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Abstract: The paper aims to realize a rapid online estimation of the state-of-power (SOP) with multiple
constraints of a lithium-ion battery. Firstly, based on the improved first-order resistance-capacitance
(RC) model with one-state hysteresis, a linear state-space battery model is built; then, using the dual
extended Kalman filtering (DEKF) method, the battery parameters and states, including open-circuit
voltage (OCV), are estimated. Secondly, by employing the estimated OCV as the observed value to
build the second dual Kalman filters, the battery SOC is estimated. Thirdly, a novel rapid-calculating
peak power/SOP method with multiple constraints is proposed in which, according to the bisection
judgment method, the battery’s peak state is determined; then, one or two instantaneous peak powers
are used to determine the peak power during T seconds. In addition, in the battery operating process,
the actual constraint that the battery is under is analyzed specifically. Finally, three simplified versions
of the Federal Urban Driving Schedule (SFUDS) with inserted pulse experiments are conducted to
verify the effectiveness and accuracy of the proposed online SOP estimation method.

Keywords: state of power; peak power; dual extended Kalman filters; state of charge; parameter
identification

1. Introduction

In recent years, the environmental pollution and the energy crisis have become more and more
serious, resulting in conventional fuel vehicles being increasingly difficult to adapt to the development
needs around the world [1]. In order to reduce tail gas emissions and energy consumption, partial
and full replacement of fossil fuels with electricity in vehicles has become the irresistible trend in the
automotive industry [2–4]. Along with the increasing strengths of hybrid electric vehicles (HEVs),
plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs) across the world, a battery
management system (BMS) is becoming a crucial core component of such vehicles [5–8].

The BMS is designed to guarantee safe, reliable, and efficient battery operation and the major
functions usually include state monitoring, state estimation, battery thermal management, and battery
balancing, etc. [6–12]. In battery management, the accurate estimation of various states of the battery,
including state-of-charge (SOC), state-of-health (SOH), and state-of-power (SOP), is a priority [13–21].

In general, the more accurate the battery model is, the more precise are the estimations of a
battery’s states. In previous studies, there has already been a variety of battery models. Battery models
can be divided into three main types: electrochemical model, empirical model, and equivalent circuit
model [13,22–26]. As battery characteristics change with battery age and temperature variations,
some literature has taken the influence of aging and temperature into account in battery models and
modeling [27–31].
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A battery’s state-of-power (SOP) is defined as the ratio of peak power to nominal power.
According to Ref. [20], under the designed voltage, current, SOC, and power constraints, the maximum
power that a battery can persistently provide for T seconds is defined as the peak power.

On the one hand, to satisfy the required discharge power of vehicles for starting, speeding
up, climbing, and the required charge power for regenerative braking and quick charge without
over-discharge and overcharge in BEVs, PHEVs, and HEVs, and on the other hand to realize the
optimization of power distribution between the engine and the electric motor in PHEVs and HEVs, an
accurate real-time peak power/SOP estimation is of great importance [19,20,32–36].

To date, various peak power/SOP estimation methods have already been proposed [19,20,32–39].
The hybrid pulse power characterization (HPPC) method was first put forward by the Partnership for
New Generation Vehicles (PNGV), but this method only took battery voltage constraint into account
based on a primitive model and did not define the prediction time horizon well [19]. Based on the
HPPC method, Plett [20] made an improvement in mainly two aspects. For one thing, Plett considered
the designed current constraint, the power constraint, and the SOC constraint. For another, Plett added
a specific prediction of time horizon T seconds to the peak power calculation. Ref. [33] employed
a dynamic electrochemical polarization battery model and proposed the continuous peak power
estimation method for multi-sampling intervals but needed a lot of prior experiments to conduct
offline parameter identification. As an improvement to Ref. [33], Ref. [34] adopted the recursive least
square algorithm to obtain the real-time battery parameters so that the SOP could be predicted without
considering the battery age and environment. In Ref. [35], a combined constraint of current and voltage
was proposed and verification experiments providing the true value of the battery peak power were
first designed. Ref. [36] studied the performance of the SOP estimation algorithms against different
health conditions. Ref. [37] offered a single-step prediction and a long-term prediction separately
according to the available information. In Ref. [38], an adaptive unscented Kalman filter was employed
to develop a joint estimator for battery state-of-energy (SOE) and SOP. In Ref. [39], the robustness of
the SOP prediction over a large temperature range was analyzed.

However, the previous peak power/SOP estimation methods have never analyzed the actual
constraint that the battery is under in the battery operating process, and almost all require a large
amount of calculation. In this paper, based on the improved first-order RC model with one-state
hysteresis and the DEKF method, the battery parameters and states including OCV and SOC are
estimated. In addition, the actual constraints of a battery are first specifically analyzed and a novel
rapid-calculating peak power/SOP method with multiple constraints is proposed in which, according
to the bisection judgment method, the battery’s peak state is determined; then, one or two instantaneous
peak power is used to determine the peak power during T seconds. Furthermore, three SFUDSs with
inserted pulse experiments are conducted to verify the effectiveness and accuracy of the proposed
online peak power/SOP estimation method. The results of the experiment and Simulink indicate
that the SOC based on the DEKF method has a higher accuracy of 0.28% in root mean square error
(RMSE) than the method based on the offline measured OCV-SOC relationship of 1.98% accuracy
in RMSE; additionally, as the prediction time horizon increases from 10 s to 30 s, the ratio of the
calculation time of the proposed method to the traditional method sharply decreases from 71.1% to
23.5%, with the same accuracy, which indicates the proposed method has an increasing advantage in
terms of calculation time.

2. Online Parameter and State Estimation

2.1. Battery Model

An accurate battery model is the basis of an accurate estimation of the battery’s states. However, to
adapt to the battery management system, the battery model cannot have great complexity. In Ref. [23],
the practicality of twelve equivalent circuit models were systematically compared, including model
complexity, model accuracy, and generalizability to multiple batteries. The comparison results indicate
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that the first-order RC model and the first-order RC model with one-state hysteresis seem to be the best
choices for lithium-ion batteries. Considering both the model accuracy and complexity, the improved
first-order RC model with one-state hysteresis is adopted in this paper. The schematic of the battery
model is shown in Figure 1.
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Here i is the load current (assumed positive for charge, negative for discharge), ut is the terminal
voltage, OCV is the open-circuit voltage, uh is the hysteresis voltage, Ri (Rdis for discharge, Rch for
charge) is the ohmic resistance, Rd is the diffusion resistance, and Cd is the diffusion capacitance.
The electrical behavior can be expressed by Equation (1). M is the maximum polarization due to
hysteresis, γ tunes the rate of decay, and both M and γ are positive. sgn(i) denotes the sign function
of the i; Cn is the battery nominal capacity; ηi represents the battery coulombic efficiency; and ηi = 1
for discharge and ηi ≤ 1 for charge; τ represents the time constant of a parallel resistance-capacitance
circuit; and τ = CdRd: 

.
uh = −

∣∣∣ ηi iγ
Cn

∣∣∣uh +
∣∣∣ ηi iγ

Cn

∣∣∣×M× sgn(i)
.

ud = − 1
CdRd

ud +
1
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i

ut = uoc + uh + ud + iRi

(1)

Assuming that the time step of sampling is ∆t, Equation (1) can be discretized with standard
techniques as Equation (2):

uh,k+1 = exp
(
−
∣∣∣ ηi ikγ∆t

Cn

∣∣∣)uh,k +
(

1− exp
(
−
∣∣∣ ηi ikγ∆t

Cn

∣∣∣))×M× sgn(ik)

ud,k+1 = exp
(
−∆t

τ

)
ud,k + Rd

(
1− exp

(
−∆t

τ

))
ik

ut,k = uoc,k + uh,k + ud,k + ikRi

(2)

2.2. DEKF-Based Parameter and SOC Estimation

2.2.1. Online Parameter and State Estimation Based on DEKF

In this paper, the dual extended Kalman filter was chosen to realize the online real-time estimation
of a battery’s parameters and states. Wan and Nelson [40] proposed the DEKF algorithm in 2001.
Plett [16,17] introduced the application of the DEKF algorithm to the estimation of a battery’s states
and parameters in detail. The DEKF algorithm is composed of a state filter and a weight filter. The state
filter generates state estimations by applying the parameters from the weight filter while the weight
filter generates parameter estimations by applying the states from the state filter concurrently. Assume
that the state-space model of battery states is expressed as Equation (3) and the state-space model of
battery parameters is expressed as Equation (4). In Equations (3) and (4), x is state vector, u is system
excitation, θ is parameter vector, yk, dk are the measurement vectors and wk, vk, rk, ek are assumed to
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be independent Gaussian white noise of covariance matrices Qx, Rx, Qθ , Rθ , respectively. Therefore,
the DEKF algorithm can be summarized as shown in Figure 2.{

xk = f (xk−1, uk−1, θk−1) + wk−1
yk = g(xk, uk, θk) + vk

(3)

{
θk = θk−1 + rk−1

dk = g(xk, uk, θk) + ek
(4)
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In Figure 2, Ak−1 =
∂ f (xk−1,uk−1,θ−k−1)

∂xk−1
|xk−1=x+k−1

, Cx
k =

∂g(xk ,uk ,θ−k )
∂xk

|xk=x−k
, Cθ

k =
dg(x−k ,uk ,θ)

dθ |θ=θ−k
.

Adopting a suitable state vector compatible with the novel SOP estimation, the algorithm can
reduce the computation cost for the battery state estimation. In this paper, the state vector x is defined
as x = [uh, ud, uoc]

T and the parameter vector θ is defined as θ = [Rch, Rdis, Rd, Cd, M, γ]T . Assuming
that uoc changes slowly, we obtain Equation (5) as follows:

uoc,k+1 = uoc,k (5)

Substituting Equations (2) and (5) into Equations (3) and (4), we obtain the battery’s state-space
model Equations (6) and (7):{

xk = f (xk−1, uk−1, θk−1) + wk−1 = Ak−1xk−1 + Bk−1uk−1 + wk−1
ut,k = g(xk, uk, θk) + vk = Ckxk + Dkuk + vk

(6)

{
θk = θk−1 + rk−1

ut,k = g(xk, uk, θk) + ek
(7)
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Here, Ak−1 =

 Fk−1 0 0

0 exp
(
− ∆t

τk−1

)
0

0 0 1

, Fk−1 = exp
(
−
∣∣∣ ηi,k−1ik−1γk−1∆t

Cn

∣∣∣), uk−1 =

[
1

ik−1

]
,

Bk−1 =

 sgn(ik−1)(1− Fk−1)Mk−1 0

0 Rd,k−1(1− exp
(
− ∆t

τk−1

)
)

0 0

, Ck =
[

1 1 1
]
, Dk =

[
0 Ri,k

]
.

To compute Cθ
k , we need to expand a total differential, as shown in Equations (8)–(10):

dg
(

x−k , uk, θ
)

dθ
=

∂g
(
x−k , uk, θ

)
∂θ

+
∂g
(

x−k , uk, θ
)

∂x−k

dx−k
dθ

(8)

dx−k
dθ

=
∂ f
(

x+k−1, uk−1, θ
)

∂θ
+

∂ f
(

x+k−1, uk−1, θ
)

∂x+k−1

dx+k−1
dθ

(9)

dx+k−1
dθ

=
dx−k−1

dθ
− Kx

k−1

dg
(

x−k−1, uk−1, θ
)

dθ
(10)

The middle items of Equations (8)–(10) can be specified as Equations (11)–(16):

∂g
(

x−k , uk, θ
)

∂θ
=
[

ich,k idis,k 0 0 0 0
]

(11)

∂g
(

x−k , uk, θ
)

∂x−k
=
[

1 1 1
]

(12)

∂ f (x+k−1,uk−1,θ)
∂θ =

 0 0 0 0 sgn(ik−1)(1− Fk−1) (sgn(ik−1)Mk−1 − uh,k−1)
∣∣∣ ηi,k−1ik−1∆t

Cn

∣∣∣Fk−1

0 0 a1,k−1 a2,k−1 0 0
0 0 0 0 0 0

 (13)

where a1,k−1 and a2,k−1 can be calculated by Equations (14) and (15).

a1,k−1 =

(
ud,k−1∆t

R2
d,k−1Cd,k−1

− ik−1∆t
Cd,k−1Rd,k−1

)
exp

(
− ∆t

Cd,k−1Rd,k−1

)
− ik−1(exp

(
− ∆t

Cd,k−1Rd,k−1

)
− 1) (14)

a2,k−1 =

(
ud,k−1∆t

C2
d,k−1Rd,k−1

− ik−1∆t
C2

d,k−1

)
exp

(
− ∆t

Cd,k−1Rd,k−1

)
(15)

∂ f
(

x+k−1, uk−1, θ
)

∂x+k−1
=

 Fk−1 0 0

0 exp
(
− ∆t

τk−1

)
0

0 0 1

 (16)

Assuming dx−0
dθ = zeros(3, 6), Equations (8)–(10) can be used to calculate Cθ

k by an iterative process.
Combined with the DEKF in Figure 2, the parameters and states can be estimated in real time.

2.2.2. Online SOC Estimation Based on DEKF

According to the definition of SOC in Ref. [18], we can deduce the SOC at time t moment as
Equation (17):

z(t) =
Q0 + ∆Q

Cn
= z0 + ηi

∫ t

0

i
Cn

dt (17)
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where Q0 is the initial capacity, ∆Q is the changed capacity from time 0 to t moment, and z0 is the
initial SOC. A discrete time form can be written as Equation (18):

zk = zk−1 +
ηi∆t
Cn

ik−1 (18)

In Section 2.2.1, the open-circuit voltage uoc has been estimated with DEKF. Although with the
offline measured OCV− SOC relationship we can find the SOC value, this method is not accurate
enough because of the influence of aging and temperature on the OCV− SOC relationship [15,41].
In addition, although SOC obtained by the OCV − SOC relationship taking battery aging and
temperature into account can be precise, extensive experiments are required [42,43]. Hence, in this
section, a novel SOC estimation method based on open-circuit voltage and DEKF is proposed.

The relationship between OCV and SOC is expressed as Equation (19) and the discrete time form
is shown in Equation (20):

uoc = k0 + k1z + k2z2 + k3z3 + k4z4 + k5z5 + k6z6 (19)

uoc,k = k0,k + k1,kzk + k2,kz2
k + k3,kz3

k + k4,kz4
k + k5,kz5

k + k6,kz6
k (20){

zk = f (xk−1, uk−1, θk−1) + wk−1 = zk−1 +
ηi,k∆t

Cn
ik−1 + wk−1

uoc,k = g(xk, uk, θk) + vk = k0,k + k1,kzk + k2,kz2
k + k3,kz3

k + k4,kz4
k + k5,kz5

k + k6,kz6
k + vk

(21)

{
θk = θk−1 + rk−1

uoc,k = g(xk, uk, θk) + ek = k0,k + k1,kzk + k2,kz2
k + k3,kz3

k + k4,kz4
k + k5,kz5

k + k6,kz6
k + ek

(22)

To estimate SOC with DEKF, we redefine the state vector x = [z] and the parameter vector
θ = [k0, k1, k2, k3, k4, k5, k6]

T . Rewriting Equations (18) and (20) in the form of Equations (3) and (4),
we obtain Equations (21) and (22).

Taking the estimated value uoc from Section 2.2.1 as the measurement value in Equations (21) and
(22) and based on the DEKF algorithm in Figure 2, we can estimate the SOC value and the parameter

vector θ = [k0, k1, k2, k3, k4, k5, k6]
T . Similarly, assuming dx−0

dθ = zeros(1, 7), by an iterative process
Equations (8)–(10) can be used to calculate Cθ

k for estimating SOC.
Combined with Equations (21) and (22), the middle items of Equations (8)–(10) can be specified as

shown in Equations (23)–(26):

∂g
(

x−k , uk, θ
)

∂θ
=
[
1, zk, z2

k , z3
k , z4

k , z5
k , z6

k

]
(23)

∂g
(

x−k , uk, θ
)

∂x−k
= k1,k + 2k2,kzk + 3k3,kz2

k + 4k4,kz3
k + 5k5,kz4

k + 6k6,kz5
k (24)

∂ f
(

x+k−1, uk−1, θ
)

∂θ
= [0, 0, 0, 0, 0, 0, 0] (25)

∂ f
(

x+k−1, uk−1, θ
)

∂x+k
= [1] (26)

3. State-of-Power Estimation

According to the states and parameters estimated in Section 2, the peak power and the
corresponding SOP will be predicted in this section. According to Ref. [20], the peak power, based
on present battery-pack conditions, is the maximum power that may be maintained constant for T
seconds without violating preset operational design limits on battery voltage, SOC, power, or current.
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3.1. Peak State

To predict the peak power, we should assume that during the prediction time horizon of peak
power (i.e., T seconds), the battery is under peak state condition. When the battery is working under
peak state condition, the battery is in either constant current (CC) limit condition or constant voltage
limit (CV) condition, as shown in Figure 3.Energies 2018, 11, x  7 of 20 
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The battery voltage changes with battery current. Reviewing the battery model in Figure 1,
we discover that when the battery is in charge under a constant current limit, the voltage gradually
increases because the OCV increases and because of the continuity of the voltage over the ohmic
resistors, ud and uh until the voltage limit. Then, the battery will be in charge under a constant voltage
limit until the current reaches the margin. Similarly when the battery is in discharge under a constant
current limit, the voltage will gradually decrease until the voltage limit; then, the battery will be in
discharge under constant voltage limit until the current reaches the margin.

3.2. Rapid-Calculating Peak Power/SOP Method

Assume during the peak power prediction time horizon T seconds that the constant current
process lasts for TC seconds and the constant voltage process lasts for TV seconds. Corresponding
to the sampling time ∆t, T seconds contains KT sampling points, TC seconds contains KC sampling
points, and TV seconds contains KV sampling points.

3.2.1. Traditional Peak Power/SOP Method

According to the introduction above, the traditional peak power during time horizon T seconds
can be described as follows: based on the battery states and parameters at kth moment, calculate the
product of the current and the voltage from the kth moment to the (k + KT)th moment in peak state;
then, among the KT product values, the product value close to zero represents the peak power during
time horizon T seconds.

3.2.2. Rapid-Calculating Peak Power/SOP Method

According to Figure 3, the charge peak power during T seconds only needs to work out the
minimum between the peak power at the kth moment and the peak power at the (k + KT)th moment;
and the discharge peak power during T seconds only needs to work out the maximum between peak
power at the (k + KC)th moment and peak power at the (k + KT)th moment, that is, the discharge
peak power during T seconds is the peak power at the (k + KT)th moment.
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3.3. Single Constraint

In this section, the peak power under a single constraint—including designed power constraint,
current constraint, SOC constraint, and voltage constraint—will be discussed.

3.3.1. Designed Power Constraint

The battery peak power must satisfy the designed battery power constraint shown in Equation (27):{
0 ≤ PPch

k ≤ PPbat,ch

PPbat,dis ≤ PPdis
k ≤ 0

(27)

3.3.2. Current Constraint

Assume that the battery works under the battery-designed constant current in the whole

prediction time horizon; that is, the current , the system excitation uk+p = ubat
k =

[
1, ibat

]T
,

where p ∈ {p ∈ N | p ≤ KT}, and especially Dk = [0, Rch,k] in charge peak state and Dk = [0, Rdis,k]

in discharge peak state. To calculate the peak power, the terminal voltage ut,k must be predicted.
Rewrite Equation (6) as Equations (28) and (29):

xk+1 = Akxk + Bkuk (28)

ut,k+1 = Ck+1xk+1 + Dk+1uk+1 (29)

According to Equation (28), the state vector and at the (k + p)th moment can be expressed as
Equation (30). Substituting Equation (30) into Equation (29), Equation (31) can be deduced:

xk+p = Ap
k xk + (

p

∑
n=1

An−1
k Bk)ubat

k (30)

ut,k+p = Ck+1 Ap
k xk + (Ck+1(

p

∑
n=1

An−1
k Bk) + Dk+1)ubat

k (31)

Therefore, according to the rapid-calculating method in Section 3.2, the peak power at the kth
moment under the battery designed constant current can be expressed by Equations (32) and (33).

PPch
k,i = min

(
ut,kibat,ch , ut,k+1ibat,ch , . . . , ut,k+KT ibat,ch

)
= ut,kibat,ch (32)

PPdis
k,i = max

(
ut,kibat,dis , ut,k+1ibat,dis , . . . , ut,k+KT ibat,dis

)
= ut,k+KT ibat,dis (33)

3.3.3. SOC Constraint

The peak power with SOC constraint was first proposed by Plett [20]. For the sake of protecting
the battery, the SOC must have design limits: that is, SOCmin ≤ SOC ≤ SOCmax. For a constant current
in prediction time horizon T, the SOC can be expressed as Equation (34):

SOCk+kT = SOCk +
ηikT∆tik

Cn
(34)

Therefore, the maximum charge current iSOC,ch and the minimum discharge current iSOC,dis under
SOC constraint can be calculated by Equations (35) and (36):

iSOC,ch =
SOCmax − SOCk

ηikT∆t
Cn

(35)
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iSOC,dis =
SOCmin − SOCk

ηikT∆t
Cn

(36)

According to the rapid-calculating method in Section 3.2, the peak power at the kth moment
under the SOC constraint can be expressed by Equations (37) and (38) and ut,k and ut,k+KT can be
calculated by Equation (31):

PPch
k,SOC = min

(
ut,kiSOC,ch, ut,k+1iSOC,ch, . . . , ut,k+KT iSOC,ch

)
= ut,kiSOC,ch (37)

PPdis
k,SOC = max

(
ut,kiSOC,dis, ut,k+1iSOC,dis, . . . , ut,k+KT iSOC,dis

)
= ut,k+KT iSOC,dis (38)

3.3.4. Voltage Constraint

Assume that the battery works under a constant voltage limit in the whole prediction time horizon
T; that is, the voltage ut,k+p = ubat

t where p ∈ {p ∈ N | p ≤ KT}.
Rewrite Equation (29) as Equation (39):

ik =
ubat

t − Ckxk
Ri,k

(39)

Substitute Equation (39) into Equation (28) to deduce Equation (40):

xk+1 = Akxk + Bk

[
1

ubat
t −Ckxk

Ri,k

]

= Akxk +
[

B1,k B2,k

][ 1
ubat

t −Ckxk
Ri,k

]
= (Ak −

B2,kCk
Ri,k

)xk + B1,k +
B2,kubat

t
Ri,k

(40)

where B1 and B2 represent the first and second column of B, respectively.
Equation (40) can be rewritten by iteration as Equation (41):

xk+p =

(
Ak −

B2,kCk

Ri,k

)P
xk +

p

∑
n=1

(
Ak −

B2,kCk

Ri,k

)n−1
(B1,k +

B2,kubat
t

Ri,k
) (41)

Substitute Equation (41) into Equation (39) to deduce Equation (42):

ik+p =
ubat

t
Ri,k
− Ck

Ri,k
[

(
Ak −

B2,kCk

Ri,k

)P
xk +

p

∑
n=1

(
Ak −

B2,kCk

Ri,k

)n−1
(B1,k +

B2,kubat
t

Ri,k
)] (42)

Therefore, according to the rapid-calculating method in Section 3.2, the peak power under voltage
constraint can be expressed by Equations (43) and (44):

PPch
k,v = min

(
ubat,ch

t ik, ubat,ch
t ik+1, . . . , ubat,ch

t ik+KT

)
= ubat,ch

t ik+KT (43)

PPdis
k,v = max

(
ubat,dis

t ik, ubat,dis
t ik+1, . . . , ubat,dis

t ik+KT

)
= ubat,dis

t ik+KT (44)

3.4. Multiple Constraints

The peak power in single-designed power, current, SOC, and voltage constraints has been
discussed above. In this section, the peak power under multiple constraints of current, voltage, SOC,
and power will be discussed.
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3.4.1. Current and Voltage Dual-Constraint

The peak power in the hybrid current and voltage peak state will be determined in this part,
assuming that the constant current peak state lasts for TC seconds (i.e., TC = KC∆t) and the constant
voltage peak state lasts for TV seconds (i.e., TV = KV∆t).

Making ubat
t replace ut,k+p in Equation (31), we can get the solution p = λ with the

bisection method.
If λ ≥ KT , ut,k+p will not reach ubat

t in the whole T seconds time horizon; thus, KC = KT .
If 0 ≤ λ < KT , the whole peak state will be constant current state first, then switches to constant

voltage state; thus, KC = λ, KV = KT − λ.
If λ < 0, KC = 0, the whole peak state will keep in constant voltage state; thus, KV = KT .
In the whole peak state, the voltage and the current can be expressed by Equations (45) and (46).

xk+KC in Equation (46) can be expressed by Equation (47): ut,k+p = Ck+1 Ap
k xk + (Ck+1(

p
∑

n=1
An−1

k Bk) + Dk+1)ubat
k , p ≤ KC

ut,k+p = ubat
t , p > KC

(45)


it,k+p = ibat, p ≤ KC

ik+p =
ubat

t
Ri,k
− Ck

Ri,k
[
(

Ak −
B2,kCk

Ri,k

)P−KC
xk+KC +

p−KC

∑
n=1

(
Ak −

B2,kCk
Ri,k

)n−1
(B1,k +

B2,kubat
t

Ri,k
)], p > KC

(46)

xk+KC = AKC
k xk + (

KC

∑
n=1

An−1
k Bk)ubat (47)

The peak power of every sampling time in the peak power state can be calculate by Equation (48).
According to the rapid-calculating method proposed in Section 3.2, the peak power expression under
dual current and voltage constraints of the whole peak power state can be obtained, as shown in
Equations (49) and (50):

PPk+p = ut,k+pik+p (48)

PPch
k,iv = min

(
PPk, PPk+1, . . . , PPk+KT

)
= min

(
PPk, PPk+KT

)
(49)

PPdis
k,iv = max

(
PPk, PPk+1, . . . , PPk+KT

)
= max

(
PPk+KC , PPk+KT

)
= PPk+KT (50)

3.4.2. Multiple Constraints of Current, Voltage, SOC, and Power

Taking multiple constraints of current, voltage, SOC, and power into account, we can obtain the final
peak power during prediction time horizon T at the kth moment, as shown in Equations (51) and (52):

ppch
k = min

(
PPch

k,iv, ppch
k,SOC, ppbat,ch

)
(51)

ppdis
k = max

(
PPdis

k,iv, ppdis
k,SOC, ppbat,dis

)
(52)

3.5. SOP Calculation

As the peak power of the battery has been obtained, the state-of-power can be calculated by
Equations (53) and (54). Pn represents the nominal power of the battery:

SOPch
k =

PPch
k

Pn,ch × 100% (53)

SOPdis
k =

PPdis
k

Pn,dis × 100% (54)
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4. Experimental Design

4.1. Test Bench and Experiment Object

The test structure of the experimental system is shown in Figure 4, which consisted of an Arbin
battery test system BT-5HC-5V/100 A, a battery pack, and a host computer. The test equipment
BT-5HC-5V/100 A had 3 scales (100 A/10 A/1 A) and its operating voltage was 0–5 V. The resolution
of the current and voltage was ± 0.5‰.Energies 2018, 11, x  11 of 20 
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Figure 4. Test bench.

A battery pack consisting of 10 Panasonic NCR18650PF lithium ion batteries was chosen for the
test. The designed parameters of NCR18650PF battery are shown in Table 1. The battery pack in this
experiment had a nominal capacity of 26.6 Ah and its maximum charge and minimum discharge
power were 250 W and −320 W, respectively. The designed upper and lower bounds of its voltage
were 4.2 V and 2.5 V, respectively, and the charge and discharge bounds of its current were 2 C and −3
C, respectively. The C-rate is defined as the ratio of battery operation current to the manufacturer’s
rated capacity (in ampere-hours) [19]. Briefly speaking, in this paper, 1 C corresponds to 26.6 A.

Table 1. The designed parameters of NCR18650PF battery.

Battery Parameters Value

Anode material MnO2
Cathode material Li

Cn (Ah) 26.6
ibat,ch (A) 53.2
ibat,dis (A) −79.8
ubat,ch

t (V) 4.2
ubat,dis

t (V) 2.5
PPbat,ch (W) 250
PPbat,dis (W) −320

SOCmin 0.2
SOCmax 0.9

4.2. Experimental Procedure

In order to verify the novel SOP estimation algorithm, a simplified version of the Federal Urban
Driving Schedule (SFUDS) with an inserted pulse experiment was conducted. The operational voltage
and current profile are depicted in Figure 5.
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Figure 5. The operational voltage and current profile under the Federal Urban Driving Schedule
(SFUDS).

It can be noticed that the maximum constant charge current (2 C) pulses and minimum discharge
constant current (−3 C) pulses were added to the profile to measure the true peak power of the battery
pack. If the battery pack terminal voltage reaches the voltage limit in the constant pulse, the battery
pack will operate at constant voltage. During the operation, the charge current pulses and the discharge
current pulses were inserted every two SFUDS cycles.

Experiments of three sets of SFUDS with a 10 s pulse, a 20 s pulse, and a 30 s pulse were conducted.
The close-to-zero values of the power measured in the pulses are regarded as the true peak power of
the battery pack.

5. Verification and Discussion

5.1. Verification for Battery Model

According to the DEKF-based parameters and state estimations, the battery pack terminal voltage
can be calculated. In Figure 6, the results of the battery terminal voltage obtained based on DEKF
simulation and the battery terminal voltage obtained based on the experimental test with a 10 s pulse
are compared. The RMSE of the terminal voltage is 0.037 V, which indicates the battery with the
DEKF-based parameters and states had good accuracy.
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5.2. Verification for the DEKF-Based OCV Estimation

The results of the OCV obtained based on DEKF simulation and the OCV obtained based on offline
experimental tests are compared in Figure 7, which shows the RMSE of OCV is 0.0218 V. As shown in
Figure 7, by the end of the experiment, the error is relatively large because the real OCV changes fast
in that stage; however, the process noise covariance Qx in Section 2.2.1 was set as a constant value in
the whole operating process. This does not have an enormous impact on the state estimation owing to
the fact that HEVs, PHEVs, and BEVs barely operate in such a SOC range.
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5.3. Verification for the SOC Estimation

According to the OCV based on DEKF, we can calculate the SOC by using the offline measured
OCV-SOC relationship, which is called the OCV method. In addition, the SOC was estimated with the
DEKF method given in Section 2.2.2.
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The SOC estimation result based on the OCV method and the DEKF method are compared with
the true SOC shown in Figure 8. The results indicate that although the estimation of SOC based on
the OCV method has an accuracy of 1.98% in RMSE, the estimation based on the DEKF method has a
higher accuracy of 0.28% in RMSE.
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5.4. Verification of the Peak Power and SOP Estimation

In what follows, we assume that SOCmin = 0.2 and SOCmax = 0.9. The peak power estimation
result has been plotted in Figure 9a. The orange dotted lines represent the actual power at every
sampling point and the blue dotted line and the yellow solid line represent the estimated charge peak
power in 10 s and the estimated discharge peak power in 10 s, respectively. Finally, the black circles
represent the true peak power in the pulse of 10 s.Energies 2018, 11, x  14 of 20 
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Both the estimated charge and the discharge peak power curves go through the black circles
nicely. The relative error between the estimated peak power and the measured peak power is shown
in Figure 9b.
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Figure 10a,b represent the charge and discharge peak power, respectively, under multiple
constraints of current, voltage, SOC, and designed power. If the peak power under multiple
constraints runs over the designed power constraint, we stipulate that the peak power is equal
to the designed power.
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Figure 10. Battery peak power under multiple constraints: (a) charge peak power; (b) discharge
peak power.

As shown in Figure 10a segment I, the current calculated by Equation (35) increases from zero;
therefore, the peak power under the SOC constraint is the minimum. In segment II, the battery operates
in constant voltage peak state at all times so the voltage constraint plays a decisive role. In segment III,
the battery reaches the constant current peak state first and then converts to constant voltage peak state;
the current and voltage constraints jointly limit the peak power. In segment IV, the battery operates in
constant current peak state at all times and the current constraint plays a decisive role.

As shown in Figure 10b segment I, the battery operates in constant current peak state at all times
so the current constraint plays a decisive role. Then, the battery SOC gradually reaches its limit. Hence,
in segment II the battery peak power is under SOC constraint.

Based on Equations (53) and (54), the results of SOP estimation and relative error results are
shown in Figure 11a,b, respectively.Energies 2018, 11, x  15 of 20 

 

(a) (b) 

Figure 11. (a) SOP under multiple constraints; (b) Relative errors. 

5.5. Verification of the Rapid-Calculating Method 

As shown in Figure 5, three typical charge pulses 1, 2, 3 corresponding to the CV pulse, CC-CV 
pulse, and CC pulse, respectively, were chosen to analyze in Figure 12. In the CC pulse, both the 
experimental power and the estimated power increase gradually and the power at the initial moment 
is the minimum power (i.e., peak power in the CC pulse). In the CV pulse, both the experimental 
power and the estimated power decrease gradually and the power at the last moment is the minimum 
power (i.e., peak power in CV pulse). 

(a) (b) 

 
(c) 

Figure 12. Pulse peak power: (a) CC pulse; (b) CV pulse; (c) CC-CV pulse.  

Figure 11. (a) SOP under multiple constraints; (b) Relative errors.



Energies 2018, 11, 283 16 of 20

5.5. Verification of the Rapid-Calculating Method

As shown in Figure 5, three typical charge pulses 1, 2, 3 corresponding to the CV pulse, CC-CV
pulse, and CC pulse, respectively, were chosen to analyze in Figure 12. In the CC pulse, both the
experimental power and the estimated power increase gradually and the power at the initial moment
is the minimum power (i.e., peak power in the CC pulse). In the CV pulse, both the experimental
power and the estimated power decrease gradually and the power at the last moment is the minimum
power (i.e., peak power in CV pulse).
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In the CC-CV pulse, both the experimental power and the estimated power increase first and
then decrease; the smaller one of the power at the initial moment and the power at the last moment is
the minimum power (i.e., peak power in CC-CV pulse). Based on the above analysis, the method that
calculates peak power during T seconds through one or two instantaneous peak powers proposed in
Section 3.2 is proven to be effective.

For further verification, the rapid-calculating peak power/SOP method (RCM) is compared with
the traditional method (TRM) in terms of accuracy and calculation time (Table 2). Analyzing Table 2,
we can draw the following conclusions: (1) The RCM has the same accuracy as TRM; (2) The RCM
has a significant improvement in terms of calculation efficiency; (3) As the prediction time horizon
increases from 10 s to 30 s, the ratio of the RCM calculation time to TRM calculation time sharply
decreases from 71.1% to 23.5%, which indicates the RCM has an increasing advantage in terms of
calculation time; (4) As the prediction time horizon increases from 10 s to 30 s, the estimated RMSE
gradually increases.
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Table 2. The comparison between the rapid-calculating method (RCM) and the traditional method (TRM).

PPch_RMSE
(W)

PPdis_RMSE
(W)

SOPch_RMSE
(%)

SOPdis_RMSE
(%)

Time
(s)

tRCM/tTRM
(%)

Pulse_10s_RCM 3.095 3.330 1.2 1.0 7.402 71.1
Pulse_10s_TRM 3.095 3.330 1.2 1.0 10.409 /
Pulse_20s_RCM 6.070 4.497 2.4 1.4 8.784 38.2
Pulse_20s_TRM 6.070 4.497 2.4 1.4 23.014 /
Pulse_30s_RCM 8.351 5.505 3.3 1.7 10.801 23.5
Pulse_30s_TRM 8.351 5.505 3.3 1.7 45.876 /

6. Conclusions

This article firstly introduced the definition and current research status of peak power/SOP.
Then, based on the improved first-order RC model with one-state hysteresis, and using the DEKF
method, the battery parameters and states including OCV were estimated. Furthermore, by employing
the estimated OCV as the observed value to build the second dual Kalman filters, the battery SOC
was estimated. In particular, the rapid-calculating estimation method of peak power/SOP under
single constraint and multiple constraints was explored. Finally, the estimation method of OCV, SOC,
and peak power/SOP was verified, and the actual constraint of a battery was analyzed specifically.
Three conclusions can be drawn as follows:

(1). The improved first-order RC model with one-state hysteresis and with parameters estimated
online by DEKF has a high accuracy of 0.037 V in RMSE, which confirms the accuracy of the
battery model to estimate SOC and peak power/SOP.

(2). The DEKF-based OCV estimation has an RMSE of 0.0218 V and using the OCV estimated as the
observed value, the SOC based on DEKF has a smaller RMSE of 0.28% than the one of 1.98%
based on the OCV-SOC look-up method.

(3). The peak power/SOP estimated under multiple constraints has the maximum relative error
6%/4%. The proposed rapid-calculating peak power method in Section 3.2 that calculates
peak power during T seconds through one or two instantaneous peak power is proven to be
more effective.
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Nomenclature

Symbols
t Simulink time, s
T prediction time horizon of peak power, s
∆t sampling time, s
i load current, A
ut terminal voltage, V
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uoc open-circuit voltage, V
uh hysteresis voltage, V
ud voltage across Rd, V
Ri ohmic resistance, Ω
Rch charge ohmic resistance, Ω
Rdis discharge ohmic resistance, Ω
Cd diffusion capacitance, F
Rd diffusion resistance, Ω
M maximum polarization due to hysteresis, V
γ rate of decay
sgn(i) sign function of i
Cn battery nominal capacity, Ah
ηi coulombic efficiency
τ time constant of a parallel resistance-capacitance circuit, s
TC (TV) time of constant current (voltage) process, s
KT (KC, KV) total number of sampling points in T (TC, TV)

PP peak power, W
PPbat battery power design limit, W
ibat battery current design limit, A
ubat

t battery voltage design limit, V
Pn nominal power, W
Subscripts, Superscripts
k time step index
ch charge
dis discharge
max upper limit value
min lower limit value
- estimation value
+ posteriori estimation value
Abbreviations
BEV battery electric vehicle
BMS battery management system
CC constant current
CV constant voltage
DEKF dual extended Kalman filtering
HEV hybrid electric vehicle
HPPC hybrid pulse power characterization
OCV open-circuit voltage
PHEV plug-in hybrid electric vehicle
PNGV Partnership for New Generation Vehicle
RC resistance-capacitance
RCM rapid-calculating method
RMSE root mean square error
SFUDS Simplified version of the Federal Urban Driving Schedule
SOC state of charge
SOH state of health
SOP state of power
TRM traditional method
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