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Abstract: Besides three different real-time optimization strategies analyzed for the Renewable/ 

Fuel Cell Hybrid Power Systems (REW/FC-HPS) based on load-following (LFW) control, a short 

but critical assessment of the Real-Time Optimization (RTO) strategies is presented in this paper. 

The advantage of power flow balance on the DC bus through the FC net power generated using 

the LFW control instead of using the batteries’ stack is highlighted in this study. As LFW control 

consequence, the battery operates in charge-sustained mode and many advantages can be 

exploited in practice such as: reducing the size of the battery and maintenance cost, canceling the 

monitoring condition of the battery state-of-charge etc. The optimization of three FC-HPSs 

topologies based on appropriate RTO strategy is performed here using indicators such as fuel 

economy, fuel consumption efficiency, and FC electrical efficiency. The challenging task to 

optimize operation of the FC-HPS under unknown profile of the load demand is approached 

using an optimization function based on linear mix of the FC net power and the fuel consumption 

through the weighting coefficients knet and kfuel. If optimum values are chosen, then a RTO 

switching strategy can improve even further the fuel economy over the entire range of load. 

Keywords: fuel cell system; fuel economy; hybrid power systems; unknown load demand;  

real-time optimization; control loops switching strategy 

 

1. Introduction 

In renewable energy Hybrid Power Systems (HPS) applications, the generation power is 

usually intermittent and variable, the load power is also dynamic with the daily energy 

consumption, such as in Fuel Cell Hybrid Power Systems (FC-HPS), wind turbine farms, and solar 

arrays. 

The main objective for the FC-HPS [1–4] and other hybrid energy systems [5–7] is to efficiently 

operate these systems based on rule-based and optimization-based strategies proposed in the last 

years [8,9]. As it is known, the deterministic rule-based strategy is already available in the market 

due to their reduced complexity in implementation, but this type of strategy cannot find the 

optimum solution [10], so the research interest has switched to optimization-based Real-Time 

Optimization (RTO) strategies, even if the complexity increases [1,11]. These strategies can find and 

track in real-time the optimal solution or a suboptimal solution close to it [7,12]. The RTO strategies 

usually use optimization algorithms such as the Extremum Seeking (ES) algorithms [13,14], the 

Equivalent Consumption Minimization Strategy (ECMS) [15,16], the intelligent algorithms [17–19], 
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the Model Predictive Control (MPC) schemes [20,21], and so on [22–26]. From these RTO-strategies, 

the ECMSs based on Pontryagin’s Minimum Principle (PMP) [26,27] or Dynamic Programming 

(DP) are most used for FC-HPS [10].  

Different ES-based RTO strategies based on classical [28,29], modified [30,31], and advanced 

[13,14,32,33] ES algorithms were proposed recently to optimally operate the FC-HPS. The modified 

ES algorithm improves the tracking robustness compared to conventional ES algorithm due to tge 

use of a Band-Pass Filter (BPF) to process more power harmonics into the seeking signal [30,31]. The 

advanced ES algorithm improves the tracking accuracy compared to modified ES algorithm by 

using modulation of the dither amplitude with the magnitude of first harmonics of the FC power. 

Furthermore, the FC ripple power decreases around the Maximum Efficiency Point (MEP), which is 

faster found [32]. A comparative study of the ES-based RTO strategies is presented in [33,34]. The 

global ES (GES) algorithm tracks the global Maximum Power Point (MPP) instead of local MPP, 

improving with more than 30% the efficiency of the photovoltaic (PV) system [35–37]. The GES 

algorithm [35] uses two BPFs instead of one BPF [36]. The design rules for the GES algorithms are 

detailed in [37].  

PV arrays, wind turbines and battery stacks generate the needed load power in renewable 

energy systems and a design to comply the power flow balance on the Direct Current (DC) bus 

could oversize the battery stack due to the high dynamics of the load profile and variability of the 

available renewable energy. This issue can be solved by using the Load-Following (LFW) control of 

the FC boost converter [38] to compensate the power flow balance on the DC and the battery will 

operate in charge sustaining mode, which means reducing the size of the batteries stack. Thus, 

considering additionally the reduction of maintenance costs, the overall cost of FC-HPS remains 

within the same range as the battery-based HPS cost. Furthermore, for example, the LFW control is 

simpler to be implemented compared to ES-based RTO routine to rescale the air flow rate (AirFr) of 

the Proton Exchange Membrane FC (PEMFC) system or other energy management strategies based 

on states’ diagram [39]. Different RTO-strategies have been proposed for FC-HPS to improve the 

free air breathing of PEMFC system through the MEP [40] or MPP [41] tracking techniques, or 

based on other robust control techniques [42] which are analyzed and compared in [43]. The MPP 

tracking technique improves the tracking accuracy of a photovoltaic/FC-HPS by simultaneously 

optimizing both the PV and FC systems [44]. The renewable HPS architecture requires a FC system 

and electrolyzer to store the hydrogen in order to mitigate the variability of the renewable power, 

but a regenerative FC stack could solve this issue in one device [45,46].  

Besides the LFW control of the FC system [38], other different algorithms can be used as well 

[46], such as artificial intelligent algorithms [47] based on neural networks [48], genetic algorithms 

[49], or data fusion approach [50]. The combinatorial techniques [51], the Model Reference Adaptive 

Control (MRAC) [52], the metaheuristic approaches [53], the prediction of the load demand [54], 

and ECMSs techniques [55] are other methods proposed to optimize the operation of the FC-HPS.  

The static feed-forward (sFF) control of the FC system was first implemented in practice [56], 

but many other control algorithms for air compressor systems have been designed based on the 

Hardware-in-Loop System (HILS) technique [56–67]. The HILS-based second order sliding mode 

controller implemented in a commercial twin screw air compressor sub-optimally controls the air 

feed system [57] avoiding oxygen starvation and the compressor surge phenomenon using the load 

governor method and constrained extremum technique [58]. Thus, the AirFr of the PEMFC system 

can be optimally control by a second order sliding mode control [59]. The better mitigation of load 

ripples and pulses on PEMFC operation can be ensured using a disturbance rejection control [60] or 

a differential flatness approach [61] compared to a classic Proportional–Integral (PI) controller [56]. 

Also, by appropriate control of the cathode system, the lifetime of the PEMFC system could be 

increased to 25 years in next decade [62]. The Linear Quadratic Regulator (LQR) / Linear Quadratic 

Gaussian (LQG) control maintains the best oxygen stoichiometry in PEMFC systems [63], but other 

optimal control solutions for the AirFr are proposed in literature based on ES algorithm [32], feed-

forward fuzzy Proportional Integral Derivative (PID) control [64], optimal PID plus fuzzy controller 

[65], time delay control [66], and adaptive control [67].  
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Besides control for air systems, other control solutions to improve the fuel economy of the fuel 

system were proposed [43] such as global optimization methods based on fuzzy logic [68] and 

genetic [49] algorithms, adaptive algorithms such as adaptive fuzzy control [69] and adaptive 

Energy Management Strategy (EMS) [70], but most of them require prior knowledge of the driving 

cycle. Furthermore, these algorithms are difficult to implement in RTO strategies due to its 

computational complexity; so, the research field of designing efficient and simple RTO strategies for 

FC-HPS still remains challenging. 

In this paper, using Matlab-Simulink version 2013, the performance of three LFW control-

based FC-HPS topologies is compared considering the optimization loop implemented to size the 

FC boost converter (the new RTO3 strategy), AirFr regulator (the RTO2 strategy [71]), or Fuel Flow 

rate (FuelFr) regulator (the RTO1 strategy [72]). All the topologies use one optimization loop and 

LFW control to mitigate the variability of the load demand and renewable energy on battery State-

Of-Charge (SOC). The performance of the proposed RTO strategies is compared to the sFF reference 

strategy under same unknown profile of the Load Cycle (LC) based on the following indicators: (1) 

the FC net power, (2) the fuel consumption efficiency, (3) the electrical efficiency of the FC system, 

and (4) the total fuel consumption. The optimization function used in this study is designed to 

reduce the total fuel consumption under unknown LC, being a linear weighted function of the FC 

energy efficiency and the fuel consumption efficiency through the weighting coefficients knet and 

kfuel. The GES algorithm is used to find in real-time the global maximum of the optimization 

function [35]. 

Design of the weighting coefficients knet and kfuel will improve the fuel economy of a FC vehicle 

under unknown LC. Thus, the performance is estimated for all three FC-HPS topologies compared 

to the sFF strategy using same profile for the constant and variable load demand. The RTO 

strategies for the FC-HPS topologies clearly differ in the place where the optimization is performed 

and the LFW control is applied (see Table 1). Finally, considering the obtained performance, some 

guiding design rules to choose the switching RTO strategy are given. 

The paper is organized as follows: optimization objectives and algorithms for FC-HPS based 

on the extremum seeking algorithm are very briefly mentioned in Section 2. The LFW control-based 

RTO strategies with specific optimization loop are designed in Section 3 considering the power flow 

balance at the DC bus. The results for all three RTO strategies are presented in Section 4 compared 

to the sFF strategy for constant and variable load, without and with renewable energy support. 

Section 5 discusses the results obtained and the last section concludes the paper. 

2. Optimization Objectives and Algorithms 

The RTO switching control strategies proposed in this paper will be implemented based on the 

theory of problem optimization applied in many engineering applications.  

2.1. Optimization Algorithms 

Optimization of the FC-HPS is the real-time process of searching for the set of values in the 

search range, called the optimal value (or the optimum) and which must be very close to the global 

extreme of the optimization function, so besides high tracking and searching accuracy [35,36], the 

global search feature of the optimization algorithm must have a 100% hit count and to have a good 

robustness to different perturbations into the system (such variations of the load demand and 

renewable power) [5,6,73]. The input vector will continuously seek the new optimum in the 

searching range due to changes in the requested load demand and available renewable power 

which set the needed FC power under LFW control. If some stationary regimes could appear, then 

the FC ripple current must be minimum [35,36,74]. The FC net power PFCnet = f(AirFf, FuelFr) has an 

optimum called MEP and many other peaks on the plateau around the MEP [1], but 99.9% 

searching accuracy and less than 1% searching resolution help the GES algorithm to discern the 

MEP from them [37], so the ES algorithm [37] was used in this study due to its reported 

performance features and location and tracking of the MEP in one search stage (less than 10 dither 

periods, which, for example, means less than 0.01 s for a 1000 Hz sinusoidal dither). The firmware-
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based global MPP tracking algorithms proposed in literature operate in two stages, so their tracking 

time results are higher compared to the GES algorithm. The tracking accuracy (Tacc) and searching 

resolution (SR) are defined as follows [37]: 

min
100[%]

GMPP LMPPi
i

R

GMPP

y y
S

y


   (1)

*

100[%]GMPP
acc

GMPP

y
T

y
   (2)

where yGMPP, yLMPP < yGMPP, and y*GMPP < yGMPP are the global extreme, the local maxima, and the value 

tracked with the GMPPT algorithm.  

Furthermore, the GES algorithm [37] does not need complicated and periodic tuning of the 

parameters [75], so it is simple to design and implement [76], but ultimately the performance of all 

optimization algorithms depend on the to optimization objectives and constraints defined for a 

specific FC-HPS.  

2.2. Optimization Objectives and Constraints 

The optimization procedure usually follows the following steps: identifying and defining the 

optimization problem, designing the model, simulating and evaluating the model, refine the 

problem, and finally implementing optimal solution. The optimization objectives are in general 

contradictory, so multi optimization functions are proposed instead of one optimization function 

[77], integrating the constraints by penalty function related to battery SOC level [78,79]. 

The FC-HPS optimization can be generally defined as follows: 

Maximize: 

( , , , )Load net FCnet fuel efff x AirFr FuelFr P k P k Fuel     (3a)

Subject to FC-HPS dynamics: 

( , , , ),Loadx g x AirFr FuelFr P x X   (3b)

and battery SOC constraints: 

min maxSOC SOC SOC   (3c)

In Equations (3a–c) PLoad, knet and kfuel represent the disturbance input, respectively weighting 

coefficients that will be switched according to the objectives defined in real-time during an 

unknown LC [80].  

For example, the FC vehicle will adapt the parameters of the used optimization function 

considering the available on-line information about the route profile or the requests from as inputs 

of the Energy Management Unit (EMU) [81,82] as follows: the FC net power must be maximized if 

the FC vehicle climbs up a hill, the fuel economy must be maximized if the FC vehicle runs 

smoothly on the highway, the fuel consumption efficiency must be maximized if the 

communication unit informs the EMU that the fuel tank is almost empty based on signaling 

sensors, but a fuel station is close to the current position of the FC vehicle. 

The number of sensors must be reduced at minimum for the FC-HPS based on Renewable 

Energy Systems (RES) by using adaptive algorithms to improve the fuel economy for plug-in FC 

vehicles [83] or grid-connected FC-HPS [84], which usually use many decision variables and 

constraints as inputs for the EMU such as [85]: the number of energy source units (FC systems, PV 

panels, wind turbines (WT), batteries, power storage devices, electrolyzers), RES potential 

(insolation and wind speed in installation area), technical characteristics (PV panel position, WT 

height), battery characteristics (SOCmin, SOCmax), hydrogen storage availabilities (tank volume, 

electrolyzer capacity), type of power storage devices (superconducting magnetic energy storage  or 
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SMES, flywheel energy storage or FES, ultracapacitors) and so on [1,4]. The constraints to design the 

FC-HPS of a FC vehicle are clearly related to available space and weight limitations, lifetime and 

safe operation of the FC system and batteries stack, maintenance cost, and so on [83], so an 

optimization problem involving multiple objectives such as technical, economic, and environmental 

objectives must be a combination of the conflicting performance indicators to be easy implemented 

[1,45]. Besides the fuel economy (or total fuel consumption: ����� = ∫ ������(�)��) as general 

performance indicator, other performance indicators can be integrated in the optimization function 

depending of application and load profile [86], but also by the environment conditions due to 

emplacement of the FC-HPS in different places situated on worldwide [87]. For example, fuel 

economy, lithium battery size and powertrain system durability, and, respectively, fuel economy 

and power efficiency are linearly mixed in the optimization function used in [88,89]. The 

performance indicators that could be used are as follows: the fuel consumption efficiency 

�������� =
������

������
�, the FC electrical efficiency ����� =

������

���
�, and the efficiency of hydrogen 

consumption ������
=

���×������

���×�����
�, where LHV is the lower heating value for hydrogen fuel. The 

range for indicator sys  is between 85% (at rated load) to 90% (at light load) and for indicator 2Heff  

is up to 60%, but these performances could be improved [90].  

The power loss from the FC stack power (PFC) to supply the air compressor (Pcm) represents 

about 10–15%, so the available FC net power in the power flow balance on the DC bus will be PFCnet 

 PFC – Pcm, where Pcm = IcmVcm = a1 AirFr2 + a2  AirFr + a3)  (b1  IFC + b0), and a3 = 0.6, a2 = 0.04, a1 = − 

0.00003231, b0 = 0.9987, and b1 = 46.02 [29].  

This research study is motivated by the complexity of implementation for all control strategies 

studied in the literature until now, so, in this paper, three different FC-HPSs topologies have been 

analyzed considering the same operating conditions (load demand profiles), optimization function, 

constraints (the FC current slope of 100A/s used in [91]), and GES algorithm to track the MEP in 

real-time. The GES algorithm and other ES control algorithms proposed in the literature will be 

briefly presented in the next section. 

2.3. Extremum Seeking Control Algorithm 

A nonlinear system can be defined by (4) [92]: 

   )(,)(),( txhytutxf
dt

dx
x 


 (4)

where the smooth functions f(x,u), h(x), and u(t) = g(x(t),p) define the system dynamic, nonlinear 

map of the system, and the control law, x  Rn, u  Rm, and yR are the state variables, system 

inputs and system output, and p is the parameter vector. 

The nonlinear system evolves under ES control to the equilibrium point (the optimum) defined 

by the smooth function xe, xe:RlRn: 

   pxxpxgxf e 0),(,  (5)

and the parameter-output map:  

     phpxhxhy e  )(  (6)

based on the seeking vector p  

The Asymptotic Perturbed Extremum Seeking Control (aPESC) scheme based on Scalar PESC 

(PESCs) scheme [92] was proposed in [93] (see Figure 1a with the switch on position 1). The tuning 

parameters k1 and k2 change the amplitude of the tracking signal (�̂�) and the sweeping signal (�̂�). 

Due to some stability issues of the tracking loop of the PESCs scheme, in general the tuning 

parameter k2 cannot be increased to scan the entire search range, so the sweeping signal �̂� in 

aPESC scheme must be a modulated signal (the dither modulated with the dither gain Gd; see 

Figure 1a with the switch on the position 2) to increase the sweeping range due to dither gain Gd 
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which decreases asymptotically exponentially from a high initial value (a0) to zero based on 

function q. Thus, the convergence of this method depends to starting point, the value a0, and 

function q, so initial assumptions mentioned in [92] must to be complied to find the optimum in all 

cases. The aPESC scheme based on the Lyapunov function (see the aPESCLy scheme in Figure 1b 

with the switch on position 1) tries to improve the convergence by using a sweeping signal �̂� 

which is maintained to high value a0 until the optimum is located. Then, the sweeping signal �̂� 

decreases to zero based on dither gain Gd which evolves exponentially to zero, ensuring the stability 

of the tracking loop. The performance of the aPESCLy scheme depends on quite complicated design 

of the Lyapunov function (which uses three signals from the tracking loop and a switching 

threshold), and parameters a0 and  [94]. The convergence of the aPESCH1 scheme is improved 

compared to aPESC scheme by using a sweeping signal �̂� based on the first harmonic (H1) of the 

output signal y, which define the dither gain Gd (see the aPESCH1 scheme in Figure 1b with the 

switch on position 2). The harmonic H1 is estimated using the Fast Fourier Transform (FFT) and its 

value evolves from initial high value to zero during the MEP searching. So, the entire searching 

range will be scanned considering the high initial gain obtained in the tracking loop by adaptive 

modulation of the tuning parameter k2 [30]. The aPESCH1 scheme has features of a Global aPESC 

(GaPESC) scheme [35] (see GaPESCH1 scheme in Figure 1c with the switch on position 3). 

Consequently, the performance of this scheme is compared with other GaPESC schemes as the 

GaPESC scheme using one BPF (BPF1), the GaPESCbpf scheme using two BPFs (BPF1 and BPF2), 

and the GaPESCd scheme based on derivative operator (all these schemes are presented in Figure 1c 

considering the switch on position 1, 2, and 4, respectively) [36]. The minor differences between 

these schemes are given by the used technique (to approximate the first harmonic H1 and lets other 

harmonics in the tracking loop to ensure the dither persistence) as follows [37]: the BPF2 will 

approximate the first harmonic H1 in the GaPESCbpf scheme and the BPF1 must be designed to 

ensure harmonics in the tracking loop. This scheme will be used in this study and called here as the 

GES scheme. The tracking speed of the GaPESC scheme is lower than that of the GES scheme due to 

the use of a single BPF1, which must be centered on first harmonic H1. In general, the derivation 

operation produces instabilities in the tracking, so the GaPESCd scheme is not recommended in 

practice. It is worth to mention that the tracking loop is the same for all aPESC schemes analyzed in 

this paper or other ES schemes proposed in the literature such as the Fractional-Order ES scheme 

[95]. 

 
(a) 
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(b) 

 
(c) 

Figure 1. aPESC, modified aPESC and Global aPESC schemes. (a) The scalar PESC (PESCs) scheme 

and its asymptotic variant (aPESCs) with the swithch on the position 1 and 2; (b) Modified aPESC 

schemes. The aPESC schemes based on the Lyapunov finction (aPESCLyy) and the H1 harmonic 

(aPESCH1) with the switch on the position 1 and 2; (c) Global aPESC (GaPESC) schemes. 

The optimization loop is based on one or two GES control blocks (see Figure 2) implementing 

the relationships (7) [37]: 
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 1 2,y f v v ,
N Nyy k y   (7a)

h f h Nfy y y 


     , HPF N fy y y  , l BPF l HPFBPFy y y 


      (7b)

, sin( )DM BPF d dy y s s t   , (7c)

DMInty y


  (7d)

1
,d MV MV BPF

d

G y y y dt
T

     (7e)

M dy G  (7f)

1 1 1
ˆ ,Int sdp k y k       (7g)

2 2
ˆ

M dp k y s    (7h)

3
ˆ

m dp A s   (7i)

 1 2 3
ˆ ˆ ˆ   refGES NpI k p p p , (7j)

The relationships (7a) represent the optimization function and the input normalization gain 

(kNy). The equation (7b) represent the high-pass filter (HPF), respectively the band-pass filter (BPF) 

used to signal processing the process’s output under optimization (the FC power in this case). The 

demodulation, the integration, the computing of the dither gain Gd based on average value (AV) of 

the ybpf signal, and the signal that will modulate the dither are represented by the relationships (7c) 

to (7f). It is worth to mention that the searching signal (p) has three components that evolves 

different in the searching of the optimum, the tracking signal (�̂�), the sweeping signal (�̂�), and the 

starting minimum signal (�̂�), which are estimated based on (7g) to (7i). These components finally 

define the reference current IrefGES (6j), where the parameter kNp represents the output normalization 

gain. Based on design rules [75], the tuning parameters are set to k1 = 1 and k2 = 2, and the 

normalization gains to kNy = 1/YMax and kNp = IFC(rated)/2. In this case, the nominal value of the FC 

current are IFC(rated) and the maximum value of the optimization function are YMax. These values 

ensure 100% hit count for searching process [96]. The parameters of the dither frequency fd for the 

two GES controllers are of 100 Hz and 200 Hz to ensure the dither persistency and separate search 

of optimum on optimization surface, and the BPF cut-off frequencies are defined by �� �� and �� ��  

(where bh = 0.1 and bh = 3.5) [75].  
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Figure 2. The GES scheme. 

The searching (or tracking) time for all GES schemes discussed above are less than 10 periods 

of dithers [75,76], so it is less than 0.1 seconds, assuring in real time the optimal operation of the FC-

HPS. The outputs of two GES controllers, Iref(GES1) and Iref(GES2), and the output of the LFW controller 

Iref(LFW) are proposed as control variable for the FC-HPS and will be presented in next section.  

3. Energy Management Strategies for the Renewable Fuel Cell Hybrid Power Systems 

The FC-HPS based on Renewable Energy Sources (RES block in Figure 3—top) and the EMU 

(Figure 3—bottom) are presented in Figure 3. The output of the LFW controller, Iref(LFW), will be 

estimated based on power flow balance on DC bus (8): 

CDCudcdudc/dt = pDC+ pESS – pDCreq (8)

where the capacitor CDC filters the voltage on DC bus (udc). The ���, ���� ��� ������, represent the 

output power of the boost converter, the power of Energy Storage System (ESS), respectively the 

power required from the FC system, on DC bus, via the boost converter:  

pDCreq = pLoad – pRES (9)

The output power of the FC boost converter is: 

pDC = boostpFCnet (10)

where boost  95% represents the efficiency of the boost converter. 

Thus, the average value (AV) of the power flow balance (8) will be given by (11): 

0 = boost PFCnet(AV)+ PESS(AV) – PDCreq(AV) (11)

When the battery works in mode “charge-sustaining”: 

PESS(AV)  0 (12)

then LFW reference will be given by (13): 

Iref(LFW)  IFC(AV) = PDCreq(AV) / (VFCnet(AV) boost) (13)

where the power requested on DC bus is the load demand from DC loads and AC loads via the 

inverter systems minus the available RES power: 

pDC  pDCreq =pLoad – pRES  PDCreq(AV)  PLoad(AV) – PRES(AV) (14)

The inputs of the boost controller (Iref(boost)), the air regulator (Iref(Air)), and the fuel regulator 

(Iref(Fuel)) will be controlled by the GES references based on RTO strategies setting (see Figure 4 and 

Table 1), as follows: the RTO1 strategy uses Iref(boost) = Iref(LFW)., Iref(Fuel) = IrefGES + IFC and Iref(Air) =IFC, the 

RTO2 strategy uses Iref(boost) = Iref(LFW)., Iref(Air) = IrefGES2 + IFC and Iref(Fuel) =IFC (both strategies being tested in 

[97,98] for the FC-HPS without support from the RES), and the RTO3 strategy uses Iref(boost) = IrefGES , 

Iref(Fuel) = IFC and Iref(Air) = Iref(LFW) (being tested in [84,99] for the FC-HPS without support from the RES).  

The FC current will follow Iref(LFW) for the RTO1 and RTO2 strategies due to hysteretic control of 

the boost converter: 

IFC(AV)  PDCreq(AV)/(VFCnet(AV) boost) (15)

Consequently, the FC net power generated will be given by (16): 

PFC(AV)= IFC(AV)VFCnet(AV)  PDCreq(AV)/boost (16)

Thus, considering (12), PESS(AV)  0, the LFW control is implemented using (13). The smooth 

value of the load demand and the FC voltage can be obtained using the AV techniques or other 

filtering techniques as well [100,101]. So, a smooth value will be obtained for the reference Iref(LFW) 

and the FC system will be safe operated even under sharp dynamic profiles of the load demand and 

RES power.  
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Figure 3. The FC HPS and EMU. 



Energies 2018, 11, 3537 11 of 31 

 

Figure 4. RTO strategy setting block. 

Table 1. RTO strategies setting. 

No. Iref(Boost) Iref(Air) Iref(Fuel) Strategy Reference 

0 ILFW IFC IFC sFF [56] 

1 ILFW IFC IGES1+IFC RTO1 [97] 

2 ILFW IGES1+IFC IFC RTO2 [98] 

3 IGES2 ILFW IFC RTO3 [84] 

 

The references Iref(Fuel) and Iref(Air) will define the inputs FuelFr and AirFr of the FC system based 

on the fueling regulators (17) [56]: 
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where R and F the constants 8.3145 J/(mol K) and 96485 As/mol, and the parameters (NC, , Uf(H2), 

Uf(O2), Pf(H2), Pf(O2) , xH2, yO2 ) are defined in [56]. 

The air and fuel regulators use 100 A/s slope limiters for safe operation of the FC-HPS [102].  

Note that due to LFW control of the FC system via the boost controller, the batteries will 

operate in charge sustaining mode for all RTO strategies analyzed in this paper. The advantages are 

related to battery size, its lifetime and maintenance cost, and simple implementation of the EMU 

(the constraints (3c) for the battery SOC are clearly respected).  

The sFF strategy proposed in [56] will be used as reference with the LFW control implemented 

in the same manner (see Table 1) for a fair comparison of each strategy RTOk, k = 17, based on the 

gaps (18) in the performance indicators: 

sys= sysk − sys0 (18a)

Fueleff = Fueleffk − Fueleff0 (18b)

FuelT = FuelTk − FuelT0 (18c)

A PEMFC Matlab Simulink model with parameters: 6 kW/45 V is used in this study. For this 

model, the constant time is put to 0.1 s value. The variable voltage of FC (VFC) is raised to 200 V by 

using a boost converter ���  ���(���)  =  200 V. The control type used for the boost converter is 

of hysteretic type with 0.1 A hysteresis band. 

Similar to [103], to mitigate the pulses on the DC bus a ESS semi-active topology is chosen. This 

topology has a battery stack connected on DC bus (lithium-ion batteries with 100 Ah/100 V) and an 

ultracapacitors’ stack with nominal capacity of 100 F. For this ultracapacitors’ stack we have the 

following typical values: ESR—the equivalent series resistor—the value is 0.1 , EPR—the parallel 

resistor—the value is 10 k, and the initial voltage are set on 100 V, so to connect the 

ultracapacitors’ stack to the DC bus, is used a bidirectional DC-DC converter. For all other model 

parameters, the values are the set by default. Also, the initial battery stack SOC is 80%. Both stacks 

use models from Matlab and Simulink (R2013a, MathWorks, Natick, MA, USA) toolboxes (with 

the outputs that are offered by each model, such as SOC signal for the battery’s model, and which 

all are explained in the help page). Furthermore, to filter the voltage on DC bus, a capacitor, ��� , 

with 100 mF is used (the initial value of VDC = 200 V) [103]. 

4. Results 

The GES-based RTO strategies will search the optimum of the optimization function (3a) for 

three sets of the ���� and ����� values (weighting coefficients): in the first situation, A, we have the 

following values for coefficients: knet = 0.5, kfuel = 0), for the second situation, B, we have the following 

values for coefficients: knet = 0.5, kfuel = 25, and for the third situation, C, the values for coefficients are: 

knet = 0.5, kfuel = 50. Different scenarios were performed in this analysis. These scenarios have taken 

into account the power flow over the DC bus: the load demand has been both, variable and 

constant, also having or not having the power of RES. 

4.1. HPS under Constant Load Demand and kfuel = 0 and PRES = 0 

The value of the performance indicators sys0, Fueleff0, and FuelT0 for the sFF strategy are 

presented in [71]. 
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FC Electrical Efficiency 

Results such as deficiencies in fuel economy, fuel efficiency, and global fuel efficiency are 

presented in Tables 2–4 for each strategy RTOk, k = 13, compared to sFF strategy in case A (kfuel = 0) 

under constant load.  

Table 2. The gaps in FC electric efficiency. 

Pload sys1 sys2 sys3 

[kW] [%] [%] [%] 

2 0.27 −0.62 −0.35 

3 0.42 −0.51 −0.01 

4 0.53 −0.48 0.06 

5 0.61 −0.31 0.13 

6 0.69 −0.15 0.27 

7 0.91 0.18 0.63 

8 2.65 1.61 1.61 

Table 3. The gaps in fuel efficiency. 

Pload Fueleff1 Fueleff2 Fueleff3 

[kW] [W/lpm] [W/lpm] [W/lpm] 

2 −1 −1.8 −15.3 

3 −0.7 −1.5 −3 

4 0.7 −0.7 −0.7 

5 1.8 −0.5 0.4 

6 2.5 −0.4 1.4 

7 3.91 0.62 3.31 

8 10.35 11.2 11.2 

Table 4. Fuel economy. 

Pload FuelT1 FuelT2 FuelT3 

[kW] [L] [L] [L] 

2 1.24 1.2 11.26 

3 0.13 0.79 4.14 

4 −0.13 0.77 2.08 

5 −0.38 0.55 −0.08 

6 −1.38 0.42 −2.28 

7 −4.34 −0.14 −12.16 

8 −11.8 −4 −28.48 

The fuel economy are presented in Tables 5–7 for each strategy RTOk, k = 13, compared to sFF 

strategy in case A (kfuel = 0), B (kfuel = 25), and C (kfuel = 50) under constant load. 

Table 5. Fuel economy for the RTO1 strategy using different kfuel. 

Pload FuelT1A FuelT1B FuelT1C 

[kW] [L] [L] [L] 

2 1.22 1.22 1.28 

3 0.13 −0.25 0.1 

4 −0.13 −0.71 −0.23 

5 −0.38 −1.03 −0.48 

6 −1.38 −2.08 −1.08 

7 −4.34 −10.56 −3.56 

8 −11.8 −22.92 −6.8 
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Table 6. Fuel economy for the RTO2 strategy using different kfuel. 

Pload FuelT2A FuelT2B FuelT2C 

[kW] [L] [L] [L] 

2 1.2 −0.09 1.22 

3 0.79 −0.24 0.56 

4 0.77 −0.25 0.42 

5 0.55 −0.46 0.28 

6 0.42 −1.58 0.22 

7 −0.14 −4.24 −1.14 

8 −4 −18.48 −8.48 

Table 7. Fuel economy for the RTO3 strategy using different kfuel. 

Pload FuelT3A FuelT3B FuelT3C 

[kW] [L] [L] [L] 

2 11.26 12.14 7.628 

3 4.14 5.548 2.764 

4 2.08 1.2 0.288 

5 −0.08 −6.44 −5.8 

6 −2.28 −14.14 −13.02 

7 −12.16 −28.42 −24.82 

8 −28.48 −31.08 −29.8 

For the RTO1, RTO2 and RTO3 strategies, the deficiencies of the FC electrical efficiency and for 

the fuel efficiency are shown in Figures 5 and 6. Fuel economy for the RTO1, RTO2, and RTO3 

strategies in case A (����� = 0), B (����� = 25), and C (����� = 50) under constant load is shown in 

Figures 7–9. 

 

Figure 5. The gaps in FC electrical efficiency for the strategies RTO1, RTO2, and RTO3. 
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Figure 6. The deficiencies of the fuel efficiency for all RTO1, RTO2, and RTO3 strategies. 

 

Figure 7. The values of the fuel economy, in the all situation, for the RTO1 strategy: A (����� = 0), B 

(����� = 25), and C (����� = 50) under constant load. 
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Figure 8. The values of the fuel economy, in the all situation, for the RTO2 strategy: A (����� = 0), B 

(����� = 25), and C (����� = 50) under constant load. 

 

Figure 9. The values of the fuel economy, in the all situation, for the RTO3 strategy: A (����� = 0), B 

(����� = 25), and C (����� = 50) under constant load. 

The gaps in FC electric efficiency is positive in full range of the load demand for the RTO1 

strategy and best compared to strategies RTO2 and RTO3 (see Figure 5). Also, the fuel efficiency for 

RTO1 strategy is better compared to strategies RTO2 and RTO3 (see Figure 6). Fuel economy for the 

strategies RTO1 and RTO2 has almost the same shapes of evolution with load demand. Almost the 

same values for light load, but different values for high load are obtained (see Figures 7 and 8). So, 

the FC net power could be maximized if the FC vehicle ascends up a hill using any of the RTO 

strategies outlined in this paper. Also, remember that the best fuel economy result for case B 

(����� = 25), so the fuel economy could be maximized if the FC vehicle ascends up a hill by 

choosing the appropriate value for weighting parameter kfuel. The performance of the RTO strategies 

outlined in this paper must be validated in different scenarios below.  

4.2. Fuel Economy for the HPS under Variable Load Demand, PRES = 0, and Different kfuel 
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Only to exemplify that the LFW control of the boost converter operates based on (13), the 

behavior of the FC-HPS under 6.25 kW LC for the strategies RTO1 (Iref(LFW) = Iref(boost), Iref(Fuel) = IrefGES2 + 

IFC and Iref(Air) = IFC) with kfuel = 25 is presented in Figure 10.  

The load cycles of 6.25 kW average power (Pload(AV) = 6.25 kW) is presented in first plot of Figure 

10, but other load cycles that are used in this study as well, with different Pload(AV) values mentioned 

in Table 8, are defined in [71]. The fuel economy ������(��) for the sFF strategy is presented as 

reference in Table 8. 

 

Figure 10. The behavior of the FC HPS under 6.25 kW LC (using RTO1 strategy with kfuel = 25). 

Table 8. The fuel economy ������(��) for the sFF strategy 

LC Stage FuelT0(LC) 

Pload(AV) [kW] [L] 

2 34.14 

3 53.92 

4 75.8 

5 100.62 

6 130.2 

6.25 138.86 
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The structure of the Figure 10 is as follows: the first plot shows the variable profile of the load 

power (PLoad); the second plot shows the generated FC net power profile (PFCnet) and this follows the 

load demand, highlighting that the LFW control operates properly; the third plot shows the ESS 

power, highlighting the advantage of LFW control implementing: the battery operating mode will 

only be of the charge-sustaining type (����(��) ≅ 0), the DC bus power flow balance being sustained 

only during sharp variation of the load demand; the next two plots show the fueling flow rates 

(AirFr and FuelFr); the last three plots show the fuel consumption (FuelT), the fuel efficiency 

(Fueleff), and the FC electric efficiency (sys). It is worth to mention that the shape of the signals for 

the strategies RTO1, RTO2, and RTO3 will look almost the same, but small differences in 

performance indicators can be observed for different LCs (which are mentioned in Table 9 for each 

RTO strategy). For example, the differences in FC net power (PFCnet = PFCnetk − PFCnet0, k = 1, 2, 3), FC 

energy efficiency (sys = sysk − sys0), fuel efficiency (Fueleff − Fueleffk − Fueleff0), and fuel economy 

(FuelT − FuelTk − FuelT0) are represented in Figure 11 for RTO1 strategy with kfuel = 25 (the value 

where the best fuel economy was obtained for constant load). 

 
Figure 11. The behavior of the performance indicators for the FC HPS under 6.25 kW LC (using 

RTO1 strategy with kfuel = 25). 
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The fuel economy for strategies RTO1 is of 6.36 liters (see also Table 10) and this performance 

indicator will be used to compare selected RTO strategies under variable load. The fuel economy is 

presented in Tables 9–11 for selected RTO strategies compared to sFF strategy.  

Table 9. Fuel economy under variable load demand for the RTO1 strategy using different kfuel. 

Pload(AV) FuelT(LC)1A FuelT(LC)1B FuelT(LC)1C 

[kW] [L] [L] [L] 

2 1.3 0.5 0.51 

3 0.71 −0.48 −0.47 

4 0.07 −1.8 −1.58 

5 −1.6 −3 −2.99 

6 −3.8 −5.3 −5.23 

6.25 −4.56 −6.36 −6.21 

Table 10. Fuel economy under variable load demand for the RTO2 strategy using different kfuel. 

Pload(AV) FuelT(LC)2A FuelT(LC)2B FuelT(LC)2C 

[kW] [L] [L] [L] 

2 1.35 −0.51 −0.5 

3 0.6 −0.75 −0.74 

4 0.52 −1 −0.97 

5 0.4 −1.2 −1.25 

6 −0.2 −1.8 −1.72 

6.25 −0.76 −2.06 −2.04 

Table 11. Fuel economy under variable load demand for the RTO3 strategy using different kfuel. 

Pload(AV) FuelT(LC)7A FuelT(LC)7B FuelT(LC)7C 

[kW] [L] [L] [L] 

2 5.26 7.18 14.5 

3 4.28 7.24 12.7 

4 2.4 3.32 3.5 

5 −4.38 −3.16 −2.34 

6 −15.08 −13.28 −12.08 

6.25 −19.1 −17.6 −16.32 

The fuel economy for selected RTO strategy, in the all situation, A (���� = 0.5, ����� = 0), B 

((���� = 0.5, ����� = 25), and C ((���� = 0.5, ����� = 50), under variable load demand is shown in 

Figures 12–14.  
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Figure 12. Fuel economy for the RTO1 strategy in case A (kfuel = 0), B (kfuel = 25), and C (kfuel = 25) 

under variable load. 

 

Figure 13. Fuel economy for the RTO2 strategy in case A (kfuel = 0), B (kfuel = 25), and C (kfuel = 25) 

under variable load. 
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Figure 14. Fuel economy for the RTO3 strategy in case A (kfuel = 0), B (kfuel = 25), and C (kfuel = 25) 

under variable load. 

Note that the values for the fuel economy increases for some strategies, RTO1 and RTO2, only 

if kfuel  0. A sensitivity analysis was performed considering the parameter ����� with values between 

10 and 50, for understand the shape of the optimization function in this variable �����.  

The results show that the optimization function is multimodal, with parameter kfuel, so any 

value for �����, between 10 and 50, can be used and the same fuel economy can be obtained for two 

different values of �����. It is worth mentioning that any value of ����� in the range of values 

between 10 and 50 will improves the fuel economy for the strategies RTO1, in almost the full range 

of load demand and this is higher than that obtained with the RTO3 strategy, but no improvement 

in fuel economy at light load is obtained for RTO3 strategy if kfuel  0. Also, it worth to mention the 

the fuel economy is almost the same for kfuel = 0 or kfuel  0 compared to sFF strategy for �����(��) >

5 kW (as it can be observed at constant load as well; see Figure 9), but clearly higher than that 

obtained with the booth strategies RTO1 respectively RTO2. 

Consequently, the rules of the RTO switching strategy for best fuel economy of 6 kW FC-HPS 

could be defined as follows: (i) set the weighting coefficient kfuel to optimum value (around of 25); 

(ii) if the load demand is lower than 5 kW then the recommended strategy must be the RTO1 

strategy; (iii) if the load demand is higher than 5 kW then the recommended strategy must be the 

RTO3 strategy. 

4.3. Fuel Economy for the HPS under Variable Load Demand and PRES  0 

For exemplify, in Figure 15 is presented the functioning for the RTO3-based FC-HPS under 

variable load and RES power for two AV levels of the load demand (�����(��) = 4 kW and �����(��)  = 

6 kW in Figure 15a,b). The plots’ organization presented in Figure 15 is: the first plot shows the 

profile of the load power. The second plot shows the FC net power profile. This FC net power 

follows the load demand due to the implemented LF control. The third plot shows the Energy 

Storage System power, highlighting the LF control advantage: the ESS operate in the charge 

sustaining manner (����(��) ≅ 0); the fueling flow rates (AirFr and FuelFr) are presented in the next 

two plots, and, in the last three plots, the fuel consumption, the fuel efficiency, and the FC energy 

efficiency are presented. 

If the RES power is higher than the load demand (���� > �����), the fuel cell operate in standby 

mode, at low power. This is done by limiting fueling flows, avoiding a more complicated star-stop 

procedure. 
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The resulting power excess, (���� − �����) must be used (one use it to supply an electrolyzer). 

If this power excess is not used, it is necessary to monitor the charging state of the battery, in order 

to avoid full charging. 

 
(a) �����(��) = 4 kW and ����� = 25 W−1 lpm  
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Figure 15. Cont. 

 
(b) �����(��) = 6 kW and ����� = 25 W−1 lpm 

Figure 15. The HPS behavior of the RTO3 strategy for PRES variable, ���� = 0.5 W−1, ����� = 25 W−1 

lpm, and different �����(��). 

5. Discussion 

Differently from the sFF strategy, to explain the fuel economy obtained with the GTO-based 

RTO strategy, it is necessary follow the values of the performance indicators mentioned above and 

the values for the adjustment parameters and the gains. Taking into account design rules from [75], 

tuning parameters ��, respectively ��, were designed for fuel cell system with 6 kW power. 
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Normalization gains must to accommodate the booth values: yN respectively p for the full 

range of searching. In this case, the following values were used in the simulation: ��� =  
�

����
≅

�

����
 

and ��� =  
���(�����)

�
≅ 60. The following values for weighting coefficients ���� = 0.5 ��� lmp, 

respectively ����� = 25 ��� lpm were chosen to give an approximately identical contribution to FC 

net power (���� ∙ ������ ≅ 3000), and for the fuel consumption efficiency ������ ∙ ������� ≅ 25 ∙

110 = 2750� into the optimization function (���� = � ≅ 5750). The load demand varies in range of 

2 kW to 8 kW and the FC current from 10 A to 240 A. Thus, considering these values, the 

optimization function varies from about 4400 to 6400. Thus, the signal ��varies from 1.5 �≅
����

����
� to 

2.1 �≅
����

����
� and the signal p from 

�

�
 �

��

��
� to 4 �

���

��
�. The adaptive characteristic of the GES control 

has 100% ability to discover the global optimum for these variations in the parameters [76,96].  

Since the imposed objective is to improve the fuel cell net power, and not to save the fuel (the 

form of optimization function is � = ���� ∙ ������), we will get more fuel economy by using the sFF 

strategy, in comparison with RTO strategies if ���� = 0 and the load is lower (����� <  3��). 

If the Pload < 3 kW, the results obtained are very little different when performing a sensitivity 

analysis in according with: ����� ≠ 0. This is possible because we have low values for search 

resolution (RS), which become lower than 0.5% and hit count decreases (so a suboptimal value was 

found instead of the optimum). 

Except for the RTO3's strategy al light load (Pload(AV) < 4 kW for kfuel  0), in all other cases, we 

achieve fuel economy, both for constant load and for variable load. The exception occurs when RS< 

0.5% at light load, but note, compared to strategies RTO1 and RTO2, the high fuel economy of 

RTO3 strategy that is obtained for Pload(AV) > 4 kW due to optimal control of the boost converter.  

The multimodal characteristic of the optimization function in variable kfuel resulted after the 

sensitivity analysis performed for different kfuel values, in the 10–50 range. In this way, for any kfuel 

value in the above mentioned range, the fuel economy can be improved. 

Several factors influence tracking efficiency. These factors are: the dynamics of the load; the 

RES power profile; and last but not least, the tracking time (the response time of the search loop) 

[25–29]. 

As was mentioned, if we have a 100 Hz sinusoidal dither, 10 periods of dither (0.1 s) represent 

the tracking time for the GES control. Consequently, the dynamic phenomena such as the RES 

power fluctuation and high and sharp dynamics of load demand will influence the performance of 

any RTO strategy (including the sFF strategy) if the tracking time is not lower that time constants of 

the process under optimization. For the stationary tracking accuracy parameter, the following 

results are obtained: for stationary mode, and for the dither frequencies ranging from 10 Hz to 1000 

Hz, we have an accuracy of 99.99%. If we have load pulses mode, and we have 100 Hz for the dither 

frequency, we obtain a tracking accuracy of 99.86%. This accuracy decreases to 98% if the dither 

frequency is 1000 Hz [78]. Taking into account the sensitivity analysis performed for the dither 

signal frequency in the interval between 10 Hz and 1000 Hz, the best results appear when we use a 

sinusoidal dither signal with a hundred Hz frequency. 

For a fair comparison, the LFW reference Iref(LFW) was used as reference input for the boost 

controller (Iref(boost)) in the strategies RTO1 and RTO2, and for air regulator in RTO3 strategy. The 

inputs of the air regulator (Iref(Air)) and the fuel regulator (Iref(Fuel)) in the strategies RTO1 and RTO2 

were controlled by the GES reference (IrefGES) and the FC current (IFC) to optimize the FC system 

operation as follows: the RTO1 strategy uses Iref(Fuel) = IrefGES + IFC and Iref(Air) =IFC, and the RTO2 strategy 

uses Iref(Air) = IrefGES + IFC and Iref(Fuel) = IFC. The RTO3 strategy uses Iref(boost) = IrefGES, Iref(Air) = Iref(LFW), sand 

Iref(Fuel) = IFC. Thus, the RTO3 strategy uses the boost convertor to optimize the FC system operation, 

which has response time much shorter than the fueling regulators and speed advantage in 

searching the optimum of the optimization function compared to strategies RTO1 and RTO2. 

Consequently, for best fuel economy, the potential rules of an advanced RTO switching can be 

defined as follows: (i) set the weighting coefficient kfuel  0 (in range 10 to 50); (ii) if the load demand 

is lower than 5 kW then the recommended strategy must be the RTO1 strategy; (iii) if the load 

demand is higher than 5 kW then the recommended strategy must be the RTO3 strategy. 
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The next work will be focused on a comparative analysis of the fuel economy obtained by 

using the RTO strategies proposed in this paper with those analyzed in [71]. 

6. Conclusions 

In this paper, besides a brief presentation of current RTO strategies and a critical assessment of 

proposed Extremum Seeking (ES) algorithms, the fuel economy of three Renewable Fuel Cell 

Hybrid Power System (REW/FC-HPS) topologies has been analyzed.  

In this paper, the dynamics on load demand and the electric power available from the 

Renewable Energy Sources (RESs), is proposed to be mitigated using the load-following (LFW) 

control in order to sustain the power flow balance on the DC bus within much power support from 

the battery. Because, in this case, the battery will work in charge-sustained mode, resulting clear 

advantages for FC vehicles related to battery size, its lifetime and maintenance cost.  

The optimization objective can be set in real-time by changing the values of the weighting 

coefficients ���� and ������ in order to increase the overall fuel economy, the FC electrical efficiency, 

or other performance indicators defined for the HPS.  

So, besides the proposal of the switching RTO strategy, the main results of this study can be 

summed up as follows: 

 In comparison with sFF strategy, the control strategies RTO1 and RTO2 offers a higher FC 

electric efficiency for all range of the load demand (see Figure 5). 

 The fuel efficiency of the strategies RTO1 and RTO3 is almost the same for Pload(AV) > 4 kW (see 

Figure 6).  

 The fuel economy of all RTO strategies analyzed here for kfuel= 0 is almost the same for Pload(AV) < 

4 kW, but a three times higher fuel economy is achieved at maximum load considering the 

RTO3 strategy compared to RTO1 strategy (see Figures 7–9 for kfuel = 0). 

 The fuel economy increases even further if kfuel  0 (see Figures 7–9). 

 The conclusions about fuel economy for each RTO strategy remain the same for variable 

profiles of the load demand and RES power. 

 The variability of the RES power and load dynamics can be mitigated by the LFW proposed in 

this paper to sustain the power flow balance on the DC bus without much support from the 

batteries’ stack, which mainly operates in charge-sustained mode.  

Finally, it worth to mention that exploration of space of the optimal solutions with two 

variables could have as result a higher fuel economy compared with one variable—based RTO 

strategies analyzed in this paper, but this assumption must further investigated. 
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ECMS  

EMS 

EMU  

ES 

aPESC 

PESCs  

ESS 

FuelFr  

FC 

PFC 

PFCnet 

Pcm 

sys 

effH2 

FC HPS 

FuelFr 

FuelT 

Fueleff  

FFT  

FES  

GES 

GaPESC  

HILS  

HPF  

HPS 

kNp  

kNy 

LC  

LFW  

MEP  

MPP  

MV  

MPC  

MRAC  

PESC 

PMP  

PEMFC 

PLoad  

pLoad  

RTO  

RES 

SR 

sFF 

SMES  

SOC 

Tacc 

WT 

Equivalent Consumption Minimization Strategy 

Energy Management Strategy 

Energy Management Unit  

Extremum Seeking 

Asymptotic Perturbed Extremum Seeking Control 

Scalar PESC  

Energy Storage System 

Fuel Flow rate 

Fuel cell 

FC stack power  

FC net power 

Air compressor power  

FC electrical efficiency 

Hydrogen consumption efficiency 

Fuel Cell Hybrid Power Systems 

Fuel Flow rate 

Total Fuel Consumption 

Fuel Consumption Efficiency 

Fast Fourier Transform  

Flywheel energy storage  

Global Extremum Seeking 

Global aPESC 

Hardware-in-Loop System  

High-Pass Filter  

Hybrid Power System 

Output normalization gain  

Input normalization gain  

Load Cycle  

Load-Following  

Maximum Efficiency Point  

Maximum Power Point 

Mean Value  

Model Predictive Control 

Model Reference Adaptive Control  

Perturbed Extremum Seeking Control  

Pontryagin's Minimum Principle 

Proton Exchange Membrane Fuel  

Stationary load power (constant power demand) 

Dynamic load power (variable power demand)  

Real-Time Optimization  

Renewable Energies Source 

Searching Resolution 

Static Feed-Forward 

Superconducting Magnetic Energy Storage 

State-Of-Charge 

Tracking accuracy 

Wind Turbines 
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