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Abstract: In the recent years, several short-term forecasting models of household electricity demand
have been proposed in the literature. This is partly due to emerging smart-grid applications, which
require these kinds of forecasts to manage systems such as smart homes, prosumer aggregations, etc.,
and partly thanks to the availability of data from smart meters, which enable the development of
such models. Since most models are academically developed, they often do not address challenges
related to their implementation in a real-world environment. In the latter case, several issues arise,
related to data quality and availability, which affect the operational performance and robustness
of a forecasting system. In this paper, we design a hierarchical forecasting framework based on
a total of 5 probabilistic models of varying complexity, after analyzing the respective performance
and advantages of the models with an offline dataset. This multi-layered framework is necessary to
address the various problematic situations occurring in practice and abide by the requirements for
a real-world deployment. The forecasting system is deployed in a real-world case and evaluated here
on data from 20 households. Field data, comprising forecasts and measurements, are analyzed for
each household. A detailed comparison is drawn between the online and offline performances. Since
a notable degradation is observed in the operational environment, we discuss at length the reasons
for such an effect. We determine that the exact settings of the training and test periods are marginally
responsible, but that the main cause is the intrinsic evolution of the demand time series, which
hinders the forecasting performance. This evolution is due to unknown household characteristics
that need to be monitored to provide more adaptable models.

Keywords: electricity demand forecasting; operational forecasting system; smart grid; smart home;
smart meters; demonstration project

1. Introduction

The emergence of smart grids has resulted in new business models and applications, featuring
short-term forecasts of electricity demand at a local scale ranging from households to feeders. These
kinds of forecasts are requested by different actors and applications: i.e., by Home Energy Management
Systems to manage smart homes, and by aggregators or retailers to optimize the supply cost for a group
of consumers in their portfolio. Aggregators can also offer flexibility to network operators based on
their pool of individual clients. Efficiently predicting household demand is important for these actors
to optimize the cost of supplying their customers and to anticipate energy purchases. Retailers can offer
electricity flexibility to network operators based on their pool of individual clients. Businesses usually
rely on the day-ahead electricity market—such as the EPEX or Nord Pool spots. For this reason, the
focus in this paper is hourly day-ahead forecasts of household electricity demand. The development
of such forecasting models has been feasible in recent years thanks to the availability of data from
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smart meters. In Europe, the European Parliament has enacted the roll-out of smart meters, with
a landmark of 80% deployment by 2020 in most countries [1]. Individual smart meters record the
electricity consumption of a household during a fixed period, e.g., one hour. Collecting such data is
seen as a key factor to reach the EU energy policy goals, because it enables precise evaluation of action
plans [2] and empowers consumers with detailed feedback about their electricity consumption [3].

Although a wealth of literature exists on load forecasting at regional and national scales,
few studies examine load forecasting at customer level. Forecasting household demand is not
straightforward. Different households have very different electricity usage profiles depending on the
number of inhabitants, their lifestyle, the floor area, and other factors. Moreover, consumption in
each household varies considerably from one day to the next due to house occupancy and activities,
weather conditions etc.

The literature on load forecasting at local scale has grown in the last few years. The models
proposed look for the most informative inputs—such as quantifying the temperature influence [4] and
identifying the relevant household characteristics [5]—to make use of mature statistical methods—such
as kernel density estimator [6] and copulae [7]; machine-learning techniques—such as neural
networks [8] and support vector machines [9]; and original hybrid methods—such as household
activity pattern modelling coupled with standard forecasting techniques [10]. A recent review of
forecasting methods at the smart-meter level is proposed by Yildiz et al. [11]. This anticipation of the
future electricity demand of a household is then required by other applications, such as to optimize the
operation of a microgrid [12,13], or to manage smart homes through an aggregator [14]. The required
forecasting horizons range from a few hours to few days ahead depending on the application. Hereafter,
we consider a day-ahead horizon which is typical for applications related to electricity markets.

In most of the literature, the forecasting quality is assessed in an offline context, i.e., the forecasters
work with a fixed dataset over which they have total control. In particular, the data selection is often
non-detailed and follows the forecaster’s own rules, such as household choice, removal of absurd
values etc. While this kind of selection is necessary to highlight the interest of the forecasting models,
it does not necessarily reflect the real-life situations. In the real world, the availability of smart-meter
data collection is far from perfect due to faulty meters and communication issues. Some studies [15]
present efficient methods to fill in the incomplete data at the aggregated level, whereby a central agent
gathers and manages the data. However, in the absence of a central agent, i.e., in a distributed context,
other standalone strategies need to be employed.

The European project SENSIBLE demonstrates the use of energy storage for buildings and
communities. It requires the deployment, for each household, of a day-ahead electricity demand
forecasting model [16]. Since the performance of demand forecasting is known to be quite poor at the
household level—state-of-the-art errors range from 5% to 60% [11]—a probabilistic output is employed
to quantify the uncertainty, following a current trend in the forecasting literature [17]. In the frame of
SENSIBLE, an operational load forecasting platform was set up to predict the consumption of each
household at the demonstration site of the city of Évora in Portugal. The platform retrieves information
from the smart meters at each household through appropriate application programming interfaces
(APIs). The outputs of the forecasting models are then transmitted to other applications to be used
as inputs, such as Home Energy Management Systems [18]. Hereafter, we focus on the day-ahead
horizon. Specifically, our model should provide the probabilistic forecasts at 12:00 on day D− 1 of the
future demand expected on day D at 0:00, 1:00, . . . , and 23:00, i.e., for horizons of 12, 13, . . . , and 35 h.
In such a use case, several features are required for the forecasting model to be implemented:

• High robustness: demand forecasts are required at all times in all situations, e.g., new house, faulty
meter, etc., with reasonable performance.

• Fast computation: the model should carry out demand forecasts in a reasonable time for
a potentially large number of households than can range from hundreds to thousands.
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• Easy replicability: the model should be easily replicable for many household typologies and
demand profiles.

• Remote control: no direct intervention is possible in situ.
• Easy interpretation: finally, among two competitive models with equivalent performance, some

end-users may have preference for a model that is understandable by anyone, instead of a
black-box approach.

To address these requirements, in Section 2, we introduce 5 forecasting models—and a reference
model based on machine learning—at the household level. These are combined in a hierarchical
framework so that they can always provide a forecast output. In Section 3, we (1) analyze the
respective performance of each model with an offline dataset and (2) identify the possible situations
preventing the usage of a specific forecasting model to (3) propose a hierarchical framework to design
a foolproof forecasting model. After deployment in 2018 at the demonstration site, the field experience
is used to evaluate the performance of the forecasting hierarchical framework. A comparison between
this online performance and the offline performance is drawn and discussed in Section 4.

The key contributions of this paper lie in the proposal of a probabilistic approach for forecasting
household electricity consumption. Given the operational requirement for high availability in the
forecasts, a robust approach is proposed based on the operation of alternative models of varying
complexity combined through a hierarchical approach. In contrast to most academic approaches in the
literature, here we compare the simulation results under ideal conditions (i.e., in terms of input data
availability) with field tests featuring erroneous or missing data. This provides a realistic view of the
level of load predictability at local scale.

2. Case Study and Models

Firstly, we describe the offline dataset collected in bulk with the smart meters set up as part
of the SENSIBLE project. Secondly, we define the selected input values that are to be fed into the
forecasting models we then introduce. Finally, we present the different scores that are used to assess
the forecasting performance of the models.

2.1. Offline Data Set

As part of the SENSIBLE project, smart meters are set up in a localized neighborhood in
Évora, Portugal, and record the hourly electricity demand of each of the 226 households of the
neighborhood. The recordings collected during the 8760 h in 2015 form the offline data set, made up
of 226 individual time series. A mean demand time series is created by averaging the demand of the
226 individual households.

Following common practice, this dataset is divided into a training period to fit the models’
parameters, from 1st January to 30th September—6552 values, and a test period from 1st October to
31st December—2208 values. This separation is made to emulate real-life conditions where a model
is trained and then installed for operational use. In this case, the forecasting model is trained with
historical data, and then deployed at a given instant, on the 1 October 2015, to be tested over 3 months.
The recordings collected during the 8760 h in 2015 form the offline dataset, made up of 226 individual
time series. Advanced learning techniques exist, such as a recursive training process that regularly
refines the model parameters with the most recent data, blurring the lines between the training and
test periods [19]. We do not consider such techniques here since they require high maintenance.

2.2. Input of the Forecasting Models

An efficient forecasting model makes use of informative inputs to produce relevant forecasts.
Based on the electricity demand forecasting literature and to keep a small input set, we select only
two kinds of information: historical data of demand measurements, and local outside temperature.
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2.2.1. Historical Demand Measurements

Recent demand measurements, i.e., lagged values of the time series, constitute precious
information when forecasting future demand yt [20]. Selecting the most informative lagged values is
tricky and is ideally made for each household separately. A common practice is to analyze the partial
auto-correlation function. This function quantifies how much each lagged value is correlated with the
current value independently of the values in between, e.g., how much yt−2 is correlated with yt after
removing the correlation effect between yt−1 and yt [21]. However, selecting automatically how many
lagged values and which ones for each household is often cumbersome, and hinders the replicability
of the model. For instance, the number of relevant lags change with household, and consequently, they
modify the complexity of the models.

Here we consider that the primary interest is to develop a model that is easily replicable for
a (very) large number of households that range from hundreds to thousands. We therefore opt to keep
only two lagged values that proved efficient on average:

1. The measurement made 24 h before the instant to forecast yt−24, which is highly informative due
to the strong daily seasonality.

2. When the forecasting horizon is superior to 24 h, the measurement made 48 hours before is used
as a direct surrogate.

3. The median demand made on the previous week ȳt = median(yt−24, . . . , yt−168), which reflects
the recent behavior.

While these two historical inputs are related, both are insightful: the value observed the previous
day is volatile and depends on the specific inhabitant’s activity on this particular day, the median
value of the previous week conveys the recent habits in a smoother manner.

2.2.2. Outside Temperature

The impact of the local outside temperature on electricity demand is generally recognized [22].
For forecasting purposes, we retrieve the local temperature predictions made on the previous day
from a Numerical Weather Prediction (NWP) model. In this case, study, we consider NWPs provided
by the European Centre for Medium-Range Weather Forecasts (ECMWF) [23]. For the offline dataset,
and to mimic the real application, we retrieve the deterministic forecasts made at 12:00 for the next day,
i.e., with forecasting horizons of 12, 13, . . . , 35 h. In fact, ECMWF provides only one forecast value
every 3 h, and, hence, the gap hours are filled with a linear interpolation. Therefore, the temperature
forecasts produced at 12:00 on 31 December 2014, 1 January 2015, . . . , 30 December 2015 are collated
in a time series, noted (T̂t), comprising the 8760 hourly temperature values in the neighborhood in
2015. For the online usage, the NWPs are directly retrieved at the household level through an API.
Although some studies show that lagged values of the temperature slightly improve the electricity
demand forecasting performance, we select only one single value to keep the model simple and
interpretable [24].

2.3. Forecasting Models

To provide a day-ahead probabilistic forecast of the electricity consumption of a household at all
times, we propose a total of 5 alternative models of increasing complexity: 2 “climatology” models,
2 temperature-dependent models, and 1 additive model. These models are meant to be used in
a hierarchical manner to always provide the most accurate forecast depending on the situation.
Additionally, a reference model based on machine learning is introduced as a benchmark. The models’
parameters are fitted to the data from the training period, to keep out-of-sample the data from
the test period [25]. Each model is probabilistic and produces a set of forecasts for instant t at
quantile levels τ = 0.1, 0.2, . . . , 0.9. The median probabilistic forecast at level τ = 0.5 is used as the
point/deterministic forecast.
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2.3.1. Climatology Models

We create a “climatology” type of model for each one of the 226 households. This kind of model
was early introduced in the weather community [26] and consists in computing quantile forecasts
based on all the historical observations unconditionally. In our case, all the demand measurements
of the training period made on a given day of the week and hour of the day are used to compute
fixed quantile values for this hour and day, independently of the recent demand values or the weather
conditions. This method means that the forecasts for every Monday are always the same, be it in
August or in December.

The 1512 (7× 24× 9) values computed from the training period provide a quantile forecast of the
demand for any future instant t, noted cŷτ

t .
This climatology model is then referred to as Mi

0 for household i = 1, . . . , 226. Additionally,
we create an average climatology model, referred to as A0 , based on the mean demand time series.

2.3.2. Temperature-Dependent Models

Since the temperature time series is retrieved from a different source than the smart-meter
measurements, the presence of this input is expected to have a different reliability. Usually, given
a good internet connection, the availability of NWPs is high. They are also provided several times
per day and even if once they are not available one can use forecasts from previous runs of the NWP
model. For this reason, it is useful to design a forecasting model relying solely on this information.
Quantile smoothing spline functions are fitted by optimizing with the quantile score as a loss function.
The fit is done with function rqss implemented in the R package quantreg [27]. Since the temperature
has a different impact on demand depending on the hour of the day, a total of 24× 9 functions aτ

h(·)
are fitted, for h = 0, . . . , 23, so that

θ ŷτ
t = aτ

h(T̂t) (1)

is the quantile forecast of the demand yt at level τ = 0.1, . . . , 0.9, where the instant t to be forecast
is associated with the hour h of the current day. In practice, the function is not fitted to the actual
demand yt, but rather to the residual errors after shifting the demand value by the median climatology
forecasts. Our experiments, not reported here, show that proceeding as such slightly refines the spline
fitting process.

This temperature-dependent model is then referred to as Mi
1 for household i = 1, . . . , 226.

An average temperature-dependent model, using the mean demand time series, is also fitted, and
noted A1.

2.3.3. Additive Model

Three independent quantile smoothing spline functions are fitted to the data of the training period
to reflect the effects of three inputs: the demand measured 24 h before, the median demand during the
7 previous days, and the temperature forecast. The fit is done with function rqss implemented in the R
package quantreg [27]. An additive structure is selected to simplify the fitting process, and a fit is done
for each hour of the day h, so that

ŷτ
t = bτ

h(T̂t) + cτ
h(yt−24) + dτ

h(ȳt) (2)

is the quantile forecast of the residual error yt at level τ = 0.1, . . . , 0.9, where the instant t to be
forecast is associated with the hour h of the current day. As with for the temperature-dependent model,
the fitting is made on the residual errors rather than the actual demand. The fitting process for the
6552 points of the training period is fast, i.e., less than 5 seconds on an average 2013 laptop. In the
literature, this kind of additive framework proves efficient when forecasting electricity demand [20].

This additive model is then referred to as Mi
2 for household i = 1, . . . , 226. No average model is

created because it would involve gathering individual smart-meter data in real time to compute the
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mean demand time series. Such gathering is strongly invasive of privacy and thus to be avoided [28].
Advanced methods to protect user privacy exist, such as employing a consensus framework [29] but
are not considered in this study.

2.3.4. Reference Model Based on Machine Learning

Additionally, we train a gradient boosting model that makes use of the same inputs as the additive
model, i.e., the demand measured 24 h before, the median demand value during the 7 previous days,
the temperature forecast, and the hour of the day. A total of 9 versions are computed for quantile levels
τ = 0.1, 0.2, . . . , 0.9. The meta-parameters of the gradient boosting model are adjusted in such a way
that the computation time for the training phase is approximately the same as for the additive model,
i.e., about 5 s. This gradient boosting model is then referred to as Gi

2 for household i = 1, . . . , 226.
This machine-learning model is used as a benchmark due to its established performance [30]. Note that
this black-box model cannot be used in the demonstration project due to its somewhat obscure behavior.

2.4. Forecasting Performance Scores

To assess the performance of a forecasting model, we compare the forecast values with the
observations during a test period, i.e., for t ∈ {1, . . . , T}. Considering a point forecast, we calculate the
Normalized Mean Average Error (NMAE)

NMAE =
1
T

T

∑
t=1

|yt − ŷt|
mean yt

, (3)

where ŷt is the point forecast for instant t, and yt its corresponding observation. Considering
a probabilistic forecast, the aim is to calculate the reliability (Rel) between two successive quantile
levels τ0 = 0 < τ1 < · · · < τK+1 = 1

Relk =
1
T

T

∑
t=1

1(ŷτk−1
t < yt ≤ ŷτk

t ), (4)

for k = 1, . . . , K + 1, where 1 is the Heaviside function, and ŷτ
t is the forecast quantile at level τ.

To ensure that the forecast distribution is reliable, or calibrated, the reliability for interval k must be
close to the theoretical frequency τk − τk−1. This frequency is never exactly observed due to natural
statistical fluctuation, so Candille and Talagrand propose a reliability ratio ∆/∆0 that quantifies how
well-calibrated the forecast distribution is, see [31] (Section 3). In addition to the reliability, we compute
the Normalized Quantile Score (NQS) to check the accuracy of the probabilistic forecasts. Specifically,

NQSτ =
1
T

T

∑
t=1

2(1(yt ≤ ŷτ
t )− τ)(ŷτ

t − yt)

mean yt
. (5)

The NQSτ is negatively oriented: a lower value indicates a better performance at quantile level τ.
Note that NQS0.5 = NMAE.

3. Hierarchical Forecasting Framework

We first select a subset of 20 households with high-quality smart-meter data to assess the
performance of each forecasting model. Then, we identify the problematic situations occurring
in practice, before finally designing a hierarchical forecasting framework combining the models based
on their respective performance and robustness to problematic situations.

3.1. Offline Forecasting Performance of a Subset of Households

For each household, we have 6 alternative day-ahead forecasting models, A0, A1, Mi
0, Mi

1, Mi
2,

and Gi
2.
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Based on their respective level of complexity and the forecasting literature, we expect similar
performance from Gi

2 and Mi
2, and that both will outperform Mi

1, then Mi
0, then A1, and then A0.

We wish to assess their respective performance during the test period going from 1 October to
31 December 2015. To perform this evaluation, we select a subset of households based on two criteria:

1. The availability of the smart-meter data of the household should be almost perfect. We only
retain households whose demand data are available at least 95% of the time in both the training
and the test periods.

2. There should be no abrupt change in demand patterns between the training and the test periods.
This is assessed by examining the climatology probabilistic forecasts computed during the training
period. With such a model, the reliability of the forecast should be fairly correct during the test
period when no abrupt changes occur. Therefore, we check that the reliability ratio defined by
Candille and Talagrand, see Section 2.4, is close to the ideal ratio of 1. Somewhat arbitrarily,
we choose that a household passes this reliability test when the ratio is below 20.

A subset of only 20 out of the 226 households fulfill the two criteria, later denoted subset Ξ. In fact,
most of the 226 households exhibit abrupt changes in their demand patterns that are quite difficult to
anticipate, and that do not reflect the intrinsic performance of the forecasting model.

For the 20 households in the subset Ξ, we compute the Reliability and the Normalized Quantile
Score, see Section 2.4, for the 6 models introduced. The average results are shown in Figure 1, and
in Table 1.
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Figure 1. Reliability graph (left figure) and quantile score curves (right figure) for the 6 models in the
selected subset Ξ.

Table 1. Median performance indices (in %) and reliability ratio for various day-ahead forecasting
models among the subset Ξ.

Type Model NQS0.1 NMAE NQS0.9 ∆/∆0

Average climatology A0 24.7 31.6 25.2 741
Average temperature-dependent A1 24.6 31.1 30.6 871

Specific climatology M0 10.9 29.0 13.6 6
Specific temperature-dependent M1 10.8 28.3 15.1 11
Specific additive M2 11.1 27.2 14.7 11

Machine Learning G2 10.9 27.2 14.3 8

When examining the reliability ratio, we observe that the specific models are reasonably calibrated
but that the average models are not. The whole forecast distribution of the latter either overestimates
or underestimates the demand. Consequently, providing point forecasts of the demand of an unknown
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household is reasonably efficient—NMAE around 31.1%—but providing average probabilistic forecasts
makes no sense and requires specific measurements of the corresponding household.

The quantile score curves, visible on the right panel in Figure 1, depict the performance at different
quantile levels, i.e., for different parts of the forecast distribution. The values of the NMAE scores are
readable at quantile level 50% and indicate which forecasting model is better to provide point forecasts.

We see that the performance of each model is ordered as expected, with a top performance
of 27.2% for Mi

2. The hypothesis that all 5 models have similar performance is rejected according
to the Friedman statistical test (p-value of 10−4) [32]. Additionally, we note that the most efficient
proposed model M2 has similar performance to the reference model Gi

2: the nonparametric Wilcoxon
test does not reject the null hypothesis claiming similar performance (p-value of 0.54) [33]. On average,
the models specifically trained for households decrease the errors by around 10% in comparison
with the average models. This relative improvement is intensified when considering the distribution
tails. The curves crossings between the models suggest that forecasters should use the additive
model for lower quantile levels (10–60%) and then switch to the specific climatology model for
higher levels. This observation highlights that it is, perhaps surprisingly, more efficient to carry out
conservative forecasts for the upper part of the forecast distribution. However, this conclusion should
be adapted depending on the household considered. For instance, for about one third of the households,
the models with a temperature input, i.e., M1 and M2, clearly outperform the climatology M0 at all
levels. Identifying these households that benefit from the temperature input is quite straightforward:
they are equipped with heating or cooling electrical devices, i.e., they have clear thermal sensitivity [34].
This sensitivity is measured by retrieving the correlation between the electricity demand and the
outside temperature. Thermal sensitivity is defined as the squared correlation and so a high (resp.
low) sensitivity depicts a strong (resp. weak) demand–temperature correlation. The households with
high sensitivity show a clear increase in electricity demand when it is cold outside. In these cases,
the forecasts are more accurate as illustrated in Figure 2, where the evening demand is well anticipated
by the temperature-dependent model M1 (orange) since it is a cold day, but not by the climatology
model M0 (black).
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Figure 2. Day-ahead forecasts of hourly demand of an individual household on Sunday 22nd November
2015 with the specific climatology model M0 and the specific temperature-dependent model M1: solid
lines depict the median forecast, and the filled-in areas show the interval prediction 30–70%. The actual
demand measurements are represented by the red line connecting the circles.

3.2. Problematic Situations

Although the additive model provides the best performance, it is also the least robust model and
several problematic situations occasionally prevent its usage. This is often the case for similar type of
models based on time-series approach. The following situations are identified to be problematic when
forecasting the demand of household i ∈ {1, . . . , 226}:
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• No data in the training period. There is no way to create the specific models Mi
0, Mi

1, and Mi
2.

• No temperature forecast. Models making use of the temperature A1, Mi
1, and Mi

2 are missing
an input and cannot properly carry out a forecast.

• No recent measurements. Input values yt−24 or ȳt are then unavailable, meaning that Mi
2

cannot operate.
• Unknown situation. A drawback of the smoothing splines is that extrapolation is known to perform

poorly, affecting the activation of A1, Mi
1, and Mi

2. For instance, if recently observed demand
values have never been this low in the training set, it is better to refrain from using the additive
model Mi

2.

3.3. Hierarchical Framework

3.3.1. Flowchart

The respective performance of each model coupled with the identification of problematic
situations enable us to design a forecast hierarchical framework represented in Figure 3. In the
implementation, when producing a forecast for instant t for a household i, we successively check:

1. Are there historical measures specific to this household?
2. Is there a temperature forecast T̂t available?
3. Are the recent measures yt−24 and ȳt available?
4. Is the future situation known, i.e., do the inputs values extrapolate from the ones that occurred

during the training period?

Historical
measures?

Average
Models

Specific
Models

Temperature
forecast?

Temperature
forecast?

A0 A1 M0
i

Recent
measures?

M1
i

Known
situation?

M1
i

M2
i

Forecast demand
at instant t

Yes

Yes

Yes

Yes

Yes

No

No No

No

No

Figure 3. Flowchart of the hierarchical framework indicating which forecasting model is used.

3.3.2. Performance

We implement the hierarchical framework for each of the 226 households in the neighborhood.
The flowchart detailing the model usage according to the situation allows us to always provide
day-ahead probabilistic forecasts for each hour of the day in the test period—from 1 October to
31 December 2015. We assess the performance by comparing these forecasts to the available data. Since
some households have missing demand measurements, the length of the test period is not the same
for all the households. For instance, one household has no measurement at all in December and so the
performance is estimated with a test subperiod going from 1st October to 30 November.
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Figure 4 depicts the NMAE observed for each hour of the day among all the 226 households.
The points show the median NMAE, and the segments show the variation 20–80% among households.
The errors follow the same trend as the actual demand values: lower in the nighttime, and higher in
the evening. However, the fluctuation throughout the day is minor. Since all the forecasts are carried
out at 12:00 on the previous day, forecasts for a specific hour of the day represents a specific horizon.
It means that errors at 0:00 correspond to a forecasting horizon of 12 hours, errors at 1:00 correspond to
a forecasting horizon of 13 h, and so on.
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Figure 4. Hourly errors distribution (NMAE in % on the y-axis) depending on the hour of the day (x-axis).

We then represent the NMAE, averaged over the 24 h, as a function of the thermal sensitivity in
Figure 5.

The households in the subset Ξ are represented by the orange dots, and the rest by black dots. We
can see that the model performs slightly better on the subset Ξ: the median NMAE decreases from
29.9% to 27.7%. The graph also logically shows that households with greater thermal sensitivity are
easier to forecast. Additionally, we can see that performances greatly vary between households with
similar sensitivity: errors range from 2% to 51% for low sensitivity (below 0.1). This is due to the
unknown behaviors of the householders and other cultural factors, e.g., the number of appliances in
the house. It highlights that anticipating a forecasting performance for a different use case should be
done with caution.
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Figure 5. Forecasting performance (y-axis) for each of the 226 households, regarding their respective
thermal sensitivity (x-axis). The 20 households of the selected Ξ subset are depicted in orange, and the
rest in black. The lines represent the median value of the households.
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4. Offline and Online Performances

We first draw a household-by-household comparison of the offline and online forecasting
performances. Then, we discuss and quantify in detail the factors that cause a noticeable performance
degradation with precise test cases.

4.1. Performance Comparison

The hierarchical forecasting framework is implemented at the Évora demonstration site.
The forecasts produced and smart-meter measurements are retrieved, providing a recent online
dataset. This dataset is made up of two parts: a training period going from July to December 2017,
and a test period from April to August 2018.

We first analyze the frequency with which each one of the 5 models that compose the framework,
depicted in the flowchart in Figure 3, are activated as a function of the available data. The results are
given in Table 2. It is noted that, at each instant, a single model produces the final forecast, according to
the situation. The most efficient model M2 is activated in about three quarters of the cases. We observe
similar model activation frequencies in the online and offline cases.

Table 2. Average usage frequency (rounded in %) of the various models on the offline dataset
(226 households) and on the online dataset (20 households).

Model Offline Online

A0 0 0
A1 3 0
M0 3 3
M1 18 19
M2 76 78

The online data is collected from the 20 households of the Ξ subset introduced in Section 3.1.
Figure 6 compares the performance of these 20 households obtained during online test period—1 April
to 31 August 2018—and during the offline test period—1 October to 31 December 2015. We compare
the NMAE obtained during the two periods. with our forecasting framework and divide this error
by the NMAE obtained with a 1-day persistence model. Note that the normalization in the NMAE
score comes from the mean value observed from the sets studied, and so the normalization value
evolves between the offline and online test sets. For most households, the errors made by our model
is lower than the persistence errors (average of 0.90 offline and 0.97 online). Furthermore, for 17
out of 20 households, the individual NMAE obtained offline is lower than online, meaning that the
model performance has decreased between the two test cases. We also provide in Figure 7 the NMAE
computed over a single day. Each point, in black for the offline case and in orange for the online test,
represents the ratio between the NMAE of our forecasting framework and the NMAE of the persistence
model (y-axis). The daily demand of the day (in kWh) is represented on the x-axis. We see that the
daily performance is more volatile when the demand of the day is low than when this demand is
important. In fact, this performance volatility is due to the persistence forecasts performance that also
widely range for low-demand day: performance is either very good (when the previous day is also
a low-demand day) or very poor (when the previous day is not a low-demand day). The improvement
over persistence is clearer for high-demand days in online and offline cases.
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Figure 6. Each point represents the household performance on the online test period (x-axis)—1 April
to 31 August 2018 —compared to the performance on the offline test period (y-axis)—1 October to
31 December 2015. The performance is the ratio between the NMAE obtained with the forecasting
framework and the NMAE obtained with a 1-day persistence model.
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Figure 7. Each point represents the forecasting performance computed over a single household and
single day. The NMAE ratio between our model and the persistence model (in %) is on the y-axis,
and the total daily demand (in kWh) is on the x-axis. The horizontal lines represent the average
performance over all households and all days.

On average, the online performance is worse than the offline performance. In absolute values,
the average NMAE goes from 34.8% on the offline test to 58.5% on the online test. This comes from
the demand characteristics that are quite different between two cases. Figure 8 provides an indicative
illustration. For the same set of households in the two cases, one point represents the average
hourly electricity demand of the household (x-axis) and its standard deviation (y-axis). Both the
mean and deviation largely increase between the two cases. This evolution directly influences the
forecasting performance since it denotes the usage of more appliances, hence more demand volatility
and forecasting complexity.
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Figure 8. Characteristics of the individual time series of the 20 households in the offline (black points)
and online (orange points) cases. The standard deviation of the series (y-axis) is represented in regard
with its mean hourly demand (x-axis).

4.2. Discussion

We investigate the possible reasons for the performance degradation between the offline and
online tests: the evolution of the demand time series, the availability rate in the test period, the duration
and recency of the training period, the position during the year of the test period. The subsequent tests
are made using our offline 2015 dataset with the Ξ subset of 20 households to quantify the possible
performance degradation.

4.2.1. Evolution of the Demand

Since there is a considerable time gap between the offline test, in 2015, and the online test,
in 2018, the behaviors of the householders living in the 20 households have evolved: new people,
new appliances, new habits, etc. This evolution is reflected in the electricity demand patterns which
modify the intrinsic complexity of the forecasting task. Defining this complexity is not straightforward:
we examine the performance of a 1-day persistence model—by which we use the demand measured
on the current day to provide point forecasts for the next day. We observe that this persistence model
has an average NMAE of 45% from April to August 2015, and this error increases to 69% from April
to August 2018. This means that forecasting the 2018 time series is roughly 50% more difficult than
forecasting the 2015 time series.

4.2.2. Availability Rate in the Test Period

For each one of the 20 households in the Ξ subset, we randomly discard a certain amount of
available measurements in the test set, obtaining an availability rate between 0 and 1. This mimics the
case when a specific hourly observation is missing, and so the forecast cannot be compared to the actual
observation. We compute the forecasting performance of M2 with the NMAE and NQS0.9 indices on
the available subperiod. In Figure 9, we represent the performance fluctuation (in %) regarding the
availability rate. Logically, we see that the average performance is constant, i.e., at a reference level of
100%, whatever the availability rate. However, note that the missing values introduce variability in the
performance evaluation. This variability logically increases when the availability rate decreases. It goes
up to 2% when examining the NMAE. This effect is emphasized for the distribution tails, as seen on
the NQS0.9 going up to 4 % for low rates, that are more difficult to estimate accurately.
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Figure 9. Variety of the performance (y-axis) according to the data availability in the test period
(x-axis). One point represents one trial run for a given availability rate. The solid line represents the
median spline, while the grey filled zone represents the confidence interval 5–95% induced by the
availability randomness.

We conclude that missing values in a test set induces limited performance fluctuation. However,
the missing values here are assumed to be uniformly spread throughout the period, which is the case in
the actual online dataset retrieved. Another use case may result in different missing value distribution,
e.g., when a smart meter is disconnected during a contiguous period of time.

4.2.3. Training Period Position

For each of the 20 households in the Ξ subset, we train the forecasting models M2 and G2 at
quantile level 50% with different training periods. Figure 10 represents the average NMAE achieved on
the test period, fixed from 1 October to 31 December 2015, relatively to the minimal NMAE obtained
with the longest training period going from January to September. The beginning of the training
period is selected on the x-axis, and the end is selected on the y-axis. The left panel represents the
performance with the M2 model while the right panel represents the performance with the G2. Since
the additive model M2 is not designed for extrapolation, the training period necessarily should include
the first months of the year, to observe similar temperature as during the test period, to produce
forecasts. It means that only a limited range of training periods could be evaluated. On the other hand,
the machine-learning model G2 is designed for such extrapolation, so we can extend the performance
on more diverse training periods. While both models produce the same performance when using the
9 months (January to September) as training sets, we see that G2 does a better job with reduced periods.
We logically see that reducing the duration of the period damage the performance of both models.
We see that the degradation can be up to 10% for M2 when the period lasts only 3 months (February to
April) with a time gap between training and test, instead of 9 months (January to September).

We conclude that training with the all the data, and using as recent data as possible, is the best
way to grasp the various recent demand patterns. Furthermore, we stress the importance of using
data collected during similar situations to those to be forecast, especially regarding the temperature.
For instance, to efficiently forecast summer 2018 ideally means training the model with data collected
in summer 2017.
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Figure 10. Forecasting performance depending on the exact period of the training set, i.e., the beginning
of the training period (x-axis), and its end (y-end). For each training period, the relative NMAE is equal
to the average NMAE over the Ξ subset divided by the minimal NMAE obtained with the maximal
training period. The left panel represents the results obtained with M2, the right panel represents the
results with G2.

4.2.4. Test Period Position

The test period’s position in the year impacts the performance. Figure 11 represents the forecasting
performance with model M2 obtained using, in turn, each month of the year 2015 as the test period,
using the remainder as the training period. This framework implies that, while the test period is always
out-of-sample, it is surrounded by the training period, which prevents any major deviation, possible
in a real case. For each household in the Ξ subset, the NMAE obtained for each month of the year is
divided by the average over the whole year, to obtain a relative NMAE. The boxplot representation
indicates the variation in the subset. We can see that, on average, the summer period, i.e., June to
August, produces a slightly better performance than the other months, with a NMAE decrease of
around 5%.
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Figure 11. Boxplot of the forecasting performance depending on the exact test period. Each month of
the year is, in turns, selected as the test period while the rest of the year is used as the training period.
For each household in the Ξ subset, the NMAE obtained for each month is divided by the mean value
obtained across the 12 months.
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4.3. Summary

As a reminder: (1) the offline training period goes from 1 January to 30 September 2015, the offline
test period from 1 October to 31 December 2015, and the offline NMAE is 34.8%; (2) the online training
period goes from 1 July to 31 December 2017, the online test period from 1 April to 31 August 2018,
and the offline NMAE is 58.5%.

We identify that the main cause of this 68% relative performance degradation is due to the intrinsic
evolution of the time series. Thanks to a simple persistence forecasting model, we assess that the
demand time series in the online case are roughly 50% more difficult to forecast than those of the offline
case. To a great extent, we remove this intrinsic time-series evolution by analyzing the performance
improvement of the forecasting framework over the persistence model. On average, we have seen that
the NMAE is reduced to 90% of the persistence NMAE in the offline dataset, but only 97% in the online
dataset. This remaining relative performance discrepancy of 8% is due to the mismatch of the training
and test period positions in the online case. In fact, the models are trained with fall data, but tested
with spring data, which causes a relative degradation of around 15%. This effect is counterbalanced
by around 5% due to the position of the test period, since the spring period (online case) is easier to
predict than the fall period (offline case).

5. Conclusions

We present 5 probabilistic forecasting models that employ small input sets—day of the week,
hour of the day, recent smart-meter data, temperature prediction—to produce day-ahead forecasts of
electricity demand at the household level. We compare the performance of the models on an offline
dataset collected at a demonstration site in a Portuguese neighborhood. We observe that the more
flexible, and thus more complex, model logically results in better overall performance, similar to that
of a machine-learning benchmark.

However, many problematic situations arise and prevent the usage of this flexible model in real
time. We therefore propose a hierarchical forecasting framework, combining the 5 models introduced,
that addresses the following requirements: high robustness, fast computation, easy replicability, remote
control, and easy interpretation. These requirements are essential for deployment of a forecasting
model for a large number of households in real-world applications. After deployment in 2018, in the
demonstrator in the frame of SENSIBLE project, the feedback data collected at the demonstration site
are analyzed to provide an online forecasting performance. A household-by-household comparison
with the performance assessed using an offline dataset shows a considerable relative degradation.
We quantify the possible reasons for this degradation. Although it is due, in part, to the mismatch
between the online training and test periods, the main cause is the evolution of the demand. From
the distance in time between the initial offline testing of the model and its implementation for real
operation, we observed an evolution of the characteristics of the physical process itself. The complexity
of the demand pattern has greatly increased, meaning that the forecasting task is found to be
about 50% intrinsically more complex during the online test. This observation highlights the fact
that assessing forecasting performance at the household level is challenging. While forecasting
performance was observed to vary greatly between two households, even when located in the same
neighborhood, our experimental feedback shows that this performance also significantly evolves with
time. This evolution is caused by unknown abrupt characteristics changes in the household, such as
new people, additional appliances, changing habits of the householders, etc.

This raises the question of the adaptability of forecasting models at the household scale.
We recommend incorporating the most recent data into a training period, to which the forecasting
models are regularly fitted. The regularity of this training process can be quite coarse, e.g., every month,
since most recent demand patterns are only slight deviations of older ones. Such a framework still
implies a degree of model maintenance, such as reviewing the validity of the most recent smart-meter
data recorded and starting the training process. A more intricate issue is caused by occasional abrupt
changes in demand patterns. These changes are difficult to observe solely from the electricity demand
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time series. We advise using external input information about such changes, e.g., moving-in of
new householders, to discard obsolete data and train using only smart-meter data recorded after
the changes.
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