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Abstract: Thermal oil recovery techniques, including steam processes, account for more than 80%
of the current global heavy oil, extra heavy oil, and bitumen production. Evaluation of Naturally
Fractured Carbonate Reservoirs (NFCRs) for thermal heavy oil recovery using field pilot tests and
exhaustive numerical and analytical modeling is expensive, complex, and personnel-intensive. Robust
statistical models have not yet been proposed to predict cumulative steam to oil ratio (CSOR) and
recovery factor (RF) during steamflooding in NFCRs as strong process performance indicators. In this
paper, new statistical based techniques were developed using multivariable regression analysis for
quick estimation of CSOR and RF in NFCRs subjected to steamflooding. The proposed data based
models include vital parameters such as in situ fluid and reservoir properties. The data used are
taken from experimental studies and rare field trials of vertical well steamflooding pilots in heavy
oil NFCRs reported in the literature. The models show an average error of <6% for the worst cases
and contain fewer empirical constants compared with existing correlations developed originally for
oil sands. The interactions between the parameters were considered indicating that the initial oil
saturation and oil viscosity are the most important predictive factors. The proposed models were
successfully predicted CSOR and RF for two heavy oil NFCRs. Results of this study can be used for
feasibility assessment of steamflooding in NFCRs.

Keywords: heavy oil; fractured carbonate reservoirs; steamflooding; cumulative steam to oil ratio;
recovery factor; statistical predictive tools, digitalization, data analytics

1. Introduction

Consumption of liquid fuels, from both conventional and unconventional resources, will continue
to be the primary source of energy in the decades to come. According to the International Energy
Agency (IEA) in their World Energy Outlook 2015 report and some other reports from the U.S.
Energy Information Administration (EIA) [1–3], global demand for oil is expected to grow from
85.7 × 106 barrel/day [13.6 × 106 m3] in 2008 to 103 × 106 b/d [16.37 × 106 m3] in 2030. The current
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global daily production rate is now 96.5 × 106 b/d. This is mostly due to expected world population
growth combined with increasing per capita demand in growing economies such as China and India.
As the dominant trend, much of the demand for liquid fuels comes from the transportation sector,
which is expected to grow at about 1.4% each year until 2035. To meet the demand for liquid fuels
in 2030, additional production of 6.5 × 106 b/d [1 × 106 m3] will be needed. This is just a modest
forecast as a reference scenario from the IEA and depending to the world economic conditions and
other factors affecting the oil price and fuel consumption rate this figure is subject to change. The
actual demand for oil could clearly be higher [1–3].

On the other hand, the sedimentary basins, especially the giant mostly carbonate fields in the
Middle East, are drying fast and running out of cheap conventional oil with relatively easy production
technology and in large volumes with the decline rates being on the range of 6–8% per year [4].
Obviously, there will be a growing gap between production and consumption. In the past decade,
part of the gap was filled with contributions from unconventional resources. In this scenario, fossil
petroleum liquids extracted from unconventional sources such as heavy oil, extra heavy oil, and
bitumen will play a larger role in the decades ahead, as well. Development of non-conventional energy
resources such as shale gas, shale oil and viscous oil (VO—including heavy oil, extra heavy oil, and
bitumen) will fill part of the growing gap arising from a future decline in conventional oil production
and the steady growth in demand for oil. However, due to large capital requirements and their
relatively slow nature of development combined with technological, human capital, and economic
challenges, a major and fast boost in their contribution to the global daily oil production is highly
unlikely. Based on some EIA and IEA report, VO will comprise around 17% of the world daily oil
production by 2035 and this also includes VO from NFCRs [1–3]. The current share of the VO to daily
global oil production is about 8–10 × 106 b/d [1.27–1.59 × 106 m3/d]; roughly 10% of the total oil
production, and this represents a doubling of VO production in about 25 years.

The temperature sensitivity of VO viscosity controls the flow rate in all thermal production
processes. This makes the in situ oil viscosity a far more important parameter in technical and
economic assessment than API gravity. Definitions of heavy oils in the literature are inconsistent, but
many including the authors recommend that heavy oils be specified as oils with viscosities >100 cP
and <10,000 cP under reservoir conditions. “Bitumen” can be defined as oils having viscosity >10,000
cP in situ [5]. In this paper, VO refers to all crude oils with µ > 100 cP in situ; Heavy Oil (HO) refers to
crude oil with 100 < µ < 10,000 cP in situ; Extra Heavy Oil (XHO) refers to crude oil with µ < 10,000 cP
in situ but with ρ > 1.0 g/cm3; and bitumen refers to crude oil with µ > 10,000 cP in situ. A list of the
various definitions and terms can be found in Dusseault and Shafiei [5] and Shafiei [6].

Almost 100% of the VO production from NFCRs comes from cold production operations in Oman,
Iran, Iraq, Kuwait, Saudi Arabia, Turkey, and Mexico [6–8]. The VO in most of these reservoirs is mobile
under reservoir conditions. Productive VO NFCRs are characterized by low matrix permeability and
high fracture permeability, giving high early production that declines rapidly, leading to RFs below
3–5% in most cases [7]. Large-scale, early oil flux takes place through the high permeability and low
volume fracture system, whereas the matrix-fracture interaction mainly controls the recovery efficiency
and maintenance of longer-term smaller-scale production levels. VO production from NFCRs is in
its very early days and is presenting major technical and economic challenges to the oil industry.
These reservoirs are not yet widely commercialized and progress remains necessary for them to
contribute a notable part of the daily worldwide oil production in the decades to come.

Several researchers have investigated important aspects of steamflooding (e.g., production
mechanisms, productivity, wettability effects, process properties, feasibility) in homogeneous and
heterogeneous porous media through experimental works, analytical modeling, and numerical
modeling/simulations [9–27]. Most articles focus on steamflooding in unfractured (single porosity)
systems. The interactive flux between the matrix block and fractures, and the consequent impact on
the performance of steamflooding, are not well addressed in the literature.
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Recovery Factor (RF) and Cumulative Steam to Oil Ratio (CSOR) are two critical economic
parameters when evaluating an asset or designing a steamflood. Accurate determination of these key
parameters is of paramount interest in predicting viability of the thermal operation. Empirical models
or correlations have not been yet developed to estimate CSOR and RF for steamflooding in VO NFCRs.
However, various models and correlations are reported for performance prediction and analysis
of various steam injection processes for VO production from oil sands and other unconsolidated
sandstone VO reservoirs [9–27]. Some smart models have also been developed and introduced to
assess the performance of steamflooding in NFCRs [10]. Without modifications to account for the
different production characteristics, such correlations or models cannot be used for VO NFCRs. Overall,
it is wise to expect higher CSOR, lower RF, lower thermal efficiency, and lower ultimate profitability
for VO NFCRs steam processes compared with typical oil sands or unconsolidated sandstone VO
steam injection processes.

Herein, data based techniques in terms of multivariate regression are developed for rapid
estimation of CSOR and RF in VO NFCRs during steamflooding based on experimental and real field
data [28–52]. The relationships involve major parameters such as in situ fluid and reservoir properties,
and process conditions (e.g., steam flow rate and quality). Previous modeling and experimental
studies with the aid of a statistical methods were used to determine the key variables that most
strongly affect the CSOR and RF in both homogeneous (i.e., no natural fractures such as oil sands)
and fractured reservoirs experiencing steamflooding. The data used are mainly from field pilots and
some experimental test runs of steaming VO NFCRs. Employing the required production history,
the correlations were then examined by statistical analysis strategies such as ANOVA, residual plots,
and correlation coefficient calculations. The correlations were also qualitatively compared with the
exiting correlations reported for oil sands and unconsolidated sandstones.

2. Steamflooding

A quick look at EOR surveys published over the past two decades shows that steam-based
processes, including steamflooding and other processes involving steam injection, are so far the single
commercially successful viscosity reduction method. Steam-based VO recovery technologies have been
widely successful and broadly used in VO sandstones. More than 70% of the global VO production
involves steaming, and it is expected that this dominance will continue [53–60]. It should be noted
here that we define commercially successful thermal operations as projects with production of at least
10,000 barrels per day for a reasonably long time. At the moment, this is only the case in oil sands and
there is no commercial VO NFCR thermal operation.

Commercial VO thermal operations began in 1952 with vertical well steamflooding (SF) or
steam drive (SD) (Figure 1) and their variants, mainly in California and then Venezuela [61]. These
were generally implemented in thicker zones (>10 m), and almost always for VOs with µ < 5000 cP,
since initial communication between the offset wells is easily achievable only in cases of sufficient
mobility (usually, k/µ is higher than 0.1 mD/cP). Continuous steam injection at the base of an interval
leads to creation of a slowly advancing and rising steam zone; the heat lowers the viscosity. While
volumetric sweep processes (∆p) mobilize the fluids, displacing them to the production well.

CSOR values < 3 for SD, SF, and CSS might be attained in thicker, high quality reservoirs
(k·h/µ values greater than ~0.25 mD·m/cP). However, RF is likely to be substantially lower than
gravity dominated thermal methods because of reservoir heterogeneity and advective instabilities
(e.g., fingering and override). Cyclic steam stimulation (CSS) and gravity methods should achieve
substantially lower CSOR values for a similar RF.

Low matrix permeability (<100 mD), relatively low porosity (<20%) compared with a typical
Canadian oil sand, medium to densely fractured media and fracture permeability ranging from low
to very high are the most common characteristics of VO NFCRs. These, along with depth, represent
major constraints for steam technology implementation. As a rough estimate, the VO volume in one
cubic meter of oil sand (28–32% porosity) is about twice that of the typical VO carbonate reservoirs
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(10–20% porosity). Compared to oil sands, steam processes in NFCRs will necessarily evidence higher
CSOR and lower ultimate RF values, less thermal efficiency, and thus be economically less attractive.
Permeabilities on the order of mD are very low when compared with a typical Canadian oil sand.
Matrix permeability in some Canadian oil sands reaches up to 4000 to 5000 mD in some cases and
in some fractured carbonates containing light oil permeabilities of few thousands mD is common.
Heavy oil NFCRs are a poor type of reservoirs as they contain less oil and have lower effective
permeability compared with oil sands. For the same volume of rock, NFCRs contain half the amount
of oil in oil sands.
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Figure 1. Steamflooding (SF) in NFCRs. This cartoon is a conceptual model of steamflooding in NFCRs
taking into account the steamflooding experiences and the understanding we have from similar thermal
operations in sandstones and oil sands and various effects such as steam override, and development of
steam front. The black arrows show the flow direction and the red color shows the steam saturated
zones or heated zones in the reservoir. The process involves continuous injection of steam typically
with a row of injectors and the heavy oil that is mobile after heating up the reservoir and the heavy oil
is displaced by steam toward production wells [10].

In several California fields (e.g., Kern River), RF > 70% and CSOR = 4.35 have been reported
for steamflooding with very dense spacing (75–125 m) in a low tax and partly subsidized economic
condition [62,63]. Using SF/SD techniques in highly favorable geological conditions (shallow, high
k, and high initial oil saturation), high RF was achieved for Duri Field in Indonesia. However,
a substantial heat losses, along with some steam breakthroughs to the surface and issues with
steam override was reported [64,65]. Of course, all pressure-driven steam injection processes such as
SF/SD and CSS experience advective and gravity instabilities (i.e., fingering, channeling, and gravity
override) and therefore suffer from elevated heat losses. Hence, they are unlikely to be as efficient
as gravity-dominated thermal extraction methods, where ∆p~0 condition leads to diminution of all
pressure-viscosity instabilities.

The screening criteria for SF/SD/CSS in oil sands and unconsolidated sandstones are presented
in Table 1. One may refer to Dusseault and Shafiei [5], for a brief description and current status of
application of steam technologies, and Boberg [66] and Butler [67] for production mechanisms involved
in steam methods.
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Table 1. Screening criteria for SF/SD/CSS in oil sands [68].

Parameter Steaming Criteria Comments

Minimum thickness 8–12 m (depending on net pay to gross
pay—N/G—ratios)

Continuous net pay (N/G > 0.95) needed for
thinner zones

Net pay
8–10 m—>95%
15 m—can be 75–80%
>15 m—<75% (high CSOR)

Shale is expensive to heat. CSS breaks through
shales easier than SF/SD because of higher
injection pressure

Shale beds Beds < 2.5 m thick, lateral flow
dominated process

CSS has more vertical flow requirement = better
kv needed, comparatively

Porosity 20% (no known cases of commercial success
at porosities less than 20%

At low porosities, there is too much mineral
matter to heat, in comparison to oil content

Permeability >500–1000 mD
CSS more affected by intact barriers to vertical
flow than SD/SF which require lateral
flow capacity

Oil viscosity <2000–5000 cP for SD/SF
5000 for CSS

SD/SF must have good well-to-well
communication, not so for CSS

Steam pressure <20 MPa, although in CSS, higher pressures
may be needed for fracture injection

Depth-dependent, CSS in high µ oil uses fracture
injection conditions but lower pressure during
production than SD/SF

CSOR at K ≈ 1 D (long term) >10,000 cP > 3 to 4
>500 cP > 2

Dependent on reservoir quality and µ:
higher µ = higher CSOR (slower process)

Recovery (RF) 40–70% (higher CSOR for high RF at the
same viscosity)

RF strongly dependent on the full-cycle CSOR
that the operator is willing to tolerate, but lower
for higher viscosities

Active water No CSS possible, SF/SD highly unlikely Active water quenches steam (vacuum created)
so significant barriers are needed

3. Production Mechanisms

Oil production from NFCRs using ∆p processes generally occurs in two different stages:
first, a pressure gradient within the fracture network acts as a driving force giving early (“flush”) oil
production. Thereafter, oil is slowly displaced from within the matrix blocks by the pressure gradient
from liquid and gas expansion, the pressure gradient enforced between wells, and aided somewhat by
gravity drainage forces in the presence of a light (steam) phase. The oil slowly released and displaced
from the matrix, flows via the fracture network to the production wells. Different driving mechanisms
including solution gas liberation and expansion, distillation of steam, generation of carbon dioxide,
capillary imbibition, and gravity drainage are active during continuous steaming of a VO NFCR [69].
The most effective recovery mechanism within the matrix blocks is thermally- and ∆p-induced liquid
and gas expansion, displacing the oil to the fractures. High temperatures reduce the oil viscosity,
permitting these processes, including the fracture flow, to take place more quickly.

Hernandez and Trevisan proposed two numerical modeling/simulations to investigate heating
process in rock matrix [69]. The first model describes the heating mechanism in a horizontal cross
section of a matrix block surrounded by a fracture with steadily steam flow. The second model uses
a vertical cross section to incorporate gravity effects due to phase density differences. These scientists
concluded that steam distillation is the most effective oil recovery mechanism in NFRs. This is because
the steam distillation allows full recovery of CH4 along with the light and medium components in
the oil phase (these vaporize and therefore are highly mobile and more easily recoverable). Solution
gas expansion (+∆T, −∆p) sustains the pressure difference between the matrix and the fracture
and preferentially displaces the distilled phases. The high viscosity of the remnant oil, due to the
liberation of light compounds, limits the contribution of capillary imbibition mechanisms to oil recovery
from matrix.

The solution gases driven off and their expansion, as well as the liquid expansion, dominate the
drive energy. Because the matrix block permeability in many NFCRs is less than 100 mD, gravity
segregation within the blocks is slow to negligible, although very rapid in the vertical fracture network,
maintaining high early ∆p between fractures and matrix. Viscosity reduction is not an energy source
in itself, although the associated temperature is the dominant agent in gaseous phase exsolution and
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fluid expansion. Because the gas expansion tends to displace the oil and the gravity effects tend to
cause the gas to rise, especially in the fractures, oil recovery is somewhat earlier, and gas production
somewhat delayed.

Generation of carbon dioxide is responsible for amelioration in recovery of distilled components
from the oil phase and for the recovery of liquid fractions. A complete discussion of these complex
and interacting production mechanisms can be accessed elsewhere, such as [70–74].

4. CSOR and RF Prediction

Cumulative Steam to Oil Ratio (CSOR) is the volume ratio of water injected as steam to oil
produced at stock tank conditions. CSOR (or its inverse) is used to gauge steamflooding methods’
economic success. This is the most common way of expressing thermal efficiency. Recovery Factor
(RF) is the other important economic parameter, though not in the absence of CSOR. There are various
equations available in the literature for performance forecast of a variety of steam processes in oil sands
or unconsolidated sandstone VO reservoirs [44,66,67,75]. Chu [20] proposed the following empirical
correlations based on statistical analysis of 28 successful SF/SD operations in oil sands to estimate
the CSOR:

If CSOR ≤ 5 (Metric units)

CSOR = 18.744 + 0.004767D− 0.16693h− 0.8981K− 0.5915µ− 14.79So − 0.0009767
Kh
µ

(1)

If CSOR ≥ 5 (Metric units)

CSOR = −0.011253− 0.00009117D + 0.0005180h− 0.07775ϕ

−0.007232µ + 0.00003467Kh/µ + 0.5120So
(2)

In these correlative functions, D is the depth (m), h is the thickness (m), K is the permeability
(mD), So is the oil saturation, T is the temperature in ◦C, µ is the viscosity in Pa·s, and ϕ is the
porosity as a bulk volume fraction. The advantage of using such correlations is that they are
based on well-known reservoir parameters and do not required simulation or iterative calculations.
Chu (1985) [44] recommended using a CSOR of 10 as the cut off for economic feasibility of any steaming
operations. Of course, this is highly dependent on the price of steam (generally from CH4 combustion)
and the price of oil.

Vogel [75] developed a model for steamflooding considering the steam over-ride effect (gravity
segregation of gases and liquids). He also assumed that the injected steam overlays the formation
immediately and then conducts heat upwards (vertically) to the overburden and downward into the
reservoir. CSOR can be calculated using Vogel’s model as follows [75]:

CSOR =
62.4hs ϕSHt

∆T[hs (ρc)s + 2
(
Kh1
√

t/πα1 + Kh2
√

t/πα2)]
(3)

where hs is the thickness of steam zone (ft), (ρc)s is the steam zone volumetric heat capacity (Btu/ft3–◦F),
∆T = Ts − Tr (◦F) is the difference between steam and initial reservoir temperature, α1 and α2 are
the thermal diffusivity values of overburden and oil sand, respectively (ft2/hr), t is the time of
steam injection (hr), and Kh1 and Kh2 are the thermal conductivity of overburden and oil sand layer,
respectively (Btu/hr–ft–◦F). ∆S and Ht are defined as:

∆S = Soi − Sors, Ht = Xl HWV + HWS − HWr (4)

Here, Soi is the initial oil saturation prior to steamflood (fraction), Sors is the average steam zone
oil saturation at breakthrough (fraction); and Ht is the total enthalpy energy injected (Btu/lb); HWV is
the latent heat of water vaporization at downhole injection pressure and temperature (Btu/lb); HWS is



Energies 2018, 11, 292 7 of 29

the enthalpy of liquid water at downhole injection pressure and temperature (Btu/lb); and HWr is the
enthalpy of liquid water at original reservoir conditions, Btu/lb, and (X) is the average downhole
steam quality during injection (lb/lb).

Boberg [66] proposed the following equation using Marx-Langenheim’s model for estimation of
CSOR during steamflooding based on thermal efficiency calculations:

CSOR =
62.4ϕhEh[(Xi HWV(Soi − Sors)]

Boht(Ts − Tr)(ρc)R+F
(5)

where Ts and Tr are the steam temperature and reservoir temperature (◦F); Bo is the oil content of the
reservoir; ht is the reservoir net pay thickness (ft); and Eh is the thermal efficiency.

Butler [67] introduced the following relationship to predict CSOR of steamflooding in oil sands.
He employed thermal efficiency computations for constant displacement rate steam drive, relating the
cumulative displaced oil (ϕ∆SohA) to the cumulative injected heat into the reservoir:

CSOR =
Hs ϕ(So − Sor)

ρ1C1(Ts − Tr)

 1

1 + 8
3

(
K2

ρ1C1h
√

t/πα2

)
 (6)

Here, Hs is the enthalpy of steam (Btu/lb), α is the thermal diffusivity (ft2/d), and ρC is the
volumetric heat capacity of the steamed reservoir (Btu/ft3–◦F).

5. Data Collection

A limited number of steamflooding pilots can be found in the literature. The pilot operations
are tried in France, Italy, Congo, Turkey, USA, Kuwait, and Saudi Arabia [28–43]. The first part of the
data collected and used in this study is from field pilots of steamflooding in VO NFCRs reported in
the literature.

The important parameters for SF field tests are summarized in Table 2. To increase the size of the
database, some data from pilot plants executed in highly fractured light oil NFCRs and viscous oil
highly fractured sandstone reservoirs were included [35,42,44]. In addition, some experimental
data were taken from studies conducted on steamflooding in fractured media available in the
literature [45–52]. The data available covers a range of fluid and reservoir properties under different
operational conditions.
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Table 2. Characteristics of the steamflooding field pilots conducted in NFRCs.

Field Lacq Superieur, SW France Ikiztepe, SE Turkey Emeraude, Offshore Congo on the West African Coast Yates Field, Permian Basin of West Texas

Reservoir Lacq Superieur Ikiztepe R1 R2 San Andres dolomite

Geology Heterogeneous and fractured
calcareous or dolomitic formations

The Sinan vuggy and
fractured limestone

A succession of siltstones and highly fractured low matrix
permeability limestones Fractured dolomite

OOIP (1 × 106 b) 125 127 5000 n/a

Depth (m) 600–700 1350 186–249 249–297 457

Thickness (m) 120 100–150 50 48 n/a

µ (cP) 17 (Medium heavy oil) 936 (Heavy oil) 100 6

Pro (MPa) 6 12.7 3.1 n/a

Tro (◦C) 60 49 31 27

ϕm (Fraction) 0.12 0.15–0.30 0.2–0.3 0.15–0.17

Km (mD) 1 50–400 0.1–50 >50 100–170

Kf (mD) 5000–10,000 1000 >1000 >1000

Formation volume factor 1.04 1.056 1.01 n/a

Steam quality (%) 80 60–80 80 80

CSOR 5.5 3.1 1.45 3.98 8.8

Cumulative steam injected (MCWEB) 970 81 480 700 910

Cumulative oil production (b) 176 26 315 176 103

Field Wafra, Neutral Zone (Saudi Arabia and Kuwait) Naval Petroleum Reserve No. 3 (NPR-3), Teapot Dome Field, Wyoming

Reservoir 2nd Eocene 1B-South 1C-East 3A 4A

Geology Dolomite The Shannon, composed of the Upper and Lower Shannon sandstones

OOIP (1 × 106 b) 7000 0.748 0.748 1.48 1.46

Depth (m) 580–670 134–146 134–146 134–146 134–146

Thickness (m) n/a 7–14 7–14 7–14 7–14

µ (cP) 30–250 10 10 10 10

Pro (MPa) n/a 2.34 2.34 2.34 2.34

Tro (◦C) n/a 18 18 18 18

ϕm (Fraction) n/a 0.16–0.2 0.16–0.2 0.16–0.2 0.16–0.2

Km (mD) n/a 18–65 18–65 18–65 18–65

CSOR 5.55 9.42 9.5 13.38 10.9

Cumulative steam injected (MCWEB) * 1000 2011 1693 3679 1302

Cumulative oil production (1 × 103 b) 180 213 176 133.7 119

* MCWEB = 1000 Cold Water Equivalent Barrels.
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6. Methodology

Different experimental and numerical models were studied to understand the main parameters,
their interactions, and trends during steamflooding process. The earlier correlations developed for
prediction of CSOR in oil sands, for instance Chu [20] did not take into account all the major parameters
and their interrelationships during steamflooding. The most important variables for statistical analysis
were determined to be in situ viscosity, effective porosity, fracture permeability, matrix permeability,
reservoir thickness, depth, steam flow rate, steam quality, and initial oil saturation.

Reliable field data and well-documented field trials are the foundation of developing statistical
screening tools. However, a limited number of successful case histories (partially or marginally so in
some cases) or field trials exist for steamflooding in VO NFCRs. All the field pilots of steamflooding in
VO NFCRs available in the literature were studied to assemble a database, and as many of the critical
parameters as we could were collected or calculated for this study (see Shafiei et al. [10] for the database).
To enhance the value of statistical analysis, the database was extended to include steamflooding trials
in highly (naturally) fractured sandstone viscous oil reservoirs, and some experimental data from
similar cases was incorporated as well. We tried to make sure that all the data collected and used in this
study are fully compatible with the physics of vertical well steamflooding in naturally fractured media.

To examine the results of multiple linear regression analysis and to determine the dependency
of a given response variable on a special fluid or/and reservoir property, scatter plots are usually
generated [76,77]. These plots can show the absolute effect of each independent variable on the
response variables. This statistical analysis first assumes no interactions among the identified predictor
variables (e.g., no interaction terms). In this case, the correlation equation would have the following
form for “k” regressor variables:

y = β0 + β1x1 + β2x2 + . . . + βkxk + e (7)

The parameters “β0 to βk” are the regression coefficients; x1, x2, . . . , xk are the independent
variables, also known as dimensionless numbers; and “y” is the actual response variable.
Some interaction terms also can be introduced to forecast the behavior of the reservoir during steam
injection. The model connecting the regressor to the response, yi, is as the following:

yi = β0 + β1xi1 + β2xi2 + . . . + βkxik + ei i = 1, 2, . . . , n (8)

For “n” number of observations (field data or/and experimental measurements), this represents
a system of “n” equations which can be expressed in the matrix notation as the follwoing:

y = Xβ + e (9)

where:

y =


y1

y2
...

yn

, X =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
...

...
1 xn1 xn2 · · · xnk

, β =


βo

β1
...

βk

, and e =


e1

e2
...

en

 (10)

The least square estimate of “β” can be calculated as the follwoing:

β̂ = (X′X)
−1X′y (11)

The physics of steamflooding in VO NFCRs suggests that a set of dependent dimensionless terms
control the magnitudes of the objective functions. Hence, regression models should accommodate the
so-called “effect of interaction between the dependent terms”. Interaction between two dependent
variables can be defined as a cross product term in the model:
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y = β0 + β1x1 + β2x2 + β12x1x2 + e (12)

After the required parameters such as CSOR were collected from the pilot plant and laboratory
studies, they were substituted in the corresponding equations to conduct a parametric sensitivity
analysis to determine the proper relationships between the target function and key independent
variable. The procedure to obtain scatter plots and the predictive equation for CSOR is given briefly
as follows:

A systematic parametric sensitivity analysis should be conducted through the following steps to
determine the proper relationships between the target function (s) and key independent variables:

• The CSOR values are obtained from the data;
• CSOR is plotted separately versus all key parameters with other variables kept constant;
• When all figures for CSOR are plotted, a general correlation for CSOR versus dependent variables

with unknown coefficients of contributing terms can be obtained; and,
• Using Equations (7) through (10), regression coefficients are calculated (for this we used

MATLAB™ and Excel™).
• This approach is also used for the other major economic assessment metric—recovery factor (RF).

Three main validity measures were employed when examining the suitability of multivariate
linear regression analysis: residual analysis, ANOVA tables, and analysis of square of residuals:

Data from a standard sum of squares of the variance analysis are included in the ANOVA table.
The ANOVA table contains the data for each of two deviation sources. This includes both the regression
and the residuals (e.g., 1st column in Tables 3 and 4). The total deviation is defined as the sum of
regression and residuals. The source of variation is due to deviation of each forecasted data point
either from its group mean value (e.g., regression) or from its observed value (i.e., residuals). The sum
of these two sources of variance comprises the total variance. Four variance measures (e.g., columns
3–5 in Tables 3 and 4) are introduced for each of the deviations sources as the following:

(a) Degrees of freedom (e.g., DF, 2nd column of Tables 3 and 4): DF can be defined as the number
of correlation coefficients (N) for each special regression analysis with respect to the number of
regressor variables implemented in the model.

(b) Sum of the Squares (e.g., SS; 3rd column of Tables 3 and 4): SS can be calculated using the
observed data and the predicted results. SS is a measure of variance for each special regression
analysis. The total SS can be calculated via summation of the squares of the residuals plus the
sum of the squares of regression:

n

∑
i=1

(yi − y)2 =
n

∑
i=1

(ŷi − y)2 +
n

∑
i=1

(yi − ŷi)
2 (13)

where yi and ŷi are real (or observed) data and predicted data, respectively. n is the number
of observations (data points). y refers to the average of all data points of dependent variable
expressed by the following equation:

y =

n
∑

i=1
yi

n
(14)

(c) Mean squares (e.g., MS; 4th column of Tables 3 and 4). MS is the sum of squares adjusted for the
DF (Degree of Freedom).

(d) F test (e.g., F; 5th column of Tables 3 and 4): F is a statistical parameter related to variance,
which compares two models with different regressor variables. The goal here is to check whether
the more complex model is a better predictor or not. Normally, if the F is bigger than a standard
tabulated value then the more complex equation is considered superior [76,77]. The significance
level is usually set at 0.05.
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Table 3. Regression model of the CSOR (R2 = 0.96; F = 196.6).

Coefficient Numeric Value Standard Error Lower 95% Upper 95%

a0 −15.5 2.85 −29.65 −5.0500
a1 −0.001 0.0003 −0.0018 −0.0002
a2 6.87 1.85 2.98 10.76
a3 4151.45 283.52 404 7898
a4 0.000005 0.0000001 0.000002 0.000008
a5 −221.21 18.59 −260 −182
a6 22.49 3.73 14.65 30.34
a7 −46,579 4306 −55,626 −37,532
a8 −2.54 0.11 −4.67 −0.97
a9 −7.14 1.17 −9.60 −4.68

a10 0.031 0.009 0.01 0.05
a11 151,755 14,188 121,947 181,563
a12 18,116 1349 15,282 20,950
a13 −1289 146.7 −2081 −498
a14 0.0053 0.0002 0.0008 0.009

Table 4. Information for the Linear Regression Model of the RF prediction (R2 = 0.964; F = 79.317).

Coefficients Numeric Value Standard Error Lower 95% Upper 95%

a15 −85.8 26.52 −140.15 −31.50
a16 137.5 30.24 46.82 228.19
a17 0.02 0.01 0.0007 0.04
a18 0.21 0.04 0.12 0.31
a19 282.3 41.53 111.48 453.1
a20 −0.0009 0.0002 −0.001 −0.0004
a21 47 7.07 26.36 67.64
a22 −0.0003 0.0001 −0.0005 −0.00008
a23 −0.03 0.02 −0.07 0.015
a24 −213.1 80.3 −505.3 −2.89
a25 −0.16 0.03 −0.22 −0.09
a26 0.0006 0.0002 0.0002 0.12
a27 −0.49 0.01 −0.78 −0.20
a28 −0.01 0.003 −0.06 −0.007

7. Results and Discussion

Predictive tools for screening viscous oil reservoirs for a certain production technology can be
valuable instruments when assessing technical feasibility and the potential performance of the process
in a candidate reservoir. Two quick predictive models were developed here to estimate RF and
CSOR in NFCRs that undergo steamflooding for heavy oil recovery. It is important to note that the
steamflooding operation is generally ended when the cumulative steam oil ratio (CSOR) reaches the
value of 60. Thus, the performance of steamflooding process is evaluated at this cut-off point.

7.1. Regression Analysis

Scatter plots (Figures 2–11 for CSOR and Figures 12–21 for RF) show the dependency of a special
response variable on a special fluid or/and reservoir property. Figures 2–7 and Figures 12–17 are
obtained for the physical models with the same pattern (in shape and number of fractures) and the
same dimensions in most cases. In addition, it is clear that all properties for steamflooding processes
demonstrated on each figure except those on x and y-axes are the same when investigating effect
of an independent variable on target functions. This conveys the message that these figures just
present a limited volume of data used in this study to point out the important trends in performance
of reservoirs during steamflooding according to a comprehensive parametric sensitivity analysis.
Based on Figures 2–7, CSOR increases with an increase in oil viscosity, steam injection rate, fracture to
matrix permeability, and gross to net reservoir thickness. However, high steam quality and high initial
oil saturation lead to reductions in CSOR, indicating better response to steam injection. In addition,
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Figures 2–11 for CSOR indicate acceptable agreement between the field data and the predictions.
It is clear that increase in steam injection rate improves the recovery rate but lowers the RF before
steam breakthrough in fractured media (particularly highly fractured ones), as presented in Figure 12.
Furthermore, if the reservoir contains oil with high viscosity, some areas can be bypassed during
steamflooding, resulting in early breakthrough and consequently lower RF, as demonstrated in
Figure 13. The same effect may occur when there are many fractures with high permeability in
the reservoir (see Figure 14). Although the presence of fractures can cause an increase in the rate of
oil production, a high density of fractures may have undesired effects on the overall performance
of steamflooding, as depicted in Figure 14. Figure 15 shows that the ratio of the reservoir depth to
the reservoir thickness does not have a noticeable impact on RF during steamflooding. As expected,
steam quality and initial oil saturation have direct impacts on magnitude of RF. Increase in these two
parameters can improve the performance of the steamflood (see Figures 16 and 17). Clearly, steam
injection with higher quality steam enters more heat into the reservoir leading to an increase in
temperature. Hence, it causes viscosity reduction that enhances the oil recovery. The figures related to
RF again confirm the effectiveness of the statistical approach adopted in this study as a good match
was observed between the field data and the results obtained from the correlations.

Figures 10 and 11 are the residual plots for the CSOR with respect to porosity and a combined
interaction component (including formation depth and thickness), respectively. In addition, residual
plots for RF versus porosity and “steam quality multiplied by steam injection rate” are presented
in Figures 20 and 21, respectively, as two samples of the analysis of the residuals. For these four
residual plots, the residual data shows random distribution all along the horizontal axis. In other
words, the proposed linear regressions are valid for CSOR and RF in terms of the particular dependent
variables shown on x-axis.

These results show that CSOR values for viscous oil extraction from NFCRs and some highly
naturally fractured sandstone reservoirs can be correlated with reservoir and oil characteristics
such as permeability, porosity, thickness, viscosity, and oil saturation. The following empirical
relationship predictive function was developed in this study to estimate the CSOR during vertical well
steamflooding in a NFCRs:

CSOR = a0 + a1D + a2
1
ϕe

+ a3
1

Km
+ a4K f + a5

1
µo

+ a6
1
So

+ a7
1
qs
+ a8xs + a9

1
So ϕe

+ a10
D
h +

a11
D

hϕeKmµoSoqs
+ a12

1
ϕeqs

+ a13
1

ϕeKm
+ a14

K f
Km

(15)
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Energies 2018, 11, 292 19 of 29

Energies 2018, 11, x FOR PEER REVIEW  18 of 29 

 

 
Figure 18. RF vs. oil content for the database analyzed. 

 
Figure 19. Residuals vs. product of steam injection rate and quality for the database analyzed. 

 
Figure 20. Residuals vs. porosity for the database analyzed. Figure 21. Residuals vs. porosity for the database analyzed.

Table 3 presents the values for the correlation coefficients, standard errors, and the ranges for
the coefficients involved in the equation for the CSOR. Needless to mention that definitions of all
parameters introduced in Tables 3–5 are presented in Section 4 of this paper. Since the variables such as
Km (mD), Kf (mD), (ϕ) porosity (%), So (%) have high magnitudes, their coefficients must be 4 to 6 digits
significant while using regression correlations.

Table 5. ANOVA table for CSOR regression analysis.

Source DF SS MS F

Regression 14 2598.98 185.64 128.76
Residual 15 21.63 1.44 -

Total 29 2620.61 - -

Recovery Factor (RF) is also an important asset assessment parameter, and a reliable tool to predict
RF, even if only in a statistical manner, it would be valuable for first-order screening. Estimation of
production performance is possible with initial and residual oil saturation data. The irreducible oil
saturation is normally not known until the end of the thermal operation. Nevertheless, a correlation
was established for RF prediction in terms of formation, steam, and oil properties considering the
production history of some field pilots and laboratory tests data. To derive the following equation,
a similar method as that for CSOR was implemented using statistical regression analysis:

RF = a15 + a16So + a17h + a18qs + a19 ϕe + a20Km + a21xs + a22µo + a23
Kmh
µo

+

a24So ϕe + a25qsxs + a26
So ϕehKmqs

µo xs
+ a27qs ϕe + a28

K f
Km

(16)

The product of fracture permeability and matrix permeability and the interaction of all
contributing parameters affect the RF in the form of “combinatory effects”. Table 4 contains data on
the statistical correlation coefficients.

The corresponding ANOVA for CSOR is presented in Table 5. The F observed for CSOR (196.645)
exceeds the critical value (2.31). Hence, all of the parameters considered in multivariable linear
regression analysis of CSOR and their attributed effects are significant and cannot be ignored to
simplify the statistical model.

There is a vigorous dependence between the objective function (RF) and the process variables
implemented in the statistical analysis. This is evident considering the high values of the observed “F”
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compared with the tabulated critical value (Table 6). It is also evident from Table 6 that the regression
analysis for RF has an acceptable accuracy.

Table 6. ANOVA Table for RF during steamflooding.

Source DF SS MS F

Regression 13 657.68 50.59 70.60
Residual 27 19.34 0.72 -

Total 40 677.03 - -

The magnitudes of the squared residuals (Table 7) can be used to check the accuracy of a linear
regression. The results obtained in this research suggest a reasonable compatibility between the
measured (field pilots and experimental data) and the forecasts (regression analysis). The proposed
model and the associated curves can be implemented to forecast CSOR and RF in any given VO NFCRs
given the limitations of the database.

Table 7. Summary of the Statistical Linear Regressions.

Objective Function Multiple R R2 Standard Error Number of Observations

CSOR 0.97 0.96 0.01 30
RF 0.98 0.96 0.08 41

Based on this study, the in situ oil viscosity and the initial oil saturation are the most significant
factors influencing CSOR and RF. This was expected because of the nature of the steam processes.

According to the statistical information provided in Tables 7 and 8, there is an admissible match
between the predicted and measured RF and CSOR. As shown in Table 8, the statistical parameters
(e.g., R2, minimum percentage error (MIPE), maximum percentage error (MAPE), and mean squared
error (MSE)) for the new models obtained in this study and the relationships developed by other
researchers such as Chu [20], Vogel [75], Boberg [66], and Butler [67] were obtained and compared.
The statistical models developed, presented, and examined in this paper are more accurate in estimation
of RF and CSOR as they appreciate from higher R2 and lower MIPE, MAPE, and MSE.

Table 8. Performances of previous predictive models and statistical correlations obtained in the current study.

Statistical Parameter
Chu [20] Vogel [75] Boberg [66] Butler [67] New Models

RF CSOR RF CSOR RF CSOR RF CSOR RF CSOR

R2 0.97 0.94 0.92 0.93 0.91 0.93 0.93 0.91 0.98 0.97
MSE 0.09 0.09 0.14 0.15 0.15 0.16 0.15 0.11 0.06 0.08

MIPE (%) 7.69 9.87 7.69 10.58 9.11 10.78 9.12 10.41 5.35 6
MAPE (%) 12.64 14.54 13.48 15.17 14.52 16 14.45 15.54 10.32 11.12

The viscosity of cases analyzed ranges from 6 to 936 cP, thus the reservoirs are heavy oil reservoirs
except for one medium heavy and one light oil reservoir in a NFR. The reservoir depth for the studied
cases varies from 134 to 1350 m. This range covers the lower and upper limits of applicability of
steamflooding. Matrix porosity and permeability vary from 0.12 to 0.35 and 1–4 D. In addition,
the fracture “permeability” is between 1 and 1,000 D. These ranges represent an acceptable coverage
for variation in parameters expected in such heterogeneous reservoirs despite small number of field
pilots of steamflooding in NFCRs.

7.2. Screening of a Heavy Oil Field for Steamflooding

The Kuh-e-Mond heavy oil field, the largest on-shore heavy oil field in Iran, is a giant anticline
located in the southwest of the country with a NW-SE trend. The field is 90 km long and 16 km
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wide with an estimated minimum heavy oil resource base of 10 × 109 barrels OOIP. The heavy
oil is found in three separate layers with depths ranging from 400 to 1200 m and oil viscosities of
550 to 1120 cP in situ [78–80]. The trap structure formed during the main phase of Zagros folding in
the late Miocene and Pliocene, as shown by the relatively constant thickness of the lower Miocene
succession [78–80]. According to petrophysical evaluations, the Jahrum Formation limestone is a poor
reservoir. Only part of it has a good porosity (ϕ) in the range of 0.24 to 0.31 and water saturation
(Sw) around 0.20. This formation contains immobile heavy oil. The OOIP has been estimated at
about 3 × 109 barrels [78–80]. The Sarvak Formation, Cenomanian in geological age, is predominantly
composed of intensely fractured marly limestone with some shale interbeds. The formation is divided
into three main units in the study area: upper, middle, and lower units. The upper unit is composed
of limestone with some weakly argillaceous impurities. Shale and marls are main rocks types in
the middle Sarvak. Finally, the lower Sarvak predominantly consists of marly limestone with shale.
Considering the intensely fractured nature of the Sarvak formation, heavy mud losses were reported
during the drilling. The heavy oil resource in the Sarvak reservoir (OOIP) is estimated at 3.6 × 109

barrels [78].
Lithostratigraphic information and fluid properties for the heavy oil reservoirs at the study

area were collected, assessed, and summarized as presented in Table 9. In assembling this database,
data from various sources such as drilling logs, geophysical logs, and field and laboratory test data
were used. The average magnitudes of reservoir and fluid properties were determined for each
reservoir using the available data. Single values reported for some properties of the reservoirs here are
the average values of the reservoirs’ parameters; while, the properties may change with respect to the
location within the field.

Table 9. Reservoir and fluid properties of reservoirs at the Kuh-e-Mond heavy oil field.

Reservoir Abbreviation Jahrum Sarvak

Lithology Dolomite and Dolomitic Limestone Limestone
Depth (m) 680–900 1100–1200

Thickness (z) (m) 320 100
Net to Gross Ratio (%) 31 47
Net Pay Thickness (m) 99 47

Oil Viscosity (In situ) (cP) 1160 570
Temperature (T) (In situ) ◦F 70 110
Matrix Permeability (mD) 1 0.2–1.4

Fracture Permeability (mD) 300–500 350–500
Porosity (ϕ) (Fraction) 0.19 0.16

Oil Saturation (Fraction) 0.66 0.46

Based on the predictive regression models, if 200 to 250 b/d of steam with 80% to 90% quality
is injected into the formation then CSOR and RF will be in the ranges of 6 to 7.2 and 41% to 49%,
respectively, for the Jahrum HO reservoir. These ranges will be 6.3 to 8 and 37% to 44% for CSOR and
RF in Sarvak HO reservoir. The screening results imply that Jahrum reservoir is technically recoverable
by using steamflooding despite an average rock matrix porosity of 19%. This is mainly because of
other commendatory factors such as depth, thick net pay, and relatively high oil saturation. The Sarvak
reservoir met the technical screening criteria but the Jahrum reservoir is considered a moderately better
candidate. Very low matrix permeability and low oil saturation (<50% PV) lead to lower RF and higher
CSOR in the Sarvak reservoir. However, under current economic conditions, HO exploitation from
these reservoirs remains economically unattractive.

We examined the developed correlations for estimation of CSOR and RF in oil sands and
unconsolidated heavy oil sandstone reservoirs and compared the results with the CSOR estimations
predicted by a correlation proposed by Chu [20]. The results suggest that the new correlations also
can be used reliably to estimate CSOR and RF in oil sands and unconsolidated heavy oil sandstone
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reservoirs. The developed correlations can be considered a general from of correlations to be utilized
for wide ranges of reservoir properties from NFCRs to oil sands and unconsolidated heavy oil
sandstone reservoirs.

During utilization of steam injection in any given heavy oil reservoir, laboratory experiments and
field interposition can serve the operator to avoid or rectify high CSOR by selecting an appropriate
production rate and/or steam injection rate. The recovery and injection rates affect thermodynamic
conditions, steam/oil ratio, and composition of the liquid phase, which is mobilized and moving to
the production well. Hence, utilizing experiments and statistical modeling (i.e., using different flow
rates as various dynamic conditions) which is much inexpensive and yet faster compared with field
trials will be definitely beneficial in systematic assessment of the performance of steamflooding in
any given HO NFCR. Estimation of vital process performance indicators such as CSOR and RF can
provide invaluable directions for optimum design of a recovery technology in terms of flow rate and
thermodynamic status of the fluids. Furthermore, accurate prediction of RF and CSOR for a given HO
NFCR can enable process engineers with reasonable rules of thumb to minimize heat loss, which can
lead to notable steam condensation in the reservoir.

7.3. Limitations and Assumptions for the Correlations of CSOR and RF

Table 10 presents the range of variables contributed in the correlations developed to forecast of
RF and CSOR in NFCRs.

Table 10. Range of variables to estimate RF and CSOR.

Parameter Min Max

Input

Depth (m) 134 1350
Matrix porosity (Fraction) 0.12 0.35
Matrix permeability (mD) 1 400
Fracture permeability (D) 1 1000

Oil viscosity (cP) 6 936
Initial oil saturation (Fraction) 0.3 0.9

Steam quality 0.3 1

Output Recovery factor, RF, (Fraction) 0.4 0.7
Cumulative steam oil ratio (CSOR) 3.0 10.0

We have identified and acknowledged the following sets of limitations for the proposed statistical
models. However, in practice they remain as appropriate and accurate predictive tools:

(1) Porous medium is non-deformable (constant porosity assumption).
(2) For mass, there is no source term except for the steam.
(3) A majority of the experimental data used in this research study have been obtained from the

experiments in two-dimensional (2-D) porous systems.
(4) The correlations are only valid in the range of parameters used in the current study. Ranges of

fluid and porous media properties in oil fields are almost the same as in the experimental studies
considered in this statistical investigation.

(5) The Darcy law is valid throughout the EOR process. Flow in porous media is mostly laminar
(i.e., Re < 1) during steamflooding.

(6) RF and CSOR forecasts are not affected greatly by the geometry of the physical models
(experimental data taken from the literature) used in the experimental works (taken from the
literature). It only influences the residual oil saturation, moderately. This is because the geometry
dominates the shape of the corners and the end points in a porous system. In addition, in these
experiments no changes was observed for a high capillary threshold and permeability with regard
to geometry variations in the porous system.
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(7) There were a certain number of porous media with specific fracture patterns selected for
this statistical study. The proposed statistical models are very accurate for these fracture
configurations. Thus, the only major limitation here is the type of fracture configuration.
Nevertheless, if the effective fracture permeability is known for a porous system with unknown
fracture configuration then the developed statistical models can be used to forecast the RF and
CSOR with an acceptable accuracy.

Steamflooding and its variants utilizing either vertical, inclined, or horizontal wells can be used
for any type of reservoirs regardless of the reservoir rock type if the oil viscosity is less than 5000 cP.
This also includes conventional reservoirs containing light oil. In this case, steam and the resultant
heat in the reservoir serve as stimulant rather than sweeping the oil or lowering down the oil viscosity
(the well-known piston model). The only exception would be highly porous rocks such as diatomite
and chalk which are also structurally very weak when exposed to heat [81,82]. In addition, the
correlations introduced in this paper can be used to assess the performance of steamflooding in
non-fractured reservoirs, as well. In fact, both fractured and non-fractured media are considered
in the correlations and in the case of non-fractured media where there is no natural fractures, those
parameters will be cancelled from the equations and the remaining terms can be used to evaluate
the performance of the process in non-fractured systems (single porosity systems). The proposed
correlations can be used as a proxy to assess the feasibility of the process in the candidate reservoirs.
However, CSOR is a strong indicator of economic feasibility of any thermal operations under the
current economic climate. For example, in Canada any thermal operations with CSORs below 3 are
considered economic. Considering decades of experience in thermal operations in Canada especially
for well-known and commercialised technologies such as SAGD and HCS, wealth of available field
data, and advanced process optimization practices, the CSOR is now down to less than 2. Considering
the case study presented here, this heavy oil field is a poor candidate for steamflooding. However,
utilizing long horizontal wells will increase the oil recovery and will reduce the CSOR in the case
studied. In addition, adopting cyclic steam stimulation processes can reduce the steam requirements,
lower down the CSOR, and increase the RF and oil production rate. Nevertheless, the correlations
developed and presented here can only be used for estimation of RF and CSOR in thermal heavy
oil operations utilizing vertical wells. Clearly, new sets of correlations or models will be needed to
predict performance of steam processes utilizing horizontal wells. Such projects still do not exist
(therefore no filed data is available at the moment) when it comes to carbonate reservoirs. Some steam
injection variants such as HCS process are being tried in bitumen saturated Devonian carbonates in
Alberta, Canada.

8. Conclusions

This article presents new statistical models to forecast cumulative steam to oil ratio (CSOR) and
recovery factor (RF) in naturally fractured reservoirs under steamflooding. The CSOR and RF were
statistically correlated in terms of physical properties of the oil, reservoir fluid and rock properties,
and steam properties. The following conclusions seem reasonable, despite a modest database:

(1) The correlations developed in this study are derived from data obtained from field and laboratory
tests. High correlation coefficients (R2) show that the multivariable regression method used is
a strong predictor of the economic assessment factors CSOR and RF.

(2) The errors involved in even the worst cases were less than 10%, giving confidence that first-order
economic decisions can be made with these relationships.

(3) The parameters considered for regression analysis are not able to forecast the oil production
characteristics of steamflooding in NFCRs if they are used alone. Combination terms for the main
variables were used that led to a reliable outcome.
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(4) Initial oil saturation and oil viscosity have the greatest impact on predictor models for CSOR and
RF. Nevertheless, all of the chosen parameters have a significant influence on the predictions.
Therefore, none of them should be abandoned in the search for a simpler model.

(5) Comparison of statistical correlations developed in this paper, and the previous correlations
shows that the newly defined equations can predict steamflooding efficiency in heavy oil NFCRs
with high accuracy such that the maximum error percentage is lower than 12% for the equations
obtained in this study.

(6) The proposed correlations were applied to predict CSOR and RF in two fractured heavy oil
reservoirs, with apparently good results. This supports the use of these relationships for initial
technical feasibility assessment of VO NFCRs for vertical well steamflooding.
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Nomenclature

Acronyms or Abbreviations
ANOVA Analysis of Variance
CSOR Cumulative Steam to Oil Ratio
CSS Cyclic Steam Stimulation
EIA the U.S. Energy Information Administration
HO Heavy Oil
MCWEB 1000 Cold Water Equivalent Barrels
NFCRs Naturally Fractured Carbonates Reservoirs
NFR Naturally Fractured Reservoir
OSR Oil Steam Ratio
RF Recovery Factor
SD Steam Drive
SF Steamflooding
USGS the United States Geological Survey
VO NFCRs Viscous Oil Naturally Fractured Carbonates Reservoirs
VO Viscous Oil

XHO Extra Heavy Oil

Symbols: Latin, Then Greek

y Average of all data points of dependent variable in Equation (13)

ŷi Predicted data in Equation (13)
ϕ Total effective porosity
.
A rate of change in the planar area of the steam chamber, (m2/t)
µ Dynamic viscosity (kg·m/s or cP)
A Planar area of the steam chamber, (m2)
b Exponent in Cardwell and Parson’s equation for relative permeability (dimensionless)
Cvo Overburden volumetric heat capacity, (MJ/m3·K)
Cvr Initial reservoir volumetric heat capacity, (MJ/m3·K)
D Reservoir depth, (m)
e Error value in Equations (7), (8) and (12)
g Gravity acceleration, (m/year 2)
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H Enthalpy, (MJ/m3)
h Height of reservoir above producer, (m)
Hlv Latent heat of condensation of steam, (MJ/m3)
Hs Height of the steam chamber, (m)
k Number of regressor variables
K Permeability, (m2)
Kf Intrinsic permeability of the fracture, (Darcy or m2)
Km Permeability of matrix in the model, (Darcy or m2)
Kt Overburden thermal conductivity, (MJ/m·K·year)
n Number of observations or data points in Equation (13)
PV Pore volume, (m3)
qs Steam injection rate, (bbl/d)
RF Recovery Factor
S Liquid saturation
T Temperature, (◦C)
t Time since first steam injection, (year)
Vsz Volume of the steam chamber, (m3)
xi Regression variables in Equations (7) to (12)
xs Steam quality
y System response in Equations (7), (9), (10) and (12)
yi Real or observed data in Equation (13)
β Effective sweep efficiency factor, dimensionless
βi Regression coefficients in Equations (5) to (7)
∆ Difference operator
∆So Initial minus residual oil saturation, dimensionless
∆T Temperature rise above initial condition, (◦C)
ηs Effective sweep efficiency, dimensionless
νs Kinematic viscosity of the oil at the temperature of the steam, (m2/year)

ρ Density of fluid, (kg/m3)

Subscripts

f fracture

i number of test runs
m matrix
max maximum

min minimum

Metric Conversion Factors

◦F (◦C × 1.8) + 32

1 barrel oil 0.159 m3

1 psi 6.8947 kPa
1 psi/ft 22.62 kPa/m or 22.62 MPa/km
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