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Abstract: Besides three different real-time optimization strategies analyzed for the Renewable/Fuel
Cell Hybrid Power Systems (REW/FC-HPS) based on load-following (LFW) control, a short but
critical assessment of the Real-Time Optimization (RTO) strategies is presented in this paper. The
advantage of power flow balance on the DC bus through the FC net power generated using the LFW
control instead of using the batteries’ stack is highlighted in this study. As LFW control consequence,
the battery operates in charge-sustained mode and many advantages can be exploited in practice such
as: reducing the size of the battery and maintenance cost, canceling the monitoring condition of the
battery state-of-charge etc. The optimization of three FC-HPSs topologies based on appropriate RTO
strategy is performed here using indicators such as fuel economy, fuel consumption efficiency, and FC
electrical efficiency. The challenging task to optimize operation of the FC-HPS under unknown profile
of the load demand is approached using an optimization function based on linear mix of the FC net
power and the fuel consumption through the weighting coefficients knet and kfuel. If optimum values
are chosen, then a RTO switching strategy can improve even further the fuel economy over the entire
range of load.

Keywords: fuel cell system; fuel economy; hybrid power systems; unknown load demand; real-time
optimization; control loops switching strategy

1. Introduction

In renewable energy Hybrid Power Systems (HPS) applications, the generation power is usually
intermittent and variable, the load power is also dynamic with the daily energy consumption, such as
in Fuel Cell Hybrid Power Systems (FC-HPS), wind turbine farms, and solar arrays.

The main objective for the FC-HPS [1–4] and other hybrid energy systems [5–7] is to efficiently
operate these systems based on rule-based and optimization-based strategies proposed in the last
years [8,9]. As it is known, the deterministic rule-based strategy is already available in the market
due to their reduced complexity in implementation, but this type of strategy cannot find the optimum
solution [10], so the research interest has switched to optimization-based Real-Time Optimization
(RTO) strategies, even if the complexity increases [1,11]. These strategies can find and track in
real-time the optimal solution or a suboptimal solution close to it [7,12]. The RTO strategies usually
use optimization algorithms such as the Extremum Seeking (ES) algorithms [13,14], the Equivalent
Consumption Minimization Strategy (ECMS) [15,16], the intelligent algorithms [17–19], the Model
Predictive Control (MPC) schemes [20,21], and so on [22–26]. From these RTO-strategies, the ECMSs
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based on Pontryagin’s Minimum Principle (PMP) [26,27] or Dynamic Programming (DP) are most
used for FC-HPS [10].

Different ES-based RTO strategies based on classical [28,29], modified [30,31], and
advanced [13,14,32,33] ES algorithms were proposed recently to optimally operate the FC-HPS. The
modified ES algorithm improves the tracking robustness compared to conventional ES algorithm due
to tge use of a Band-Pass Filter (BPF) to process more power harmonics into the seeking signal [30,31].
The advanced ES algorithm improves the tracking accuracy compared to modified ES algorithm by
using modulation of the dither amplitude with the magnitude of first harmonics of the FC power.
Furthermore, the FC ripple power decreases around the Maximum Efficiency Point (MEP), which
is faster found [32]. A comparative study of the ES-based RTO strategies is presented in [33,34].
The global ES (GES) algorithm tracks the global Maximum Power Point (MPP) instead of local MPP,
improving with more than 30% the efficiency of the photovoltaic (PV) system [35–37]. The GES
algorithm [35] uses two BPFs instead of one BPF [36]. The design rules for the GES algorithms are
detailed in [37].

PV arrays, wind turbines and battery stacks generate the needed load power in renewable
energy systems and a design to comply the power flow balance on the Direct Current (DC) bus
could oversize the battery stack due to the high dynamics of the load profile and variability of the
available renewable energy. This issue can be solved by using the Load-Following (LFW) control
of the FC boost converter [38] to compensate the power flow balance on the DC and the battery
will operate in charge sustaining mode, which means reducing the size of the batteries stack. Thus,
considering additionally the reduction of maintenance costs, the overall cost of FC-HPS remains
within the same range as the battery-based HPS cost. Furthermore, for example, the LFW control is
simpler to be implemented compared to ES-based RTO routine to rescale the air flow rate (AirFr) of the
Proton Exchange Membrane FC (PEMFC) system or other energy management strategies based on
states’ diagram [39]. Different RTO-strategies have been proposed for FC-HPS to improve the free air
breathing of PEMFC system through the MEP [40] or MPP [41] tracking techniques, or based on other
robust control techniques [42] which are analyzed and compared in [43]. The MPP tracking technique
improves the tracking accuracy of a photovoltaic/FC-HPS by simultaneously optimizing both the PV
and FC systems [44]. The renewable HPS architecture requires a FC system and electrolyzer to store
the hydrogen in order to mitigate the variability of the renewable power, but a regenerative FC stack
could solve this issue in one device [45,46].

Besides the LFW control of the FC system [38], other different algorithms can be used as well [46],
such as artificial intelligent algorithms [47] based on neural networks [48], genetic algorithms [49],
or data fusion approach [50]. The combinatorial techniques [51], the Model Reference Adaptive Control
(MRAC) [52], the metaheuristic approaches [53], the prediction of the load demand [54], and ECMSs
techniques [55] are other methods proposed to optimize the operation of the FC-HPS.

The static feed-forward (sFF) control of the FC system was first implemented in practice [56],
but many other control algorithms for air compressor systems have been designed based on the
Hardware-in-Loop System (HILS) technique [56–67]. The HILS-based second order sliding mode
controller implemented in a commercial twin screw air compressor sub-optimally controls the air
feed system [57] avoiding oxygen starvation and the compressor surge phenomenon using the load
governor method and constrained extremum technique [58]. Thus, the AirFr of the PEMFC system
can be optimally control by a second order sliding mode control [59]. The better mitigation of load
ripples and pulses on PEMFC operation can be ensured using a disturbance rejection control [60] or a
differential flatness approach [61] compared to a classic Proportional–Integral (PI) controller [56]. Also,
by appropriate control of the cathode system, the lifetime of the PEMFC system could be increased
to 25 years in next decade [62]. The Linear Quadratic Regulator (LQR)/Linear Quadratic Gaussian
(LQG) control maintains the best oxygen stoichiometry in PEMFC systems [63], but other optimal
control solutions for the AirFr are proposed in literature based on ES algorithm [32], feed-forward
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fuzzy Proportional Integral Derivative (PID) control [64], optimal PID plus fuzzy controller [65], time
delay control [66], and adaptive control [67].

Besides control for air systems, other control solutions to improve the fuel economy of the
fuel system were proposed [43] such as global optimization methods based on fuzzy logic [68] and
genetic [49] algorithms, adaptive algorithms such as adaptive fuzzy control [69] and adaptive Energy
Management Strategy (EMS) [70], but most of them require prior knowledge of the driving cycle.
Furthermore, these algorithms are difficult to implement in RTO strategies due to its computational
complexity; so, the research field of designing efficient and simple RTO strategies for FC-HPS still
remains challenging.

In this paper, using Matlab-Simulink version 2013®, the performance of three LFW control-based
FC-HPS topologies is compared considering the optimization loop implemented to size the FC boost
converter (the new RTO3 strategy), AirFr regulator (the RTO2 strategy [71]), or Fuel Flow rate (FuelFr)
regulator (the RTO1 strategy [72]). All the topologies use one optimization loop and LFW control to
mitigate the variability of the load demand and renewable energy on battery State-Of-Charge (SOC).
The performance of the proposed RTO strategies is compared to the sFF reference strategy under
same unknown profile of the Load Cycle (LC) based on the following indicators: (1) the FC net power,
(2) the fuel consumption efficiency, (3) the electrical efficiency of the FC system, and (4) the total
fuel consumption. The optimization function used in this study is designed to reduce the total fuel
consumption under unknown LC, being a linear weighted function of the FC energy efficiency and
the fuel consumption efficiency through the weighting coefficients knet and kfuel. The GES algorithm is
used to find in real-time the global maximum of the optimization function [35].

Design of the weighting coefficients knet and kfuel will improve the fuel economy of a FC vehicle
under unknown LC. Thus, the performance is estimated for all three FC-HPS topologies compared to
the sFF strategy using same profile for the constant and variable load demand. The RTO strategies for
the FC-HPS topologies clearly differ in the place where the optimization is performed and the LFW
control is applied (see Table 1). Finally, considering the obtained performance, some guiding design
rules to choose the switching RTO strategy are given.

The paper is organized as follows: optimization objectives and algorithms for FC-HPS based
on the extremum seeking algorithm are very briefly mentioned in Section 2. The LFW control-based
RTO strategies with specific optimization loop are designed in Section 3 considering the power flow
balance at the DC bus. The results for all three RTO strategies are presented in Section 4 compared to
the sFF strategy for constant and variable load, without and with renewable energy support. Section 5
discusses the results obtained and the last section concludes the paper.

2. Optimization Objectives and Algorithms

The RTO switching control strategies proposed in this paper will be implemented based on the
theory of problem optimization applied in many engineering applications.

2.1. Optimization Algorithms

Optimization of the FC-HPS is the real-time process of searching for the set of values in the
search range, called the optimal value (or the optimum) and which must be very close to the
global extreme of the optimization function, so besides high tracking and searching accuracy [35,36],
the global search feature of the optimization algorithm must have a 100% hit count and to have a
good robustness to different perturbations into the system (such variations of the load demand and
renewable power) [5,6,73]. The input vector will continuously seek the new optimum in the searching
range due to changes in the requested load demand and available renewable power which set the
needed FC power under LFW control. If some stationary regimes could appear, then the FC ripple
current must be minimum [35,36,74]. The FC net power PFCnet = f (AirFf, FuelFr) has an optimum called
MEP and many other peaks on the plateau around the MEP [1], but 99.9% searching accuracy and
less than 1% searching resolution help the GES algorithm to discern the MEP from them [37], so the
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ES algorithm [37] was used in this study due to its reported performance features and location and
tracking of the MEP in one search stage (less than 10 dither periods, which, for example, means less
than 0.01 s for a 1000 Hz sinusoidal dither). The firmware-based global MPP tracking algorithms
proposed in literature operate in two stages, so their tracking time results are higher compared to the
GES algorithm. The tracking accuracy (Tacc) and searching resolution (SR) are defined as follows [37]:

SR =
min

i
|yGMPP − yLMPPi|

yGMPP
· 100[%] (1)

Tacc =
y∗GMPP
yGMPP

· 100[%] (2)

where yGMPP, yLMPP < yGMPP, and y*GMPP < yGMPP are the global extreme, the local maxima, and the
value tracked with the GMPPT algorithm.

Furthermore, the GES algorithm [37] does not need complicated and periodic tuning of the
parameters [75], so it is simple to design and implement [76], but ultimately the performance of
all optimization algorithms depend on the to optimization objectives and constraints defined for a
specific FC-HPS.

2.2. Optimization Objectives and Constraints

The optimization procedure usually follows the following steps: identifying and defining the
optimization problem, designing the model, simulating and evaluating the model, refine the problem,
and finally implementing optimal solution. The optimization objectives are in general contradictory,
so multi optimization functions are proposed instead of one optimization function [77], integrating the
constraints by penalty function related to battery SOC level [78,79].

The FC-HPS optimization can be generally defined as follows:

Maximize:
f (x, AirFr, FuelFr, PLoad) = knet · PFCnet + k f uel · Fuele f f (3a)

Subject to FC-HPS dynamics:

.
x = g(x, AirFr, FuelFr, PLoad), x ∈ X (3b)

and battery SOC constraints:
SOCmin < SOC < SOCmax (3c)

In Equations (3a–c) PLoad, knet and kfuel represent the disturbance input, respectively weighting
coefficients that will be switched according to the objectives defined in real-time during an unknown
LC [80].

For example, the FC vehicle will adapt the parameters of the used optimization function
considering the available on-line information about the route profile or the requests from as inputs of
the Energy Management Unit (EMU) [81,82] as follows: the FC net power must be maximized if the
FC vehicle climbs up a hill, the fuel economy must be maximized if the FC vehicle runs smoothly on
the highway, the fuel consumption efficiency must be maximized if the communication unit informs
the EMU that the fuel tank is almost empty based on signaling sensors, but a fuel station is close to the
current position of the FC vehicle.

The number of sensors must be reduced at minimum for the FC-HPS based on Renewable
Energy Systems (RES) by using adaptive algorithms to improve the fuel economy for plug-in FC
vehicles [83] or grid-connected FC-HPS [84], which usually use many decision variables and constraints
as inputs for the EMU such as [85]: the number of energy source units (FC systems, PV panels,
wind turbines (WT), batteries, power storage devices, electrolyzers), RES potential (insolation and
wind speed in installation area), technical characteristics (PV panel position, WT height), battery
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characteristics (SOCmin, SOCmax), hydrogen storage availabilities (tank volume, electrolyzer capacity),
type of power storage devices (superconducting magnetic energy storage or SMES, flywheel energy
storage or FES, ultracapacitors) and so on [1,4]. The constraints to design the FC-HPS of a FC vehicle
are clearly related to available space and weight limitations, lifetime and safe operation of the FC
system and batteries stack, maintenance cost, and so on [83], so an optimization problem involving
multiple objectives such as technical, economic, and environmental objectives must be a combination
of the conflicting performance indicators to be easy implemented [1,45]. Besides the fuel economy
(or total fuel consumption: FuelT =

∫
FuelFr(t)dt) as general performance indicator, other performance

indicators can be integrated in the optimization function depending of application and load profile [86],
but also by the environment conditions due to emplacement of the FC-HPS in different places situated
on worldwide [87]. For example, fuel economy, lithium battery size and powertrain system durability,
and, respectively, fuel economy and power efficiency are linearly mixed in the optimization function
used in [88,89]. The performance indicators that could be used are as follows: the fuel consumption
efficiency

(
Fuele f f =

PFCnet
FuelFr

)
, the FC electrical efficiency

(
ηsys =

PFCnet
PFC

)
, and the efficiency of hydrogen

consumption
(

e f fH2 = 100 × PFCnet
LHV × FuelT

)
, where LHV is the lower heating value for hydrogen fuel. The

range for indicator ηsys is between 85% (at rated load) to 90% (at light load) and for indicator e f fH2 is
up to 60%, but these performances could be improved [90].

The power loss from the FC stack power (PFC) to supply the air compressor (Pcm) represents about
10–15%, so the available FC net power in the power flow balance on the DC bus will be PFCnet ∼= PFC −
Pcm, where Pcm = Icm × Vcm = a1 × AirFr2 + a2 × AirFr + a3) × (b1 × IFC + b0), and a3 = 0.6, a2 = 0.04,
a1 = − 0.00003231, b0 = 0.9987, and b1 = 46.02 [29].

This research study is motivated by the complexity of implementation for all control strategies
studied in the literature until now, so, in this paper, three different FC-HPSs topologies have been
analyzed considering the same operating conditions (load demand profiles), optimization function,
constraints (the FC current slope of 100A/s used in [91]), and GES algorithm to track the MEP in
real-time. The GES algorithm and other ES control algorithms proposed in the literature will be briefly
presented in the next section.

2.3. Extremum Seeking Control Algorithm

A nonlinear system can be defined by (4) [92]:

•
x ∆
=

dx
dt

= f (x(t), u(t)), y = h(x(t)) (4)

where the smooth functions f (x,u), h(x), and u(t) = g(x(t),p) define the system dynamic, nonlinear map
of the system, and the control law, x ∈ Rn, u ∈ Rm, and y ∈ R are the state variables, system inputs and
system output, and p is the parameter vector.

The nonlinear system evolves under ES control to the equilibrium point (the optimum) defined
by the smooth function xe, xe:Rl → Rn:

f (x, g(x, p)) = 0 ⇔ x = xe(p) (5)

and the parameter-output map:
y = h(x) = h(xe(p)) = h(p) (6)

based on the seeking vector p.
The Asymptotic Perturbed Extremum Seeking Control (aPESC) scheme based on Scalar PESC

(PESCs) scheme [92] was proposed in [93] (see Figure 1a with the switch on position 1). The tuning
parameters k1 and k2 change the amplitude of the tracking signal (p̂1) and the sweeping signal (p̂2).
Due to some stability issues of the tracking loop of the PESCs scheme, in general the tuning parameter
k2 cannot be increased to scan the entire search range, so the sweeping signal p̂2 in aPESC scheme must
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be a modulated signal (the dither modulated with the dither gain Gd; see Figure 1a with the switch on
the position 2) to increase the sweeping range due to dither gain Gd which decreases asymptotically
exponentially from a high initial value (a0) to zero based on function q. Thus, the convergence of this
method depends to starting point, the value a0, and function q, so initial assumptions mentioned in [92]
must to be complied to find the optimum in all cases. The aPESC scheme based on the Lyapunov
function (see the aPESCLy scheme in Figure 1b with the switch on position 1) tries to improve the
convergence by using a sweeping signal p̂2 which is maintained to high value a0 until the optimum
is located. Then, the sweeping signal p̂2 decreases to zero based on dither gain Gd which evolves
exponentially to zero, ensuring the stability of the tracking loop. The performance of the aPESCLy
scheme depends on quite complicated design of the Lyapunov function (which uses three signals from
the tracking loop and a switching threshold), and parameters a0 and ρ [94]. The convergence of the
aPESCH1 scheme is improved compared to aPESC scheme by using a sweeping signal p̂2 based on the
first harmonic (H1) of the output signal y, which define the dither gain Gd (see the aPESCH1 scheme
in Figure 1b with the switch on position 2). The harmonic H1 is estimated using the Fast Fourier
Transform (FFT) and its value evolves from initial high value to zero during the MEP searching. So,
the entire searching range will be scanned considering the high initial gain obtained in the tracking
loop by adaptive modulation of the tuning parameter k2 [30]. The aPESCH1 scheme has features
of a Global aPESC (GaPESC) scheme [35] (see GaPESCH1 scheme in Figure 1c with the switch on
position 3). Consequently, the performance of this scheme is compared with other GaPESC schemes
as the GaPESC scheme using one BPF (BPF1), the GaPESCbpf scheme using two BPFs (BPF1 and
BPF2), and the GaPESCd scheme based on derivative operator (all these schemes are presented in
Figure 1c considering the switch on position 1, 2, and 4, respectively) [36]. The minor differences
between these schemes are given by the used technique (to approximate the first harmonic H1 and lets
other harmonics in the tracking loop to ensure the dither persistence) as follows [37]: the BPF2 will
approximate the first harmonic H1 in the GaPESCbpf scheme and the BPF1 must be designed to ensure
harmonics in the tracking loop. This scheme will be used in this study and called here as the GES
scheme. The tracking speed of the GaPESC scheme is lower than that of the GES scheme due to the use
of a single BPF1, which must be centered on first harmonic H1. In general, the derivation operation
produces instabilities in the tracking, so the GaPESCd scheme is not recommended in practice. It is
worth to mention that the tracking loop is the same for all aPESC schemes analyzed in this paper or
other ES schemes proposed in the literature such as the Fractional-Order ES scheme [95].
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Figure 1. aPESC, modified aPESC and Global aPESC schemes. (a) The scalar PESC (PESCs) scheme and
its asymptotic variant (aPESCs) with the swithch on the position 1 and 2; (b) Modified aPESC schemes.
The aPESC schemes based on the Lyapunov finction (aPESCLyy) and the H1 harmonic (aPESCH1)
with the switch on the position 1 and 2; (c) Global aPESC (GaPESC) schemes.

The optimization loop is based on one or two GES control blocks (see Figure 2) implementing the
relationships (7) [37]:

y = f (v1, v2), yN = kNy · y (7a)

•
y f = −ωh · y f + ωh · yN , yHPF = yN − y f ,

•
yBPF = −ωl · yBPF + ωl · yHPF (7b)

yDM = yBPF · sd, sd = sin(ωt), (7c)
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•
yInt = yDM (7d)

Gd = |yMV |, yMV =
1
Td
·
∫

yBPFdt (7e)

yM = Gd (7f)

p̂1 = k1 · yInt, k1 = γsd ·ω (7g)

p̂2 = k2 · yM · sd (7h)

p̂3 = Am · sd (7i)

Ire f GES = kNp · ( p̂1 + p̂2 + p̂3), (7j)

The relationships (7a) represent the optimization function and the input normalization gain
(kNy). The Equation (7b) represent the high-pass filter (HPF), respectively the band-pass filter (BPF)
used to signal processing the process’s output under optimization (the FC power in this case). The
demodulation, the integration, the computing of the dither gain Gd based on average value (AV) of
the ybpf signal, and the signal that will modulate the dither are represented by the relationships (7c) to
(7f). It is worth to mention that the searching signal (p) has three components that evolves different
in the searching of the optimum, the tracking signal (p̂1), the sweeping signal (p̂2), and the starting
minimum signal (p̂3), which are estimated based on (7g) to (7i). These components finally define the
reference current IrefGES (6j), where the parameter kNp represents the output normalization gain. Based
on design rules [75], the tuning parameters are set to k1 = 1 and k2 = 2, and the normalization gains to
kNy = 1/YMax and kNp = IFC(rated)/2. In this case, the nominal value of the FC current are IFC(rated) and
the maximum value of the optimization function are YMax. These values ensure 100% hit count for
searching process [96]. The parameters of the dither frequency fd for the two GES controllers are of
100 Hz and 200 Hz to ensure the dither persistency and separate search of optimum on optimization
surface, and the BPF cut-off frequencies are defined by bh fd and b1 fd (where bh = 0.1 and bh = 3.5) [75].
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The searching (or tracking) time for all GES schemes discussed above are less than 10 periods of
dithers [75,76], so it is less than 0.1 seconds, assuring in real time the optimal operation of the FC-HPS.
The outputs of two GES controllers, Iref (GES1) and Iref (GES2), and the output of the LFW controller
Iref (LFW) are proposed as control variable for the FC-HPS and will be presented in next section.

3. Energy Management Strategies for the Renewable Fuel Cell Hybrid Power Systems

The FC-HPS based on Renewable Energy Sources (RES block in Figure 3—top) and the EMU
(Figure 3—bottom) are presented in Figure 3. The output of the LFW controller, Iref (LFW), will be
estimated based on power flow balance on DC bus (8):

CDC·udc·dudc/dt = pDC + pESS − pDCreq (8)
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where the capacitor CDC filters the voltage on DC bus (udc). The pDC, pESS and pDCreq, represent the
output power of the boost converter, the power of Energy Storage System (ESS), respectively the power
required from the FC system, on DC bus, via the boost converter:

pDCreq = pLoad − pRES (9)

The output power of the FC boost converter is:

pDC = ηboost·pFCnet (10)

where ηboost
∼= 95% represents the efficiency of the boost converter.

Thus, the average value (AV) of the power flow balance (8) will be given by (11):

0 = ηboost PFCnet(AV)+ PESS(AV) − PDCreq(AV) (11)

When the battery works in mode “charge-sustaining”:

PESS(AV)
∼= 0 (12)

then LFW reference will be given by (13):

Iref (LFW)
∼= IFC(AV) = PDCreq(AV)/(VFCnet(AV) ηboost) (13)

where the power requested on DC bus is the load demand from DC loads and AC loads via the inverter
systems minus the available RES power:

pDC ∼= pDCreq = pLoad − pRES ⇒ PDCreq(AV)
∼= PLoad(AV) − PRES(AV) (14)

The inputs of the boost controller (Iref (boost)), the air regulator (Iref (Air)), and the fuel regulator
(Iref (Fuel)) will be controlled by the GES references based on RTO strategies setting (see Figure 4 and
Table 1), as follows: the RTO1 strategy uses Iref (boost) = Iref (LFW)., Iref (Fuel) = IrefGES + IFC and Iref (Air) = IFC,
the RTO2 strategy uses Iref (boost) = Iref (LFW)., Iref (Air) = IrefGES2 + IFC and Iref (Fuel) = IFC (both strategies
being tested in [97,98] for the FC-HPS without support from the RES), and the RTO3 strategy uses
Iref (boost) = IrefGES, Iref (Fuel) = IFC and Iref (Air) = Iref (LFW) (being tested in [84,99] for the FC-HPS without
support from the RES).

The FC current will follow Iref (LFW) for the RTO1 and RTO2 strategies due to hysteretic control of
the boost converter:

IFC(AV)
∼= PDCreq(AV)/(VFCnet(AV) ηboost) (15)

Consequently, the FC net power generated will be given by (16):

PFC(AV) = IFC(AV)·VFCnet(AV)
∼= PDCreq(AV)/ηboost (16)

Thus, considering (12), PESS(AV)
∼= 0, the LFW control is implemented using (13). The smooth

value of the load demand and the FC voltage can be obtained using the AV techniques or other filtering
techniques as well [100,101]. So, a smooth value will be obtained for the reference Iref (LFW) and the FC
system will be safe operated even under sharp dynamic profiles of the load demand and RES power.
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Table 1. RTO strategies setting.

No. Iref (Boost) Iref (Air) Iref (Fuel) Strategy Reference

0 ILFW IFC IFC sFF [56]
1 ILFW IFC IGES1 + IFC RTO1 [97]
2 ILFW IGES1 + IFC IFC RTO2 [98]
3 IGES2 ILFW IFC RTO3 [84]
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The references Iref (Fuel) and Iref (Air) will define the inputs FuelFr and AirFr of the FC system based
on the fueling regulators (17) [56]:

FuelFr =
60000 · R · (273 + θ) · NC · Ire f (Fuel)

2F · (101325 · Pf (H2)) · (U f (H2)/100) · (xH2/100)
(17a)

AirFr =
60000 · R · (273 + θ) · NC · Ire f (Air)

4F · (101325 · Pf (O2)) · (U f (O2)/100) · (yO2/100)
(17b)

where R and F the constants 8.3145 J/(mol K) and 96485 As/mol, and the parameters (NC, θ, Uf (H2),
Uf (O2), Pf (H2), Pf (O2), xH2, yO2 ) are defined in [56].

The air and fuel regulators use 100 A/s slope limiters for safe operation of the FC-HPS [102].
Note that due to LFW control of the FC system via the boost controller, the batteries will operate

in charge sustaining mode for all RTO strategies analyzed in this paper. The advantages are related to
battery size, its lifetime and maintenance cost, and simple implementation of the EMU (the constraints
(3c) for the battery SOC are clearly respected).

The sFF strategy proposed in [56] will be used as reference with the LFW control implemented in
the same manner (see Table 1) for a fair comparison of each strategy RTOk, k = 1 ÷ 7, based on the
gaps (18) in the performance indicators:

∆ηsys = ηsysk − ηsys0 (18a)

∆Fueleff = Fueleffk − Fueleff 0 (18b)

∆FuelT = FuelTk − FuelT0 (18c)

A PEMFC Matlab Simulink model with parameters: 6 kW/45 V is used in this study. For this
model, the constant time is put to 0.1 s value. The variable voltage of FC (VFC) is raised to 200 V by
using a boost converter VDC ∼= VDC(re f ) = 200 V. The control type used for the boost converter is
of hysteretic type with 0.1 A hysteresis band.

Similar to [103], to mitigate the pulses on the DC bus a ESS semi-active topology is chosen. This
topology has a battery stack connected on DC bus (lithium-ion batteries with 100 Ah/100 V) and
an ultracapacitors’ stack with nominal capacity of 100 F. For this ultracapacitors’ stack we have the
following typical values: ESR—the equivalent series resistor—the value is 0.1 Ω, EPR—the parallel
resistor—the value is 10 kΩ, and the initial voltage are set on 100 V, so to connect the ultracapacitors’
stack to the DC bus, is used a bidirectional DC-DC converter. For all other model parameters, the
values are the set by default. Also, the initial battery stack SOC is 80%. Both stacks use models from
Matlab and Simulink® (R2013a, MathWorks, Natick, MA, USA) toolboxes (with the outputs that are
offered by each model, such as SOC signal for the battery’s model, and which all are explained in
the help page). Furthermore, to filter the voltage on DC bus, a capacitor, CDC, with 100 µF is used
(the initial value of VDC = 200 V) [103].

4. Results

The GES-based RTO strategies will search the optimum of the optimization function (3a) for three
sets of the knet and k f uel values (weighting coefficients): in the first situation, A, we have the following
values for coefficients: knet = 0.5, kfuel = 0), for the second situation, B, we have the following values for
coefficients: knet = 0.5, kfuel = 25, and for the third situation, C, the values for coefficients are: knet = 0.5,
kfuel = 50. Different scenarios were performed in this analysis. These scenarios have taken into account
the power flow over the DC bus: the load demand has been both, variable and constant, also having or
not having the power of RES.
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4.1. HPS under Constant Load Demand and kfuel = 0 and PRES = 0

The value of the performance indicators ηsys0, Fueleff0, and FuelT0 for the sFF strategy are presented
in [71].

FC Electrical Efficiency

Results such as deficiencies in fuel economy, fuel efficiency, and global fuel efficiency are presented
in Tables 2–4 for each strategy RTOk, k = 1 ÷ 3, compared to sFF strategy in case A (kfuel = 0) under
constant load.

Table 2. The gaps in FC electric efficiency.

Pload ∆ηsys1 ∆ηsys2 ∆ηsys3

[kW] [%] [%] [%]

2 0.27 −0.62 −0.35
3 0.42 −0.51 −0.01
4 0.53 −0.48 0.06
5 0.61 −0.31 0.13
6 0.69 −0.15 0.27
7 0.91 0.18 0.63
8 2.65 1.61 1.61

Table 3. The gaps in fuel efficiency.

Pload ∆Fueleff1 ∆Fueleff2 ∆Fueleff3

[kW] [W/lpm] [W/lpm] [W/lpm]

2 −1 −1.8 −15.3
3 −0.7 −1.5 −3
4 0.7 −0.7 −0.7
5 1.8 −0.5 0.4
6 2.5 −0.4 1.4
7 3.91 0.62 3.31
8 10.35 11.2 11.2

Table 4. Fuel economy.

Pload ∆FuelT1 ∆FuelT2 ∆FuelT3

[kW] [L] [L] [L]

2 1.24 1.2 11.26
3 0.13 0.79 4.14
4 −0.13 0.77 2.08
5 −0.38 0.55 −0.08
6 −1.38 0.42 −2.28
7 −4.34 −0.14 −12.16
8 −11.8 −4 −28.48

The fuel economy are presented in Tables 5–7 for each strategy RTOk, k = 1 ÷ 3, compared to sFF
strategy in case A (kfuel = 0), B (kfuel = 25), and C (kfuel = 50) under constant load.
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Table 5. Fuel economy for the RTO1 strategy using different kfuel.

Pload ∆FuelT1A ∆FuelT1B ∆FuelT1C

[kW] [L] [L] [L]

2 1.22 1.22 1.28
3 0.13 −0.25 0.1
4 −0.13 −0.71 −0.23
5 −0.38 −1.03 −0.48
6 −1.38 −2.08 −1.08
7 −4.34 −10.56 −3.56
8 −11.8 −22.92 −6.8

Table 6. Fuel economy for the RTO2 strategy using different kfuel.

Pload ∆FuelT2A ∆FuelT2B ∆FuelT2C

[kW] [L] [L] [L]

2 1.2 −0.09 1.22
3 0.79 −0.24 0.56
4 0.77 −0.25 0.42
5 0.55 −0.46 0.28
6 0.42 −1.58 0.22
7 −0.14 −4.24 −1.14
8 −4 −18.48 −8.48

Table 7. Fuel economy for the RTO3 strategy using different kfuel.

Pload ∆FuelT3A ∆FuelT3B ∆FuelT3C

[kW] [L] [L] [L]

2 11.26 12.14 7.628
3 4.14 5.548 2.764
4 2.08 1.2 0.288
5 −0.08 −6.44 −5.8
6 −2.28 −14.14 −13.02
7 −12.16 −28.42 −24.82
8 −28.48 −31.08 −29.8

For the RTO1, RTO2 and RTO3 strategies, the deficiencies of the FC electrical efficiency and for the
fuel efficiency are shown in Figures 5 and 6. Fuel economy for the RTO1, RTO2, and RTO3 strategies in
case A (k f uel = 0), B (k f uel = 25), and C (k f uel = 50) under constant load is shown in Figures 7–9.



Energies 2018, 11, 3537 15 of 32

Energies 2018, 11, x FOR PEER REVIEW  14 of 31 

Table 6. Fuel economy for the RTO2 strategy using different kfuel. 

Pload FuelT2A FuelT2B FuelT2C 

[kW] [L] [L] [L] 

2 1.2 −0.09 1.22 

3 0.79 −0.24 0.56 

4 0.77 −0.25 0.42 

5 0.55 −0.46 0.28 

6 0.42 −1.58 0.22 

7 −0.14 −4.24 −1.14 

8 −4 −18.48 −8.48 

Table 7. Fuel economy for the RTO3 strategy using different kfuel. 

Pload FuelT3A FuelT3B FuelT3C 

[kW] [L] [L] [L] 

2 11.26 12.14 7.628 

3 4.14 5.548 2.764 

4 2.08 1.2 0.288 

5 −0.08 −6.44 −5.8 

6 −2.28 −14.14 −13.02 

7 −12.16 −28.42 −24.82 

8 −28.48 −31.08 −29.8 

For the RTO1, RTO2 and RTO3 strategies, the deficiencies of the FC electrical efficiency and for 

the fuel efficiency are shown in Figures 5 and 6. Fuel economy for the RTO1, RTO2, and RTO3 

strategies in case A (𝑘𝑓𝑢𝑒𝑙 = 0), B (𝑘𝑓𝑢𝑒𝑙 = 25), and C (𝑘𝑓𝑢𝑒𝑙 = 50) under constant load is shown in 

Figures 7–9. 

 

Figure 5. The gaps in FC electrical efficiency for the strategies RTO1, RTO2, and RTO3. 
Figure 5. The gaps in FC electrical efficiency for the strategies RTO1, RTO2, and RTO3.

Energies 2018, 11, x FOR PEER REVIEW  15 of 31 

 

Figure 6. The deficiencies of the fuel efficiency for all RTO1, RTO2, and RTO3 strategies. 

 

Figure 7. The values of the fuel economy, in the all situation, for the RTO1 strategy: A (𝑘𝑓𝑢𝑒𝑙 = 0), B 

(𝑘𝑓𝑢𝑒𝑙 = 25), and C (𝑘𝑓𝑢𝑒𝑙 = 50) under constant load. 

Figure 6. The deficiencies of the fuel efficiency for all RTO1, RTO2, and RTO3 strategies.



Energies 2018, 11, 3537 16 of 32

Energies 2018, 11, x FOR PEER REVIEW  15 of 31 

 

Figure 6. The deficiencies of the fuel efficiency for all RTO1, RTO2, and RTO3 strategies. 

 

Figure 7. The values of the fuel economy, in the all situation, for the RTO1 strategy: A (𝑘𝑓𝑢𝑒𝑙 = 0), B 

(𝑘𝑓𝑢𝑒𝑙 = 25), and C (𝑘𝑓𝑢𝑒𝑙 = 50) under constant load. 

Figure 7. The values of the fuel economy, in the all situation, for the RTO1 strategy: A (k f uel = 0),
B (k f uel = 25), and C (k f uel = 50) under constant load.

Energies 2018, 11, x FOR PEER REVIEW  16 of 31 

 

Figure 8. The values of the fuel economy, in the all situation, for the RTO2 strategy: A (𝑘𝑓𝑢𝑒𝑙 = 0), B 

(𝑘𝑓𝑢𝑒𝑙 = 25), and C (𝑘𝑓𝑢𝑒𝑙 = 50) under constant load. 

 

Figure 9. The values of the fuel economy, in the all situation, for the RTO3 strategy: A (𝑘𝑓𝑢𝑒𝑙 = 0), B 

(𝑘𝑓𝑢𝑒𝑙 = 25), and C (𝑘𝑓𝑢𝑒𝑙 = 50) under constant load. 

The gaps in FC electric efficiency is positive in full range of the load demand for the RTO1 

strategy and best compared to strategies RTO2 and RTO3 (see Figure 5). Also, the fuel efficiency for 

RTO1 strategy is better compared to strategies RTO2 and RTO3 (see Figure 6). Fuel economy for the 

strategies RTO1 and RTO2 has almost the same shapes of evolution with load demand. Almost the 

same values for light load, but different values for high load are obtained (see Figures 7 and 8). So, 

the FC net power could be maximized if the FC vehicle ascends up a hill using any of the RTO 

strategies outlined in this paper. Also, remember that the best fuel economy result for case B 

(𝑘𝑓𝑢𝑒𝑙 = 25), so the fuel economy could be maximized if the FC vehicle ascends up a hill by 

choosing the appropriate value for weighting parameter kfuel. The performance of the RTO strategies 

outlined in this paper must be validated in different scenarios below.  

4.2. Fuel Economy for the HPS under Variable Load Demand, PRES = 0, and Different kfuel 

Figure 8. The values of the fuel economy, in the all situation, for the RTO2 strategy: A (k f uel = 0),
B (k f uel = 25), and C (k f uel = 50) under constant load.



Energies 2018, 11, 3537 17 of 32

Energies 2018, 11, x FOR PEER REVIEW  16 of 31 

 

Figure 8. The values of the fuel economy, in the all situation, for the RTO2 strategy: A (𝑘𝑓𝑢𝑒𝑙 = 0), B 

(𝑘𝑓𝑢𝑒𝑙 = 25), and C (𝑘𝑓𝑢𝑒𝑙 = 50) under constant load. 

 

Figure 9. The values of the fuel economy, in the all situation, for the RTO3 strategy: A (𝑘𝑓𝑢𝑒𝑙 = 0), B 

(𝑘𝑓𝑢𝑒𝑙 = 25), and C (𝑘𝑓𝑢𝑒𝑙 = 50) under constant load. 

The gaps in FC electric efficiency is positive in full range of the load demand for the RTO1 

strategy and best compared to strategies RTO2 and RTO3 (see Figure 5). Also, the fuel efficiency for 

RTO1 strategy is better compared to strategies RTO2 and RTO3 (see Figure 6). Fuel economy for the 

strategies RTO1 and RTO2 has almost the same shapes of evolution with load demand. Almost the 

same values for light load, but different values for high load are obtained (see Figures 7 and 8). So, 

the FC net power could be maximized if the FC vehicle ascends up a hill using any of the RTO 

strategies outlined in this paper. Also, remember that the best fuel economy result for case B 

(𝑘𝑓𝑢𝑒𝑙 = 25), so the fuel economy could be maximized if the FC vehicle ascends up a hill by 

choosing the appropriate value for weighting parameter kfuel. The performance of the RTO strategies 

outlined in this paper must be validated in different scenarios below.  

4.2. Fuel Economy for the HPS under Variable Load Demand, PRES = 0, and Different kfuel 

Figure 9. The values of the fuel economy, in the all situation, for the RTO3 strategy: A (k f uel = 0),
B (k f uel = 25), and C (k f uel = 50) under constant load.

The gaps in FC electric efficiency is positive in full range of the load demand for the RTO1 strategy
and best compared to strategies RTO2 and RTO3 (see Figure 5). Also, the fuel efficiency for RTO1
strategy is better compared to strategies RTO2 and RTO3 (see Figure 6). Fuel economy for the strategies
RTO1 and RTO2 has almost the same shapes of evolution with load demand. Almost the same values
for light load, but different values for high load are obtained (see Figures 7 and 8). So, the FC net
power could be maximized if the FC vehicle ascends up a hill using any of the RTO strategies outlined
in this paper. Also, remember that the best fuel economy result for case B (k f uel = 25), so the fuel
economy could be maximized if the FC vehicle ascends up a hill by choosing the appropriate value
for weighting parameter kfuel. The performance of the RTO strategies outlined in this paper must be
validated in different scenarios below.

4.2. Fuel Economy for the HPS under Variable Load Demand, PRES = 0, and Different kfuel

Only to exemplify that the LFW control of the boost converter operates based on (13), the behavior
of the FC-HPS under 6.25 kW LC for the strategies RTO1 (Iref (LFW) = Iref (boost), Iref (Fuel) = IrefGES2 + IFC
and Iref (Air) = IFC) with kfuel = 25 is presented in Figure 10.

The load cycles of 6.25 kW average power (Pload(AV) = 6.25 kW) is presented in first plot of Figure 10,
but other load cycles that are used in this study as well, with different Pload(AV) values mentioned in
Table 8, are defined in [71]. The fuel economy FuelTO(LC) for the sFF strategy is presented as reference
in Table 8.
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Figure 10. The behavior of the FC HPS under 6.25 kW LC (using RTO1 strategy with kfuel = 25).

Table 8. The fuel economy FuelTO(LC) for the sFF strategy.

LC Stage FuelT0(LC)

Pload(AV) [kW] [L]

2 34.14
3 53.92
4 75.8
5 100.62
6 130.2

6.25 138.86

The structure of the Figure 10 is as follows: the first plot shows the variable profile of the load
power (PLoad); the second plot shows the generated FC net power profile (PFCnet) and this follows the
load demand, highlighting that the LFW control operates properly; the third plot shows the ESS power,
highlighting the advantage of LFW control implementing: the battery operating mode will only be of
the charge-sustaining type (PESS(AV)

∼= 0), the DC bus power flow balance being sustained only during
sharp variation of the load demand; the next two plots show the fueling flow rates (AirFr and FuelFr);
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the last three plots show the fuel consumption (FuelT), the fuel efficiency (∆Fueleff), and the FC electric
efficiency (ηsys). It is worth to mention that the shape of the signals for the strategies RTO1, RTO2, and
RTO3 will look almost the same, but small differences in performance indicators can be observed for
different LCs (which are mentioned in Table 9 for each RTO strategy). For example, the differences in
FC net power (∆PFCnet = PFCnetk − PFCnet0, k = 1, 2, 3), FC energy efficiency (∆ηsys = ηsysk − ηsys0), fuel
efficiency (∆Fueleff − Fueleffk − Fueleff0), and fuel economy (∆FuelT − FuelTk − FuelT0) are represented
in Figure 11 for RTO1 strategy with kfuel = 25 (the value where the best fuel economy was obtained for
constant load).
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Figure 11. The behavior of the performance indicators for the FC HPS under 6.25 kW LC (using RTO1
strategy with kfuel = 25).

The fuel economy for strategies RTO1 is of 6.36 liters (see also Table 10) and this performance
indicator will be used to compare selected RTO strategies under variable load. The fuel economy is
presented in Tables 9–11 for selected RTO strategies compared to sFF strategy.
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Table 9. Fuel economy under variable load demand for the RTO1 strategy using different kfuel.

Pload(AV) ∆FuelT(LC)1A ∆FuelT(LC)1B ∆FuelT(LC)1C

[kW] [L] [L] [L]

2 1.3 0.5 0.51
3 0.71 −0.48 −0.47
4 0.07 −1.8 −1.58
5 −1.6 −3 −2.99
6 −3.8 −5.3 −5.23

6.25 −4.56 −6.36 −6.21

Table 10. Fuel economy under variable load demand for the RTO2 strategy using different kfuel.

Pload(AV) ∆FuelT(LC)2A ∆FuelT(LC)2B ∆FuelT(LC)2C

[kW] [L] [L] [L]

2 1.35 −0.51 −0.5
3 0.6 −0.75 −0.74
4 0.52 −1 −0.97
5 0.4 −1.2 −1.25
6 −0.2 −1.8 −1.72

6.25 −0.76 −2.06 −2.04

Table 11. Fuel economy under variable load demand for the RTO3 strategy using different kfuel.

Pload(AV) ∆FuelT(LC)7A ∆FuelT(LC)7B ∆FuelT(LC)7C

[kW] [L] [L] [L]

2 5.26 7.18 14.5
3 4.28 7.24 12.7
4 2.4 3.32 3.5
5 −4.38 −3.16 −2.34
6 −15.08 −13.28 −12.08

6.25 −19.1 −17.6 −16.32

The fuel economy for selected RTO strategy, in the all situation, A (knet = 0.5, k f uel = 0),
B ((knet = 0.5, k f uel = 25), and C ((knet = 0.5, k f uel = 50), under variable load demand is shown in
Figures 12–14.
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Note that the values for the fuel economy increases for some strategies, RTO1 and RTO2, only if
kfuel 6= 0. A sensitivity analysis was performed considering the parameter k f uel with values between 10
and 50, for understand the shape of the optimization function in this variable k f uel .

The results show that the optimization function is multimodal, with parameter kfuel, so any value
for k f uel , between 10 and 50, can be used and the same fuel economy can be obtained for two different
values of k f uel . It is worth mentioning that any value of k f uel in the range of values between 10 and 50
will improves the fuel economy for the strategies RTO1, in almost the full range of load demand and
this is higher than that obtained with the RTO3 strategy, but no improvement in fuel economy at light
load is obtained for RTO3 strategy if kfuel 6= 0. Also, it worth to mention the the fuel economy is almost
the same for kfuel = 0 or kfuel 6= 0 compared to sFF strategy for Pload(AV) > 5 kW (as it can be observed
at constant load as well; see Figure 9), but clearly higher than that obtained with the booth strategies
RTO1 respectively RTO2.

Consequently, the rules of the RTO switching strategy for best fuel economy of 6 kW FC-HPS
could be defined as follows: (i) set the weighting coefficient kfuel to optimum value (around of 25); (ii)
if the load demand is lower than 5 kW then the recommended strategy must be the RTO1 strategy; (iii)
if the load demand is higher than 5 kW then the recommended strategy must be the RTO3 strategy.

4.3. Fuel Economy for the HPS under Variable Load Demand and PRES 6= 0

For exemplify, in Figure 15 is presented the functioning for the RTO3-based FC-HPS under
variable load and RES power for two AV levels of the load demand (Pload(AV) = 4 kW and Pload(AV) = 6
kW in Figure 15a,b). The plots’ organization presented in Figure 15 is: the first plot shows the profile of
the load power. The second plot shows the FC net power profile. This FC net power follows the load
demand due to the implemented LF control. The third plot shows the Energy Storage System power,
highlighting the LF control advantage: the ESS operate in the charge sustaining manner (PESS(AV)

∼= 0);
the fueling flow rates (AirFr and FuelFr) are presented in the next two plots, and, in the last three plots,
the fuel consumption, the fuel efficiency, and the FC energy efficiency are presented.

If the RES power is higher than the load demand (PRES > Pload), the fuel cell operate in
standby mode, at low power. This is done by limiting fueling flows, avoiding a more complicated
star-stop procedure.
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The resulting power excess, (PRES − Pload) must be used (one use it to supply an electrolyzer). If
this power excess is not used, it is necessary to monitor the charging state of the battery, in order to
avoid full charging.

Energies 2018, 11, x FOR PEER REVIEW  22 of 31 

The resulting power excess, (𝑃𝑅𝐸𝑆 − 𝑃𝑙𝑜𝑎𝑑) must be used (one use it to supply an electrolyzer). 

If this power excess is not used, it is necessary to monitor the charging state of the battery, in order 

to avoid full charging. 

 
(a) 𝑃𝑙𝑜𝑎𝑑(𝐴𝑉) = 4 kW and 𝑘𝑓𝑢𝑒𝑙 = 25 W−1 lpm  

 

 

 

 

 

 

 

 

Figure 15. Cont.



Energies 2018, 11, 3537 24 of 32
Energies 2018, 11, x FOR PEER REVIEW  23 of 31 

Figure 15. Cont. 

 
(b) 𝑃𝑙𝑜𝑎𝑑(𝐴𝑉) = 6 kW and 𝑘𝑓𝑢𝑒𝑙 = 25 W−1 lpm 

Figure 15. The HPS behavior of the RTO3 strategy for PRES variable, 𝑘𝑛𝑒𝑡 = 0.5 W−1, 𝑘𝑓𝑢𝑒𝑙 = 25 W−1 

lpm, and different 𝑃𝑙𝑜𝑎𝑑(𝐴𝑉). 

5. Discussion 

Differently from the sFF strategy, to explain the fuel economy obtained with the GTO-based 

RTO strategy, it is necessary follow the values of the performance indicators mentioned above and 

the values for the adjustment parameters and the gains. Taking into account design rules from [75], 

tuning parameters 𝑘1, respectively 𝑘2, were designed for fuel cell system with 6 kW power. 

Figure 15. The HPS behavior of the RTO3 strategy for PRES variable, knet = 0.5 W−1, k f uel = 25 W−1

lpm, and different Pload(AV).

5. Discussion

Differently from the sFF strategy, to explain the fuel economy obtained with the GTO-based RTO
strategy, it is necessary follow the values of the performance indicators mentioned above and the
values for the adjustment parameters and the gains. Taking into account design rules from [75], tuning
parameters k1, respectively k2, were designed for fuel cell system with 6 kW power.
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Normalization gains must to accommodate the booth values: yN respectively p for the full range
of searching. In this case, the following values were used in the simulation: kNy = 2

YMax
∼= 1

3000 and

kNp =
IFC(rated)

2
∼= 60. The following values for weighting coefficients knet = 0.5W−1 lmp, respectively

k f uel = 25W−1 lpm were chosen to give an approximately identical contribution to FC net power

(knet·PFCnet ∼= 3000), and for the fuel consumption efficiency
(

k f uel ·Fuele f f
∼= 25·110 = 2750

)
into the

optimization function (YMax = f ∼= 5750). The load demand varies in range of 2 kW to 8 kW and the
FC current from 10 A to 240 A. Thus, considering these values, the optimization function varies from
about 4400 to 6400. Thus, the signal yN varies from 1.5

(
∼= 4400

3000

)
to 2.1

(
∼= 6400

3000

)
and the signal p from

1
6

(
10
60

)
to 4

(
240
30

)
. The adaptive characteristic of the GES control has 100% ability to discover the

global optimum for these variations in the parameters [76,96].
Since the imposed objective is to improve the fuel cell net power, and not to save the fuel (the form

of optimization function is f = knet·PFCnet), we will get more fuel economy by using the sFF strategy,
in comparison with RTO strategies if knet = 0 and the load is lower (Pload < 3kW).

If the Pload < 3 kW, the results obtained are very little different when performing a sensitivity
analysis in according with: k f uel 6= 0. This is possible because we have low values for search resolution
(RS), which become lower than 0.5% and hit count decreases (so a suboptimal value was found instead
of the optimum).

Except for the RTO3’s strategy al light load (Pload(AV) < 4 kW for kfuel 6= 0), in all other cases,
we achieve fuel economy, both for constant load and for variable load. The exception occurs when
RS < 0.5% at light load, but note, compared to strategies RTO1 and RTO2, the high fuel economy of
RTO3 strategy that is obtained for Pload(AV) > 4 kW due to optimal control of the boost converter.

The multimodal characteristic of the optimization function in variable kfuel resulted after the
sensitivity analysis performed for different kfuel values, in the 10–50 range. In this way, for any kfuel
value in the above mentioned range, the fuel economy can be improved.

Several factors influence tracking efficiency. These factors are: the dynamics of the load; the RES
power profile; and last but not least, the tracking time (the response time of the search loop) [25–29].

As was mentioned, if we have a 100 Hz sinusoidal dither, 10 periods of dither (0.1 s) represent
the tracking time for the GES control. Consequently, the dynamic phenomena such as the RES power
fluctuation and high and sharp dynamics of load demand will influence the performance of any RTO
strategy (including the sFF strategy) if the tracking time is not lower that time constants of the process
under optimization. For the stationary tracking accuracy parameter, the following results are obtained:
for stationary mode, and for the dither frequencies ranging from 10 Hz to 1000 Hz, we have an accuracy
of 99.99%. If we have load pulses mode, and we have 100 Hz for the dither frequency, we obtain a
tracking accuracy of 99.86%. This accuracy decreases to 98% if the dither frequency is 1000 Hz [78].
Taking into account the sensitivity analysis performed for the dither signal frequency in the interval
between 10 Hz and 1000 Hz, the best results appear when we use a sinusoidal dither signal with a
hundred Hz frequency.

For a fair comparison, the LFW reference Iref (LFW) was used as reference input for the boost
controller (Iref (boost)) in the strategies RTO1 and RTO2, and for air regulator in RTO3 strategy. The
inputs of the air regulator (Iref (Air)) and the fuel regulator (Iref (Fuel)) in the strategies RTO1 and RTO2
were controlled by the GES reference (IrefGES) and the FC current (IFC) to optimize the FC system
operation as follows: the RTO1 strategy uses Iref (Fuel) = IrefGES + IFC and Iref (Air) = IFC, and the RTO2
strategy uses Iref (Air) = IrefGES + IFC and Iref (Fuel) = IFC. The RTO3 strategy uses Iref (boost) = IrefGES, Iref (Air)
= Iref (LFW), sand Iref (Fuel) = IFC. Thus, the RTO3 strategy uses the boost convertor to optimize the
FC system operation, which has response time much shorter than the fueling regulators and speed
advantage in searching the optimum of the optimization function compared to strategies RTO1 and
RTO2. Consequently, for best fuel economy, the potential rules of an advanced RTO switching can be
defined as follows: (i) set the weighting coefficient kfuel 6= 0 (in range 10 to 50); (ii) if the load demand
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is lower than 5 kW then the recommended strategy must be the RTO1 strategy; (iii) if the load demand
is higher than 5 kW then the recommended strategy must be the RTO3 strategy.

The next work will be focused on a comparative analysis of the fuel economy obtained by using
the RTO strategies proposed in this paper with those analyzed in [71].

6. Conclusions

In this paper, besides a brief presentation of current RTO strategies and a critical assessment of
proposed Extremum Seeking (ES) algorithms, the fuel economy of three Renewable Fuel Cell Hybrid
Power System (REW/FC-HPS) topologies has been analyzed.

In this paper, the dynamics on load demand and the electric power available from the Renewable
Energy Sources (RESs), is proposed to be mitigated using the load-following (LFW) control in order to
sustain the power flow balance on the DC bus within much power support from the battery. Because,
in this case, the battery will work in charge-sustained mode, resulting clear advantages for FC vehicles
related to battery size, its lifetime and maintenance cost.

The optimization objective can be set in real-time by changing the values of the weighting
coefficients knet and k f uekl in order to increase the overall fuel economy, the FC electrical efficiency,
or other performance indicators defined for the HPS.

So, besides the proposal of the switching RTO strategy, the main results of this study can be
summed up as follows:

• In comparison with sFF strategy, the control strategies RTO1 and RTO2 offers a higher FC electric
efficiency for all range of the load demand (see Figure 5).

• The fuel efficiency of the strategies RTO1 and RTO3 is almost the same for Pload(AV) > 4 kW
(see Figure 6).

• The fuel economy of all RTO strategies analyzed here for kfuel= 0 is almost the same for
Pload(AV) < 4 kW, but a three times higher fuel economy is achieved at maximum load considering
the RTO3 strategy compared to RTO1 strategy (see Figures 7–9 for kfuel = 0).

• The fuel economy increases even further if kfuel 6= 0 (see Figures 7–9).

• The conclusions about fuel economy for each RTO strategy remain the same for variable profiles
of the load demand and RES power.

• The variability of the RES power and load dynamics can be mitigated by the LFW proposed in this
paper to sustain the power flow balance on the DC bus without much support from the batteries’
stack, which mainly operates in charge-sustained mode.

Finally, it worth to mention that exploration of space of the optimal solutions with two variables
could have as result a higher fuel economy compared with one variable—based RTO strategies
analyzed in this paper, but this assumption must further investigated.
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Nomenclature

AirFr Air Flow rate
AV Average value
BPF Band-Pass Filter
fd Dither frequency
DP Dynamic Programming
ECMS Equivalent Consumption Minimization Strategy
EMS Energy Management Strategy
EMU Energy Management Unit
ES Extremum Seeking
aPESC Asymptotic Perturbed Extremum Seeking Control
PESCs Scalar PESC
ESS Energy Storage System
FuelFr Fuel Flow rate
FC Fuel cell
PFC FC stack power
PFCnet FC net power
Pcm Air compressor power
ησψσ FC electrical efficiency
eff H2 Hydrogen consumption efficiency
FC HPS Fuel Cell Hybrid Power Systems
FuelFr Fuel Flow rate
FuelT Total Fuel Consumption
Fueleff Fuel Consumption Efficiency
FFT Fast Fourier Transform
FES Flywheel energy storage
GES Global Extremum Seeking
GaPESC Global aPESC
HILS Hardware-in-Loop System
HPF High-Pass Filter
HPS Hybrid Power System
kNp Output normalization gain
kNy Input normalization gain
LC Load Cycle
LFW Load-Following
MEP Maximum Efficiency Point
MPP Maximum Power Point
MV Mean Value
MPC Model Predictive Control
MRAC Model Reference Adaptive Control
PESC Perturbed Extremum Seeking Control
PMP Pontryagin's Minimum Principle
PEMFC Proton Exchange Membrane Fuel
PLoad Stationary load power (constant power demand)
pLoad Dynamic load power (variable power demand)
RTO Real-Time Optimization
RES Renewable Energies Source
SR Searching Resolution
sFF Static Feed-Forward
SMES Superconducting Magnetic Energy Storage
SOC State-Of-Charge
Tacc Tracking accuracy
WT Wind Turbines
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