Pryj : : Gz.k,m : : Wkl

Perpj  -oo PerNpj qTAm  --- GT,Ngm WT1) WT Ny 1

The computational steps of the proposed MPSO method are as follows, and the flow chart is

Read input parameters of thermal,
hydro and wind generators.
Read P limits and 24 h power demand. \l{

shown in Figure 1.

Compute hydro power and enforce
power limits

2

Read heuristic algorithm parameters etc.
‘l‘ Compute fuel cost using Equation
Compute price penalty (14) and emission using Equation (15)
factor h,. using eq. (12) \l/
Y Compute wind power generation
cost using Equations (17)-(19) and

Initialize the population randomly between the lower enforce power limits
and upper bounds of individual decision variable. p
Generate initial velocities of all particles.

v

Compute hydro power and enforce
power limits

v

Compute fuel cost using Equation (14)
and emission using Equation (15)

|C0mpute the fitness of each particle.|

yes

is
ﬁti,r<pbeSti,r—1

pbestl.yr= ﬁt,.’r

v
Compute wind power generation | phest. — phest._ ]|
cost using eq. (17), (18) and (19) ir ir-
Y Find best among

pbest, ie gbest,

Compute the fitness of each particle (ﬁti, 0
(fitness = fuel cost+wind power cost+ emission
cost+ penalty factor x power balance
equality+penalty factor x water balance equality)

v

Fix present fitness value of each particle as pbest, ,
and best fitness among all particle as gbest,

v

Set iteration count, r = 1 |

¥
Calculate the updated velocity of
each particle using Equation (30)

Update the velocity of each
particle using Equation (26)

v

Enforce the thermal and é}

wind power limits

yes

is
gbest < gbest _,

gbest, = gbest,

no
gbest = gbest

Print results

Figure 1. Flow chart of the proposed MPSO method.
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Step1: The algorithm starts with initialization of the particles. A uniform random value is chosen
between the minimum and maximum limits of the individual decision variables. The initial
velocities are also generated in the same way for all the particles.

Step2:  Compute penalty factor 4; for all thermal power plants using Equation (12). These values are
constant and hence do not require modification in the iteration process

Step3: Calculate the hydro power plant’s output and apply the respective power inequality
constraints. If any of the plants violate lower limits, fix the generation to the lower limit.
In other words, if any of the plants violate upper limits, fix the generation to the upper limit.

Step4: Compute the fuel cost and emission of thermal power plants using Equations (14) and (15).

Step5: Compute the wind power generation cost by solving Equations (17)—(19).

Step 6:  Calculate the fitness of the particles, considering all generation costs and equality constraints.
Set the present value of each particle as its best position, pbest.

Step7:  Check for the lowest value of particle best position. Set the value as gbest.

Step 8: Calculate the updated velocity of each individual by Equation (30).

Step9: Update each individual position by Equation (26).

Step 10: Calculate the new fitness value for each particle. Replace the old pbest value with new one,
if the present value shows improvement over the previous value.

Step 11: Replace the gbest with the lowest value from the new pbest, if the present value shows
improvement over the previous value.

Step 12: Repeat steps 8-11 until the equality constraints fall within a specified tolerance limit or
maximum number of iterations reached.

The particle generates the latest gbest, giving the optimum schedule of generation.

6. Simulation Results

In this work, the two conflicting objectives are treated together using the penalty factor.
The maximum penalty factor approach has been chosen for combining the fuel cost and emission;
it offers an acceptable solution for the problem of emission and fuel cost.

The parameter setting is counted as the main limitation of any heuristic algorithm. Once the
parameters are suitably chosen, the algorithm follows the logical pattern and converges to an optimal
solution. In this study, the following values are assigned to the control parameters of each algorithm.
The range of these parameter values is considered by observing similar published case studies, and the
fine turning is done by a trial-and-error process.

MPSO and PSO parameters:

Swarm size (population) = 10
Learning factors, ¢y, c; = 2.05
Maximum iterations = 500
Whyin = 0.4, Wty = 0.9

Binary Coded GA parameters:

Size of Population = 60
Probability of crossover = 0.7
Probability of mutation = 0.1
Probability of elitism = 0.15
Maximum iterations = 500

Harmony Search parameters:

Harmony Memory Size (HMS) =10
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Harmony Memory Consideration Rate (HMCR) = 0.85
Pitch Adjustment Rate (PAR): PARpin = 0.2, PARmax =2
Bandwidth (bw): bwpmi, = 0.45, btwmax = 0.9

JAYA Algorithm parameters:

Size of Population = 10
Maximum iterations = 500

In this work, a test system consisting of a multi-stream cascaded hydro system with four hydro
plants, three thermal plants, and two wind plants has been considered for investigating the feasibility
and performance of the solution techniques. The schematic diagram of the hydro-thermal-wind
test system is shown in Figure 2. The HTWGS considering economic and emission factors has been
conducted by implementing the algorithm based on conventional PSO, MPSO, Binary Coded GA, IHS,
and JAYA algorithms. The simulations were executed in MATLAB 2015a platform. The program was
run 30 times for the test case and the results were analyzed on the basis of the best, average, and worst
case with standard deviation. The proposed MPSO shows competency and effectiveness in terms of
solution quality and consistency of results.

Hydro Generation Thermal Generation Wind Generation
Sub-system Sub-system Sub-system

B!
B
i _ 1M i
oi !
ﬁ: :
=1 !
=i |
5! |
Y Ly i
=g !
[ H
Y O : i
H Wind i
__________ 4t _generator [
Y Y

4
Load

Figure 2. Schematic diagram of the hydro-thermal-wind test system.

Thermal system coefficients and constraints are taken from [31]. The hydro system data is taken
from [25]. The scheduling period is taken as one-day, which is split into 24 numbers of a 1-h time span.
Figure 3 shows the system power demand curve. The wind system parameters are taken from [18,22].
All the necessary data of the hydro-thermal-wind system are shown in Tables A1-A5 in Appendix A.



Energies 2018, 11, 353 12 of 19

1200 -
1100
1000

900 4

Demand (MW)

800 4

700 A

600 L L L L L L L L L L L e e D D B DR B R RN B |
001 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)

Figure 3. Load curve.

The optimal allocation of demand among the hydro-thermal-wind system and corresponding
economic and emission values obtained from the best run are tabulated in the following tables.
Table 1 shows the optimal hydro-thermal-wind generation scheduling of the test system accounting
for economic and emission factors obtained from the MPSO method. Table 2 presents hourly water
discharge and reservoir storage volume values. The storage volume satisfied the end conditions of
each reservoir by adjusting the water discharge from each reservoir.

Table 1. Optimal generation schedule of the hydro-thermal-wind system obtained using the

MPSO method.
Hydro Generation (MW) Thermal Generation Wmd'
Time Load Generation
Period  (MW) Pgl Pg2 Pg3 wl w2

Ph1  Ph2  Ph3  Phd ey Mw)  (MW) (MW (MW)
1 750 94.3446  64.6098 0 200.0937 97.0717 171.7155 81.1411 13.9578 27.0658
2 780 53.2168 54.7813 0 187.7553 111.0668 197.9873 108.9593 34.5615 31.6717
3 700 58.3977 71.3749 21.6249 173.7333 85.8489 173.7902 50 40.3164 24.9138
4 650 63.5595  74.6322 0 106.1287 75.7075 190.9036 75.6822 23.0245 40.3618
5 670 61.5147 60.4167 0 184.0039 125.9647 114.583 50 41.7498 31.7672
6 800 60.0718 754794 37.5928 201.273 93.3212 244.2375 50 10.6048 27.4194
7 950 80.0715 63.2057 43.6685 210.5434 175 235.3744  83.3197 25.4334 33.3833
8 1010 923268 57.3724 43.0301 230.708 152.4463 244.8935 1224235 33.0502 33.7493
9 1090 91.6351 46.3783 46.5969 252941 153.8851 285.6351 156.7121 35.1824 21.0341
10 1080 69.7957 50.5121 50.3702 247.5302 165.8896 275.2491 1719534 30.1827 18.5171
11 1100 99.6658 59.3188 53.1227 243.5127 170.4439 246.0919 161.4542 31.5046 34.8855
12 1150 79.6106 64.5824 49.1105 238.7893 175 265.7111  195.7342 36.6807 44.7814
13 1110 80.4696 621875 56.265 250.6784 174.1035 264.8422 164.2855 33.7377 23.4305
14 1030 80.5697 45.0925 38.0304 2335562 170.515 275.617  113.672 38.3423 34.6049
15 1010 54.8119 70.5269 57.8224 234.0562 173.1186 261.2254 90.5305 35.9323 31.9758
16 1060 89.5141 46.3464 57.8832 2524703 174.9847 271.7981 125.0961 31.2084 10.6987
17 1050 76.2008 46.5497 2.6721 261.2708 174.9083 255.7756  128.4801 63.1456  40.997
18 1120 80.235 46.8197 56.4534 2752267 175 288.7387  140.2839 26.3899  30.8527
19 1070 86.2937 581137 524138 253.7575 175 273.5513 139.2643 8.6983  22.9074
20 1050 84.4796 63.8071 59.096 240.8272 175 225.3728 111.6748 54.3708 35.3717
21 910 80.5451 50.8618 50.9588 253.8385 172.3393 191.1432 75.043 18.794 16.4763
22 860 55.3626 52.4023 57.7269 240.1722 134.3991 188.0448 56.6721 25.702 49.5181
23 850 69.213  71.3405 49.0087 238.0051 86.1625 168.4148 90.8949 33.4861 43.4744
24 800 68.3821 59.2113 56.7243 231.55 78.7156 166.8387 86.9736 12.052  39.5524
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Table 2. Hourly water discharge and reservoir storage volume obtained using the MPSO method.

Time Water Discharge (x10* m3/h) Reservoir Storage Volume (x 10% m3)
Period Qh1 Qh2 Qh3 Qh4 Vh1 Vh2 Vh3 Vh4
1 12.8199 8.51 28.4074 13 97.1801 79.49 149.6926 109.8
2 5.0551 6.7801 27.7573 13 101.125 80.7099 130.1352 99.2
3 5.6021 9.7487 21.4226 13 103.5229 79.9612 125.5325 87.8
4 6.2155 10.7139 26.0631 7.1202 104.3074 78.2473 115.0346 80.6798
5 5.9594 7.9081 29.3136 13 104.348 78.3392 101.1032 96.0872
6 5.7547 11.7759 15.0074 13 105.5933 73.5633 106.0601 110.8445
7 8.5738 9.4541 12.184 13 105.0196 70.1092 113.5494  119.2671
8 11.3008 8.5349 13.7926 13.8042 102.7188 68.5743 114.8546 131.526
9 11.2396 6.5382 10 14.669 101.4792 70.036 126.2042 146.1706
10 7.0032 6.9623 10.6834 13.9647 105.476 72.0738 137.1593 147.2132
11 14.5872 8.3606 11.0345 13.6862 102.8888 72.7132 146.8993 145.711
12 8.527 9.5876 16.4497 13 104.3618 71.1255 145.9911 147.8044
13 8.5607 9.2871 11.3302 14.756 106.801 69.8384 160.2103  143.0484
14 8.4356 6.0828 20.7956 13.1501 110.3654 72.7557 159.3023  140.5818
15 5 11.005 11.2636 13.4466 116.3654 70.7506 169.1871 138.1697
16 9.7486 6.2934 15.6133 15.424 116.6168 72.4572 173.2965 139.1953
17 7.5765 6.2518 26.3538 17.4795 118.0404 73.2054 160.0255  133.0461
18 8.1621 6.322 10 19.5147 117.8783 72.8834 172.7791 134.3269
19 9.2013 8.2817 17.8064 17.1321 115.677 71.6017 169.8426 128.4584
20 8.9984 9.5936 13.9034 15.3456 112.6786 70.0081 171.353 128.7261
21 8.3993 7.0267 18.356 15.5498 111.2793 71.9814 170.5203  139.5301
22 5.0791 7.0677 15.8161 14.4662 114.2002 73.9136 173.9843  135.0639
23 6.6747 11.2261 19.1923 13.7738 116.5255 70.6875 173.7849 139.0966
24 6.5255 8.6875 15.8907 13 120 70 170 140

Table 3 shows the total fuel cost, emission, and wind penalty cost of the optimal generation

schedule of the test system. Statistical analysis and comparison of performance of the proposed
method (MPSO) with other heuristic algorithms (conventional PSO, BCGA, IHS, and JAYA algorithm)
in terms of total fuel cost and emission are presented in Table 4. The simulation results obtained using
PSO, BCGA, IHS and JAYA methods are shown in Tables S1-512 in the Supplementary Materials.

Table 3. Fuel cost, rate of pollutant emission, and wind generation penalty cost of the optimal
generation schedule-MPSO method.

Wind Generation Penalty Cost ($/MWh)

Time Period  Fuel Cost ($/h)  Emission (Ib/h)
Underestimation, C,, ; Overestimation, C, ; Total Penalty Cost ($/MWh)
1 1611.884 0.3236 8836.2542 5046.1429 13,882.3971
2 2209.5646 0.5994 4337.2198 12,622.7566 16,959.9764
3 1304.4773 0.3265 4749.0639 13,058.5234 17,807.5873
4 1654.3548 0.4735 5092.8514 12,550.882 17,643.7334
5 1004.6594 0.1628 3468.7626 16,177.8374 19,646.6

6 1959.8535 2.0063 9556.4892 4730.2502 14,286.7394
7 2439.4743 1.6761 5522.8453 9957.0411 15,479.8865
8 3005.1477 2.1402 4247.5442 12,829.0308 17,076.575
9 4086.2278 7.3297 6102.0851 9540.1611 15,642.2462
10 4336.2812 5.3488 7335.8588 6940.0995 14,275.9583
11 3810.8999 2.2833 4318.4725 12,699.2466 17,017.7192
12 4821.5891 4.0622 2506.8309 20,009.3807 22,516.2116
13 4078.5391 3.9218 5838.5679 9529.7335 15,368.3015
14 3248.474 5.3733 3438.9994 15,590.3949 19,029.3943
15 2789.2418 3.4751 4110.1291 13,353.5198 17,463.6489
16 3395.4302 4.7982 8926.3287 6096.0134 15,022.3421
17 3280.1853 2.9839 1187.6681 35,464.4723 36,652.1403
18 3853.9937 8.1135 5727.5656 9242.6715 14,970.2372
19 3666.5457 5.0712 10,827.3697 3198.1782 14,025.5479
20 2706.8783 1.3052 2055.3136 25,747.1212 27,802.4348
21 1926.3172 0.6037 9842.2448 3251.1891 13,093.434
22 1610.3694 0.4959 3810.945 18,735.3378 22,546.2828
23 1679.3987 0.2983 3051.1934 17,836.4405 20,887.6339
24 1603.8759 0.2838 7505.4181 9991.1292 17,496.5473
Total 66,083.6629 63.4563 132,396.0213 304,197.5537 436,593.5754
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Table 4. Statistical analysis of the heuristic algorithms in terms of total fuel cost and emission.
Method Fuel Cost ($/h) Emission (Ib/h)
Best Average Worst Std. Devw. Best Average Worst Std. Dew.
MPSO 66,083.6629  66,086.7462  66,089.3723 1.6586 63.4564 64.1998 64.9746 0.4732
PSO 68,646.8010  68,649.4948  68,652.1555 1.6634 65.7942 66.7107 67.4718 0.5176
GA 71,016.9724  71,021.0267  71,025.9314 2.8973 70.7457 71.9998 73.3102 0.7616
IHS 71,300.9716  71,305.7043  71,309.3033 2.5949 66.4630 67.6929 68.8929 0.7339
JAYA 85,394.0271  85,404.1629  85,414.3417 5.6383 79.0351 80.5991 82.3240 0.9574

The comparison of total fuel cost and emission shown in Table 4 indicates that the MPSO method
is capable of providing the optimal generation schedule. Also, the MPSO solution maintains the lower
value of standard deviation, representing the consistency in the results compared with conventional
PSO, BCGA, IHS, and newly introduced JAYA algorithms. To show a quantitative measure, here the
MPSO solution is compared with the next best performing algorithm (conventional PSO). The total fuel
cost and emission of pollutants by the MPSO algorithm are $66,083.6629 and 63.4564 Ib, respectively,
whereas the PSO-based algorithm shows total fuel cost and emission values of $68,646.8010 and
65.7942 1b, respectively. In other words, over the specified time schedule and demands, the proposed
MPSO-based method attains an average reduction of 109.7974 $/h in generation cost and 0.0974 1b/h in
emission of pollutant compared with the PSO-based algorithm. This quantitative comparison exhibits
the efficiency of the MPSO algorithm for providing the optimal generation schedule accounting for
economic and emission factors, without being trapped in the local minima.

Figure 4 shows the optimal load allocation among hydro, thermal, and wind plants of the test
system over the 24-h time span. The thermal generation shows dominancy from 8.0 h to 20.0 h, because
of the increased power demand on the system. Figures 5 and 6 show the fuel cost and emission
release of thermal plants over the scheduling period obtained by MPSO, PSO, BCGA, IHS, and JAYA
algorithms. MPSO maintains a lower fuel cost and emission over the scheduling period.

700 A —8—Pgtotal —e—Phtotal —¥—w total

Power output (MW)
N w S w N
8 8 8 8 8

g
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10111213 14151617 18192021 2223 24
Time interval (h)
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Figure 4. Optimal power generation schedules from the MPSO algorithm over 24 h time span.
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Figure 5. Fuel cost curve obtained from the MPSO, PSO, BCGA, IHS, and JAYA algorithms over the
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Figure 6. Emission curves obtained from MPSO, PSO, BCGA, IHS, and JAYA algorithms over the

scheduling time.

Figures 7 and 8 show the hourly water discharge from the hydro plant and storage volume of
reservoirs, respectively. The convergence characteristics of MPSO, conventional PSO, BCGA, IHS, and
JAYA algorithms in terms of total fuel cost are shown in Figure 9. The JAYA method exhibits an almost
constant fuel cost in the beginning stage. The MPSO, conventional PSO, BCGA, and IHS methods
exhibit a similar curve, but MPSO shows the lowest position.
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Figure 7. Hydro plant discharge curves.
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Figure 8. Hydro plant reservoir storage volume curves.

150,000
140,000
130,000
120,000
110,000
100,000

Total Fuel cost (S)

90,000
80,000
70,000

60,000 T T T T 1

Iterations

Figure 9. Convergence characteristics of MPSO, PSO, BCGA, IHS, and JAYA algorithms in terms of
total fuel cost.

7. Conclusions

This paper investigated the competency of certain heuristic algorithms representing different
heuristic groups, for searching for the optimal generation schedule of an HTW system considering
economic and environmental factors. A modified particle swarm optimization (MPSO) method is
suggested for the purpose. The proposed modification to the conventional PSO method improved
the local search capability of the algorithm and hence delivered a solution with the minimum
emission value and lowest overall operating cost. Here, the maximum penalty factor approach
was used to transform the multi-objective economic and emission function into a single objective.
The computational efficiency of the algorithm is illustrated with a test system consisting of three
thermal plants, a multi stream reservoir with four hydro plants, and two wind plants. This algorithm
offers a trade-off solution between the generation cost and quantity of emission. The proposed
MPSO algorithm, conventional PSO, binary coded GA, IHS, and JAYA algorithm were executed
30 times with the test system and the solutions were compared and analyzed statistically on the basis
of the best, average, and worst values, along with the standard deviation. The simulation results
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showed that MPSO demonstrated a better performance than the other selected algorithms in terms of
quality solution and consistency. The salient features of the method are less computational steps and
easiness of implementation, which makes the algorithm more suitable for accounting for large-scale
hydro-thermal-wind optimal scheduling.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1073/11/2/353/s1, Table
S1: Optimal generation schedule of the hydro-thermal-wind system obtained using the PSO method, Table S2:
Hourly water discharge and reservoir storage volume obtained using the PSO method, Table S3: Fuel cost, rate
of pollutant emission, and wind generation penalty cost of the optimal generation schedule-PSO method, Table
S4: Optimal generation schedule of the hydro-thermal-wind system obtained using the GA method, Table S5:
Hourly water discharge and reservoir storage volume obtained using the GA method, Table S6: Fuel cost, rate
of pollutant emission, and wind generation penalty cost of the optimal generation schedule-GA method, Table
S7: Optimal generation schedule of the hydro-thermal-wind system obtained using the IHS method, Table S8:
Hourly water discharge and reservoir storage volume obtained using the IHS method, Table S9: Fuel cost, rate
of pollutant emission, and wind generation penalty cost of the optimal generation schedule-IHS method, Table
S10: Optimal generation schedule of the hydro-thermal-wind system obtained using the JAYA method, Table S11:
Hourly water discharge and reservoir storage volume obtained using the JAYA method, Table S12: Fuel cost, rate
of pollutant emission, and wind generation penalty cost of the optimal generation schedule-JAYA method.
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Appendix

Table A1. Water inflow time delay between reservoirs.

Plant 1 2 3 4
Ry 0 0 2 1
T4 2 3 4 0

Ry: Number of upstream hydro plants; 7;: Time delay to immediate downstream hydro plant.

Table A2. Hydro power generation coefficients.

Plant C1 C2 C3 C4 C5 C6
1 —-0.0042 —0.42 0.030 0.09 10.0 -50
2 —-0.0040 —0.30 0.015 1.14 9.5 —-70
3 —0.0016  —0.30 0.014 0.55 55 —40
4 —0.0030 —0.31 0.027 1.44 14.0 —-90

Table A3. Reservoir storage, plant discharge, reservoir end conditions (x 10* m3), and hyro plant
generation limits.

Plant thin V;lnax V]Zegin V;elnd Qﬂﬁn Q;lnax P;’nin thax

1 80 150 100 120 5 15 0 500
2 60 120 80 70 6 15 0 500
3 100 240 170 170 10 30 0 500
4 70 160 120 140 13 25 0 500
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Table A4. Reservoir inflows (x10% m?).
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Table A5. Wind speed data.
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