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Abstract: The ability to predict consumption is an essential tool for the management of a power
distribution network. The availability of an advanced metering infrastructure through smart meters
makes it possible to produce consumption forecasts down to the level of the individual user and
to introduce intelligence and control at every level of the grid. While aggregate load forecasting
is a mature technology, single user forecasting is a more difficult problem to address due to the
multiple factors affecting consumption, which are not always easily predictable. This work presents a
hybrid machine learning methodology based on random forest (RF) and linear regression (LR) for
the deterministic and probabilistic forecast of household consumption at different time horizons and
resolutions. The approach is based on the separation of long term effects (RF) from short term ones
(LR), producing deterministic and probabilistic forecasts. The proposed procedure is applied to a
public dataset, achieving a deterministic forecast accuracy much higher than other methodologies,
in all scenarios analyzed. This covers horizons of forecast from one minute to one year, and highlights
the great added value provided by probabilistic forecasting.
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1. Introduction

New challenges for the efficient management of the power distribution system are posed by
the ongoing deregulation of power distribution in many countries, the growing distributed power
generation from renewable sources, the introduction of distributed energy storage systems and the
increasing diffusion of electric vehicles. Smart grids offer a viable solution through unprecedented
flexibility in energy generation and distribution [1].

Over the last decade, a growing number of smart meters have been installed worldwide. These,
together with the communication and data management network, constitute the advanced metering
infrastructure (AMI) that will play a fundamental role in electrical distribution systems, by recording
user load profiles, enabling two-way communication between the user and the distributor and allowing
smarter systems for the management of energy resources [2].

How to use the volume of data from smart meters to promote and improve efficiency and
sustainability of demand has become a major research topic worldwide [3]. Control decisions for the
smart grid should be made continuously at both the aggregate and granular levels. To achieve this and
ensure network reliability, the ability to predict future demand is of paramount importance.

Load forecasts have been widely used by the electrical sector. Power distribution companies
rely on forecasts with different time horizons to support both system operability and planning.
Retail electricity suppliers are making pricing, procurement and hedging decisions based largely
on the expected load of their customers.
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In recent years, moreover, there has been a steady trend towards the electrification of energy
consumption, linked to the need for greater use of renewable energy sources, which results in a load
profile increasingly characterized by the presence of peaks in consumption due to human behavior,
that can lead to problems for electricity providers [4]. The presence of peaks in consumption and
generation linked to human behaviour and renewable sources leads to the research of mitigation
techniques, for example using a variable pricing system that pushes users to plan as much as possible
the use of energy resources, in addition to the use of distributed storage systems, as tested in the
project H2020 NETfficient, in which the techniques described in this work have found application [5].

The value that smart meters bring to load forecasting and more generally to the energy distribution
system is manifold. First, smart meters enable distribution companies and electricity retailers to better
understand and predict the load on a single house or building. Secondly, the high granularity of the
load data provided by smart meters offers great potential for improving aggregate forecast accuracy [3].
In addition, the forecast of energy consumption over time allows property and building managers
to plan energy consumption over time, shifting energy use to off-peak periods, improving energy
purchase plans, and allowing them to assess their consumption habits, identifying possible margins.

Since the household loads are more volatile than the aggregate load, the higher the load level,
the more uniform the profile is and the less uncertain the forecast is. The energy forecast at the smart
meter level is not a trivial problem, as it depends on the complexity of the energetic behavior of the
building, in turn related to climatic conditions and to the operation of lighting systems and HVAC
(heating, venting and air conditioning), but especially for the difficulty in predicting the behavior of
the occupants, influenced by multiple social factors [6,7].

To address the problem of load forecasting at the level of smart meters, the research community
has attempted different approaches, from adapting techniques already widely used for aggregate load
forecasting, to developing new techniques or using a combination of the same [3]. Methods such as
the semi parametric additive model [8], exponential smoothing [9], and classical seasonal time series
methods have been applied to load forecast at the building level [10], as well as methods based on
artificial neural networks (ANN) and support vector machines (SVM) [11]. A 2012 [12] study compared
several existing techniques, including linear regression (LR) as well as different types of ANNs and
SVMs on two datasets: one for two commercial buildings and the other for three residential homes.
The results showed that the techniques used could provide reliable forecasts in the first case but not in
the second, because of the greater variability of the load. In [13] the load forecast is studied both at the
building level and at the state and provincial level through a self-recurrent wavelet neural network.

The recent trend is to use deep learning techniques, with recursive or convolutional or hybrid
neural networks. The conditional restricted Boltzmann machine (CRBM) and factored conditional
restricted Boltzmann machine (FCRBM) have been evaluated in [6] to estimate the energy consumption
of a household. The FCRBM achieves the highest accuracy in load forecasting compared to ANN,
RNN (Recurrent Neural Network), SVM and CRBM. Different resolutions ranging from one minute to
one week have been tested. The same dataset has been analyzed in two successive works in which the
effectiveness of recursive networks of the type long short term memory (LSTM) has been investigated
both in the standard form and in the form sequence to sequence (S2S) [14] and in which the accuracy
of convolutional neural networks (CNNs) [15] has been evaluated, obtaining comparable or superior
results to those obtained with the FCRBM algorithm.

Due to the high variability of smart meter measurements, it may be necessary to perform
probabilistic forecasting in operational practice. The interested reader can find in [16] a review of the
different methods proposed in this area for aggregate load forecasting. Probabilistic load forecasting
has also been carried out on individual load profiles; in [17] a method combining gradient boosting
(GB) and quantile regression has been proposed to quantify uncertainty and generate probabilistic
forecasts, while in [18] the conditional kernel density (CKD) method have been tested. Recently, a point
and probabilistic forecast of the load for 100 low voltage (LV) feeders has been conducted in [19]
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comparing several methods such as Holt-Winters-Taylor seasonal exponential smoothing, kernel
density estimation, seasonal linear regression and two autoregressive (AR) methods.

The aim of this work is to implement a forecasting procedure for household consumption using
only smart-meter load data, with different time horizons and producing both deterministic and
probabilistic forecasts. The most recent research sees an increased use of deep learning techniques for
load forecasting, their real effectiveness for forecasting time series with seasonality is however at least
partially questioned on the basis of the results actually obtained with these methods when compared
with classical statistical methods. S. Makridakis in a recent article [20] analyses the performance of
the methods proposed for M3 competition, highlighting how statistical methods allow obtaining, on
average, more accurate forecasts and with a lower computational cost. It also provides suggestions on
how to exploit the undoubted potential of machine learning (ML) techniques also in the context of
time series forecasting. In particular, it highlights, among other things, the need for data pre-treatment,
applying transformations and procedures of de-trending and de-seasonalization that allow obtaining a
stationary signal, and the accurate assessment of the risk of over-fitting for ML procedures.

In our case, these indications translate into a separation between the long-term components of the
signal, associated with the trend and seasonality, and the short-term components linked to stochastic
variations in the average trend of consumption of a consumer, which we will treat as two distinct
problems in a hybrid methodology. The method we propose in fact provides for an estimate of the
average long-term behavior of users, to which a short-term auto-regressive forecast is superimposed,
linked to the deviation of the previous estimate from the most recent consumption measures. A similar
hybrid approach, in which the effects of long and short term are separated, has been recently used by
S. Smyl in the winning procedure of the recent M4 competition [21].

The proposed methodology is implemented using ML techniques with limited computational
requirements in order to allow an implementation also in low cost devices installed directly at the
user’s household. In particular, we will use the random forest (RF) technique for long-term forecasting
and a simple linear regression for short-term forecasting. We will also realize a probabilistic forecast
through a simple persistence of the distribution of forecast errors measured in the training dataset.

This work will highlight:

• The convenience of a hybrid approach, which separates long-term and short-term effects for load
forecasting when using machine learning techniques;

• The effectiveness of the proposed procedure for predicting smart meter loads;
• The relative contribution of these two components to the accuracy of forecasting;
• The importance and added value of a probabilistic forecast for household load prediction.

The application of the proposed procedure to a public dataset already studied in the literature
allows direct comparison with the results obtained with other methodologies. The results obtained
show a much higher accuracy than all the methods applied so far for all time resolutions and
forecast horizons.

The paper is structured as follows: The proposed methodology is described in the Section 2;
the dataset is analysed and the metrics used are described in the Section 3; the results are presented
and discussed in the Sections 4 and 5, finally the Section 6 presents our conclusions and expected
developments for this activity.

2. Proposed Method

The electricity consumed by a family can be decomposed into a long-term and a short-term
component. The first component includes the effect of any upward or downward trends in
consumption and, above all, the effect of the periodicity of average demand. In the case of electricity
consumption, a number of daily, weekly and annual frequencies are distinguished. This component
describes the habits of the family. However, seasonal behaviour can only describe average behaviour
and not short-term fluctuations linked to deviations from the standard routine. This second component
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is clearly difficult to predict, it can be linked to exceptional events, to short-term changes linked for
example to the ignition of a energy-intensive appliance and, more generally, to deviations from the
routine. It is assumed that these short-term variations can be described by means of an auto-regressive
function, i.e. linking consumption in the immediate future, with respect to the instant of emission of
the forecast, to the load measured in the immediately preceding times.

The total load can therefore be described by means of an additive model:

y(t) = ŷlt(t) + ŷst(t) + ε, (1)

where y(t) is the load at the time t, ŷlt and ŷst are the long term and short term components, and ε is
the forecast error.

In this paper, the long-term component of the forecast is estimated using a random forest (RF)
regression model. The RF methodology has been used for short-term load forecasting in the literature,
for example in [22] the authors use this technique to predict the hourly electrical load data of the
Polish electrical system, in [23] this technology is applied to load forecasting at a university campus in
Cartagena (Spain), in [24] the accuracy of consumption forecasts of residential customers one day in
advance is analyzed as a function of time, granularity, and size of residential customers.

The random forest method, introduced by Breiman et al. [25] is an ensemble learning methodology
that can be used for both classification and regression. It is based on the construction of a forest
of unrelated decision trees, which corrects the trend towards over-fitting on the training set of
decision trees.

In the training phase the technique of bootstrap aggregating (bagging) is applied to tree learning,
through which a random subset with replacement from the training set is selected B times, the subset of
samples from the training set X is identified with Xb ⊂ X and the corresponding label Yb ⊂ Y. For each
of these subset a tree fb is fitted. In the decision trees training process an additional randomization,
called feature bagging, is used, which consists in considering for each candidate split a random subset
of features.

After training, the prediction for a x sample is obtained by averaging the predictions of all the
generated regression trees:

ŷlt =
B

∑
b=1

fb(x) (2)

Our procedure uses a forest of 100 trees, whose optimal depth is established through a
cross-validation procedure. The features used are only of temporal type and uniquely identify each
measurement: the year, the day of the year, the day of the week, and the time of the day, expressed as a
real number including fractions of an hour.

Many of the recently proposed algorithms for predicting household consumption use a purely
auto-regressive approach using non-linear methods based on neural networks. For the short term
component of the forecast we will use an approach based on a simple and fast step-wise multiple
linear regression (MLR). It is given by:

ŷst(t + j∆t) = β0,j +
ni

∑
i=1

βi,jr(t− (j− 1)∆t), (3)

with

r(t) = y(t)− ŷlt(t). (4)

The short-term forecast ŷst for each time t + j∆t, with j = 1, . . . , L, is a linear combination of the
residual r of the long-term forecast relative to the actual value of power consumption for the most
recent ni steps. βi,j denote the regression parameters. The forecast is obtained simultaneously for nj
future steps.
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Given the great variance of domestic consumption, it is important to provide an estimate of
the forecast error for each forecast time. This can be obtained in a simple way by analyzing the
distribution of the error that the model has made in the training set and applying the same distribution
of the error also in the forecasting phase. The distribution of the error is described by 19 quantiles
(q = 0.05, 0.10, . . . , 0.95), and is parameterized according to the time of forecast j and for each hour of
the day h, thus creating a look-up table Eq(j, h) to be applied even in the forecast phase.

The procedures described were implemented using only public domain tools. The code is written
entirely in python, using the pandas libraries [26] and scikit-learn [27] for machine learning tools.
All libraries have been used in the latest revision available at the time of writing. The procedure has
minimal requirements for its execution, the time required for training and forecasting are listed in
Table 3, a PC with 16 GB of RAM and a quad core Intel i5 processor at 3.2 GHz has been used for
the analysis.

3. Evaluation Setup

The presented method was evaluated on a reference dataset of electricity consumption for a
single residential customer, called “Individual household electric power consumption Data Set” [28].
This archive contains 2,075,259 measurements gathered in a house located in Sceaux (7 km of Paris,
France) between December 2006 and November 2010 (47 months). The dataset contains the household
global minute-averaged active power measurement, as well as measurements of reactive power,
current, voltage and energy consumed in three sub-meters intended respectively for the kitchen,
a laundry-room with the electric water-heater, and an air conditioner circuit. In this paper we will only
deal with the global active power.

Table 1 shows a description of the time series, varying with the aggregation time being used.
The original series has a sampling rate of one minute, in the following, we will analyze forecast
scenarios in which we average the measurement of consumption over periods of a quarter of an hour,
of an hour or of a week. The time series is not complete with 1.25% of missing data. The missing
measurements are replaced with the value measured a week earlier at the same time.

Table 1. Load data series description with different aggregation periodicity, the load is averaged in the
selected period. The distribution is not normal, asymmetrical with a fat tail for high loads.

Period 1 min 15 min 1 h 1 Day 1 Week

Count (-) 2,049,280 136,639 34,168 1433 207
Mean (kW) 1.092 1.092 1.092 1.092 1.096
Std. (kW) 1.057 0.991 0.898 0.420 0.337
Min. (kW) 0.076 0.078 0.124 0.174 0.184
25% (kW) 0.308 0.321 0.342 0.817 0.878
50% (kW) 0.602 0.655 0.803 1.081 1.099
75% (kW) 1.528 1.563 1.579 1.324 1.329
Max. (kW) 11.122 8.566 6.561 3.315 2.505

The daily, weekly and annual periodicity of the time series is illustrated in Figure 1. In Figure 1a
the measurements are averaged over the hour, and the average value of the consumption of the whole
series is shown as a function of the time of day, as well as the variation of the measurements around
the average value, expressed by the inter quartile range (IQR) and by the interval between 5% and
95%. The weekly seasonality, with average daily consumption values, is shown in Figure 1b, while
Figure 1c shows the annual seasonality with average consumption values on the week.
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(a) Daily seasonality

(b) Weekly seasonality

(c) Yearly seasonality

Figure 1. Seasonality and load variability at different resolutions. The graphs show the average value
of the load and the variability ranges of 90% (between 5% and 95%) and the inter quartile range
(IQR) between 25% and 75%: (a) The hourly average load and its periodicity as a function of the time of
day; (b) the daily average load and the periodicity as a function of the day of the week from Monday to
Sunday; (c) the weekly average consumption and its periodicity as a function of the week of the year.

With almost four years of data available, it was decided to use the first three years of measurements
for model training and to use the last year for verification, just like in [6,14,15]. The choice of the
parameters of the RF model was made through a validation procedure, aimed at determining the
optimal depth of the tree. Validation is carried out using the third year of measurements as a validation
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set and training on the first two years of data. The optimal depth value is the one that determines the
smallest fitting error in the validation set. The remaining parameters of the RF algorithm have been
fixed, in particular, feature bagging is performed on half of the features and the number of trees in the
forest is fixed at 100, having verified that a larger value does not bring any benefit in terms of accuracy
for this dataset.

Some well-known accuracy metrics will be used in the following to assess the quality of
the deterministic forecast. Specifically, the mean absolute error (MAE) and the root mean square
error (RMSE):

MAE =
1

NL

N

∑
i=1

L

∑
l=1
|pi+l − p̂i,l |, (5)

RMSE =

√√√√ 1
NL

N

∑
i=1

L

∑
l=1

(pi+l − p̂i,l)2, (6)

where N is the total number of power measures, L is the number of time steps ∆t predicted in the
future with respect to time ti, pi+l is the actual power at time ti + l∆t, p̂i,l is the power forecast l time
steps in the future, predicted at time ti.

Skill scores are widely used in assessing the performance of weather forecasting methods.
They are defined as a measure of the relative improvement of a forecasting method over a reference.
A commonly-used reference is the persistence forecast, that predicts that the power load on a given
time will be the same measured at the same time one day before for lead time up to one day, one
week before for one week lead time and one year before for one year lead times. Using the RMSE as a
measure of accuracy, the skill score (SS) is defined as [29]:

SS = 1−
RMSE f

RMSEp
, (7)

where RMSE f and RMSEp are the root mean square error of the forecast method and of the persistence,
respectively. The higher the skill score, the better.

To evaluate the accuracy of the probabilistic forecast we will use the continuous ranked probability
score (CRPS) [30]:

CRPS =
1
N

N

∑
i=1

H

∑
h=1

∫ ∞

−∞
(Fi+h(x)− F̂i,h(x))2 dx, (8)

where Fi+h(x) is the cumulative distribution function (CDF) of the probabilistic forecast for the i-th
value, while F̂i(x) is the CDF of the observations. Note that the CPRS coincides with the MAE for a
deterministic forecast [31]. Small values of CRPS indicate good performances.

The analysis of the results will also show the variation of RMSE and CRPS according to the time
of day and the forecast step in the future. Error measurements are obtained by grouping the data and
applying the (6) and (8) on the sub-sets thus obtained; for example, the value of the RMSE at the time h
of the day is obtained by applying the (6) only to load estimates made for times when the time of day
is h.

4. Results

Some load forecast scenarios are analysed, based on the historical power series, differentiated on
the basis of the sampling frequency used and the forecast horizon. The scenarios analysed are shown
in Table 2. The selection of the scenarios has been carried out also according to the existing literature
on the same dataset [6,14,15] to allow a direct comparison of the accuracy of the proposed method.
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Table 2. The forecast scenarios analyzed, differing for the forecast horizon and for the temporal detail
of the series.

Scenario Sampling Rate Forecast Interval Lookback Steps Forecast Steps

1 1 min 1 h 60 60
2 15 min 24 h 96 96
3 1 h 1 week 168 168
4 1 week 1 year - -

4.1. Forecast with One Minute Resolution

Scenario 1 provides for a time resolution of one minute with forecast times of up to one hour.
This resolution was chosen because this time scale is used in the operation of the utility system and in
real-time market activities, for example in automatic control of generation and resource redirection.
Such a high resolution can also be used by home automation systems to prevent the risk of power
cut-off due to overloading, as well as to operate small storage buffer systems.

The autoregressive short term component of the forecast is based on the measurements of the
hour before the time of forecast. The number of lookback steps is therefore equal to 60, the same as the
forecast steps, as shown in Table 2.

Table 3 shows the accuracy obtained for both deterministic and probabilistic prediction. Figure 2
shows the change in the accuracy of the method in terms of RMSE and CRPS as well as an example of
the forecast result with the predicted confidence intervals.

Table 3. Results of the forecasting procedure for the various scenarios analysed. The optimal depth of
the tree for the Random Forest algorithm used for long term forecasting, the values of the deterministic
errors, mean absolute error (MAE) and root mean square error (RMSE), the skill score (SS) for the RMSE
with respect to persistence, the accuracy of the probabilistic forecast measured with the continuous
ranked probability score (CRPS), and the computational time required for the algorithm’s training
(including the search for the optimal depth of the trees) and for the emission of a forecast are listed.

Scenario Optimal MAE RMSE SS CRPS Training Forecast
Depth (-) (kW) (kW) (%) (kW) Time (s) Time (ms)

1 9 0.421 0.648 33.2 0.311 107 310
2 9 0.510 0.704 27.7 0.358 7.23 248
3 9 0.448 0.604 25.9 0.316 2.84 235
4 5 0.114 0.145 12.1 0.114 2.4 114

A persistence forecast is used to have an immediate comparison of the accuracy obtained. Given
the limited extension of the time interval to be predicted in this scenario, the persistence is estimated
by taking the measured power value one hour before the instant of prediction. The RMSE error is
constantly lower than the value obtained with persistence and is logically smaller for the first instants
of forecasting and then grows gradually as shown in Figure 2a. The accuracy of the forecast is shown
in Figure 2b, where the value of the CRPS is reported as a function of the forecast lead time for
persistence, for deterministic forecast (equivalent to the MAE) and for probabilistic forecast (where the
estimate of the distribution of the forecast error is also used). The figure shows the effectiveness of the
estimate of the error distribution, which results in a significant reduction in the CRPS measurement
compared to a deterministic forecast and even more so with respect to persistence. Finally, Figure 2c
shows an example of a forecast, carried out for the instants following a particularly high peak time in
consumption. It can be seen that the forecast is quite accurate in predicting the trend of consumption
even with a very high granularity, and how the estimated intervals for the probabilistic forecast
increase in amplitude with the forecast time.
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(a) RMSE variation in scenario 1 (b) CRPS variation in scenario 1

(c) Forecast for scenario 1

Figure 2. Results for scenario 1 (forecast interval 1 h, sampling rate 1 min): (a) Variation of the RMSE
as a function of the forecast horizon, 60 steps correspond to 1 h; (b) variation of the probabilistic and
deterministic CRPS as a function of the forecast horizon; (c) measured load, consumption forecast and
probabilistic prediction intervals with forecast issued at 19:15 on 26 May 2010.

4.2. Forecast with Quarter Hour Resolution

The 15-min period is commonly used in literature and in operational practice for describing daily
consumption profiles with sufficient detail. This resolution can be used in load shifting and peak
clipping applications and for optimizing domestic storage systems. In scenario 2 a forecast with a
horizon of up to one day and a resolution of 15 min, equal to 96 steps, is realized. For the short term
part, the last 96 most recent measures are used at the time of emission of the forecast, see Table 2.
The consumption measured at the same time the day before is used as persistence forecast.

The measurement of the RMSE as the forecast step changes is shown in Figure 3a, for scenario 2
which shows the greater accuracy of the model compared to persistence. Figure 3b shows the value of
the CRPS according to the forecast step. It can be seen that in this scenario, compared to scenario 1,
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the accuracy decreases rapidly after a few steps, equivalent to about 3 h and stabilizes on a constant
value for the rest of the forecast interval. In this case too, the advantage guaranteed by the probabilistic
forecast is appreciable. Figure 3c shows an example of a forecast made at the same time analysed in the
previous scenario. The forecast follows very well the daily seasonality, the estimated forecast intervals
grow very rapidly with the forecast time in accordance with Figure 3b.

(a) RMSE variation in scenario 2 (b) CRPS variation in scenario 2

(c) Forecast for scenario 2

Figure 3. Results for scenario 2 (forecast interval 1 day, sampling rate 15 min): (a) Variation of the
RMSE as a function of the forecast horizon, 96 steps correspond to 24 h; (b) variation of the probabilistic
and deterministic CRPS as a function of the forecast horizon; (c) measured load, consumption forecast
and probabilistic prediction intervals with forecast issued at 19:15 on 26 May 2010.

Figure 4 shows the variation of the CRPS with the time of the forecast and with the forecast steps.
Figure 4a shows the value of the CRPS grouped according to the hour of the day for a forecast horizon
of 15 min, equal to one step in the future. Figure 4b,c shows the same graph for one-hour and two-hour
forecast horizons. In this case too, it is noticeable that the accuracy of both the deterministic and the
probabilistic forecast decreases as the forecast horizon increases, but also how the accuracy depends
on the forecast time: the hours of greatest consumption, in the morning and in the evening are also
the hours in which there is greater variability and a greater uncertainty in the forecast is obtained.
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The CRPS of the deterministic prediction (equivalent to the MAE) is constantly lower than the value
obtained with persistence, while the improvement obtainable with the probabilistic prediction, present
for all time horizons, is more evident with the growth of the forecast horizon, in Figure 4b,c.

(a) Forecast horizon, 1 step equivalent to 15 min

(b) Forecast horizon, 4 steps equivalent to 1 h

(c) Forecast horizon, 8 steps equivalent to 2 h

Figure 4. CRPS results as a function of the forecast horizon and the time of the forecast for scenario 2
(forecast up to one day with sampling rate 15 min).

4.3. Forecast with One Hour Resolution

The time resolution of one hour is commonly used in the literature for longer forecast horizons,
and can be of interest for domestic applications mainly for the monitoring of consumption and for the
detection of any anomalies. In scenario 3, a forecast of up to one week, equivalent to 168 steps,
is realized. For the short term forecast the 168 most recent measurements are used, while the
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reference forecast of persistence is obtained with the measurement of consumption one week before
the instant predicted.

The measurements of the RMSE and CRPS prediction error given in Table 3 and in Figure 5a,b
highlight how the short term prediction improves accuracy significantly only for the hours immediately
after the forecast was issued. There is also minimal impact in the following days for both the
deterministic and the probabilistic prediction. Figure 5c shows an example of a one-week horizon
forecast made at the same time selected for the previous scenarios. It can be seen that the proposed
method is effective in forecasting both daily and weekly seasonality, both in terms of deterministic
forecasting and in estimating its accuracy.

(a) RMSE variation in scenario 3 (b) CRPS variation in scenario 3

(c) Forecast for scenario 3

Figure 5. Results for scenario 3 (forecast interval 1 week, sampling rate 1 h): (a) Variation of the RMSE
as a function of the forecast horizon, 168 steps correspond to 7 days; (b) variation of the probabilistic
and deterministic CRPS as a function of the forecast horizon; (c) measured load, consumption forecast
and probabilistic prediction intervals with forecast issued at 19:15 on 26 May 2010.

4.4. Forecast with One Week Resolution

Scenario 4 uses a one-week resolution for a forecast with a very long horizon of one year.
In addition to assessing the accuracy of the proposed methodology and its applicability to a wide
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range of time resolutions and forecast horizons, this scenario can be used in the household to verify
the trend of its consumption and assess the effectiveness of any changes in habits that may lead to a
more rational use of energy resources. In this case, the short term component of the forecast was not
used, and the forecast with persistence used the measurement of consumption one year before the
expected time.

The method accuracy measurement is shown in Table 3 while Figure 6 shows both the fitting
obtained with the model and the forecast for the final year compared with the aggregate week
measurements of the dataset.

Figure 6. Results for scenario 4 (average weekly consumption from 1 January 2010). The plot shows
the measurements available in the dataset, the fit of the model in the training set consisting of the first
3 years of measurements and the forecast obtained for the last year.

5. Discussion

The public availability of the examined dataset allows an indirect comparison of the performances
obtained with the proposed methodology with previous works that have analysed the same dataset.
The selection of the scenarios was partially linked to the possibility of making such a comparison.

Table 4 shows the values obtained in literature using machine learning methodologies and deep
learning techniques with recursive and convolutional neural networks already cited in the introduction.
The considerably better result obtained with the proposed methodology is certainly linked to the
choice of a hybrid approach in which the forecasting of phenomena in the long term, characterized by
more seasonality (daily, weekly and annual) were clearly separated from the forecasting of the load in
the short term, which was instead estimated with a simple auto-regressive methodology. The better
performances can be only partially attributed to the chosen regression algorithm, it would probably be
possible to obtain similar performances using neural networks suitably trained both for the long term
component and for the short term component of our model, at the price of a more complicated feature
pre-processing and of longer calculation times for the training. The use of a hybrid methodology,
as shown in [32], allows instead to effectively isolate the average behavior from the alterations of the
same and to train a regression model more quickly and effectively.
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Table 4. Comparison of RMSE with the results of other forecasting procedures available in the literature.
Artificial neural network (ANN), support vector machine (SVM), recurrent neural network (RNN),
conditional restricted Boltzmann machine (CRBM) and factored conditional restricted Boltzmann
machine (FCRBM) results are from [6]; sequence to sequence long short term memory (S2S LSTM)
results are from [14] and convolutional neural network (CNN) results are from [15]. Random forest
(RF) and linear regression (LR).

Scenario Description Method RMSE (kW)

1 1 h forecast, 1 min resolution

ANN 0.732
SVM 1.995
RNN 0.939

CRBM 0.903
FCRBM 0.666

S2S LSTM 0.667
RF + LR 0.648

2 1 day forecast, 15 min resolution

ANN 0.907
SVM 1.344
RNN 1.009

CRBM 1.030
FCRBM 0.899
RF + LR 0.704

3 1 week forecast, 1 h resolution

ANN 0.785
SVM 0.791
RNN 0.916

CRBM 0.691
FCRBM 0.663

S2S LSTM 0.625
CNN 0.677

RF + LR 0.604

4 1 year forecast, 1 week resolution

ANN 0.246
SVM 0.188
RNN 0.457

CRBM 0.182
FCRBM 0.170
RF + LR 0.145

The proposed methodology can naturally be improved both for the long term and the short term
part. For the long term, we are planning to introduce predictors based on the weather conditions
and holidays scheduled in the calendar. For the short term it may be interesting to evaluate the
use of a non-linear regressor, which could be based on RF as well. For both components additional
features can be represented by the sub-meter readings provided as additional information in the
dataset. We expect that a possible improvement can also come from the adoption of pattern recognition
techniques for the identification of the appliances activation, which can allow a higher precision in
identifying consumption habits by the user [33]. These techniques typically require a much richer
information content in the dataset, including the identification of the power-on periods of individual
appliances, which are difficult to obtain and are not included in the dataset analyzed in this paper.
In any case, given the great variability of the data to be predicted, we think of developing the forecasts
from a probabilistic point of view, with a better estimate of the accuracy of the forecast, thus including
the effects of the weekly and annual seasonality in the forecast interval clearly visible in Figure 1b,c.
For example, the effects of alteration and high load variability during Easter, All Saints’ Day and
Christmas, winter and summer holidays are clearly detectable (see annotations in Figure 1c). These are
typical peak load periods for European countries [4,34].
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6. Conclusions

This work presents a hybrid machine learning methodology based on random forest and linear
regression for the deterministic and probabilistic prediction of household consumption at different time
horizons and resolutions. The approach is based on the combined forecasting of long and short periods,
using in the first case temporal features for the identification of trends and various seasonalities of
the time series, and, in the second case, an auto-regressive approach using the most recent load
measurements available at the time of emission of the forecast. Finally, through the analysis of the
forecast error of the model, a probabilistic load forecast is realized.

The analysis highlights the relationship between the accuracy of the forecast and the lead time of
the forecast and the time of the forecast, and compares the result obtained both with a reference based
on persistence and with the results of the analysis of the same dataset with machine learning and deep
learning methodologies published in the literature.

The method proves to be very effective in terms of absolute precision and calculation times
required for model training and forecasting. The method also offers opportunities for development
for both the long term and short term components, using additional predictors, experimenting with
non-linear methods for short-term forecasting and refining the probabilistic forecasting methodology.
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