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Abstract: Reservoir fluid properties such as bubble point pressure (Pb) and gas solubility (Rs) play a
vital role in reservoir management and reservoir simulation. In addition, they affect the design of the
production system. Pb and Rs can be obtained from laboratory experiments by taking a sample at the
wellhead or from the reservoir under downhole conditions. However, this process is time-consuming
and very costly. To overcome these challenges, empirical correlations and artificial intelligence (AI)
models can be applied to obtain these properties. The objective of this paper is to introduce new
empirical correlations to estimate Pb and Rs based on three input parameters—reservoir temperature
and oil and gas gravities. 760 data points were collected from different sources to build new AI
models for Pb and Rs. The new empirical correlations were developed by integrating artificial
neural network (ANN) with a modified self-adaptive differential evolution algorithm to introduce a
hybrid self-adaptive artificial neural network (SaDE-ANN) model. The results obtained confirmed
the accuracy of the developed SaDE-ANN models to predict the Pb and Rs of crude oils. This is
the first technique that can be used to predict Rs and Pb based on three input parameters only.
The developed empirical correlation for Pb predicts the Pb with a correlation coefficient (CC) of 0.99
and an average absolute percentage error (AAPE) of 6%. The same results were obtained for Rs,
where the new empirical correlation predicts the Rs with a coefficient of determination (R2) of 0.99
and an AAPE of less than 6%. The developed technique will help reservoir and production engineers
to better understand and manage reservoirs. No additional or special software is required to run the
developed technique.

Keywords: self-adaptive differential evolution; artificial intelligence (AI); bubble point pressure
correlation; gas solubility correlation; pressure volume temperature (PVT) properties prediction

1. Introduction

Reservoir fluid pressure volume temperature (PVT) properties such as bubble point pressure,
gas solubility, and oil and gas formation volume factors and viscosities are critical in reservoir
engineering management and computations. These PVT properties are required to obtain the initial
hydrocarbons in place, optimum production schemes, ultimate hydrocarbon recovery, design of
fluid handling equipment, and reservoir volumetric estimates. Bubble point pressure (Pb) and gas
solubility (Rs) are two of the most critical quantities used to characterize an oil reservoir. Therefore,
the accurate determination of these properties is one of the main challenges in reservoir development
and management. There are also other factors that affect reservoir management, such as permeability.
Jia et al. [1] illustrated that for shale reservoirs with a permeability of 0.01 mD, continuous gas
injection is preferred, while for ultra-low permeability reservoirs, CO2 huff-n-puff is recommended.
For CO2 huff-n-puff injection in oil shale reservoirs, the reservoir heterogeneity is not a favorable
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function during the primary production period. Meanwhile, the fracture length plays a key role in oil
production [2].

Conventionally, PVT properties are determined by laboratory measurements. However, these
experiments are costly, time-consuming, and highly dependent on the quality and quantity of collected
samples [3–5]. Therefore, several empirical correlations such as the equation of states (EOS) as
well as linear, non-linear, and multiple regression correlations have been introduced to predict PVT
properties [6–9]. However, the accuracy of these correlations is highly dependent on fluid types and
the chosen equation [10–12].

Recently, artificial intelligence (AI) techniques have been extensively applied in the petroleum
industry, especially in predicting well/field performance. Alajmi et al. predicted the choke
performance using artificial neural network (ANN) [13]. Alarifi et al. [14] estimated the productivity
index for oil horizontal wells using ANN, functional network, and fuzzy logic. Chen et al. [15] applied
neural network and fuzzy logic to evaluate the performance of an inflow control device (ICD) in
a horizontal well. Moussa et al. [16] used optimized an ANN model to predict average reservoir
permeability using well-log data. Van and Chon [17] evaluated the performance of CO2 flooding using
ANN. Elkatatny et al. [18] applied ANN to estimate the rheological properties of drilling fluids based
on real-time measurements.

Therefore, several AI approaches and data-driven models have been introduced to predict PVT
properties and overcome the challenges associated with laboratory measurements and analytical
correlations. Abedini et al. [19] used ANN and fuzzy logic approaches to predict the oil viscosity of
undersaturated oil reservoirs. Two models were introduced and showed accurate prediction of oil
viscosity compared to the measured values in the laboratory. The input parameters of their models were
oil gravity, reservoir temperature, gas oil ratio (GOR), and bubble point pressure. Moghadasi et al. [20]
used ANN to estimate the values of Pb for Iranian oil fields. The input parameters utilized in
their model were reservoir temperature, GOR, and oil and gas gravities. They compared their
prediction with previous models and showed that ANN yielded the highest accuracy. Al-Marhoun et
al. used ANN to determine the Pb from the oil composition as well as the GOR, oil and gas gravities,
and reservoir temperature [21]. They compared the developed ANN model with other equations of
states (EOS) and other available models in the literature and they concluded that ANN yielded very
accurate prediction compared to the previous methods. Tatar et al. [22] used ANN models to estimate
the water density in oil and gas reservoirs. Water density is necessary in reservoir simulation and
material balance calculations. Their model predicted the formation water density with a correlation
coefficient (CC) close to unity and error close to zero. They used reservoir pressure, temperature,
and sodium chloride concentration as inputs to predict the water density. Ahmadi and Bahadori [23]
used AI tools such as fuzzy logic to evaluate the enhanced oil recovery (EOR) processes. They coupled
the fuzzy approach with commercial reservoir simulators to enhance the accuracy of selecting and
ranking the appropriate EOR method for the specified oil reservoirs. Choubineh et al. [24] used
693 data points to develop an ANN model to predict the natural gas density for different temperature
and pressure ranges. Their model showed that the gas pressure and temperature have a great effect on
the natural gas density. Their model can be used in a temperature range of 250 to 450 K and a pressure
range of 15 to 65 MPa. The model accuracy was high compared with previous models; the regression
coefficient was more than 0.99 and the average absolute error was less than 0.5%.

Although the data-driven models developed by different AI approaches have shown good
accuracy compared to laboratory measurements and have outperformed analytical correlations,
the input parameters of these models still require expensive laboratory experiments. For example,
in order to estimate bubble point pressure (Pb), gas solubility (Rs) or oil composition is required as an
input parameter. In other words, the abovementioned models did not eliminate the requirement of
the expensive and time-consuming laboratory experiments. Therefore, the objective of this paper is
to introduce two data-driven models to: (1) predict the Pb of crude oil samples based on three input
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parameters—reservoir temperature and oil and gas gravities; and (2) predict the Rs using the three
input parameters as well as the predicted Pb as the fourth input parameter.

The proposed methods require no expensive laboratory experiments. Hence, it is a step toward
minimizing PVT laboratory experiments. The proposed data-driven models are developed using a
modified self-adaptive differential evolution algorithm (MSaDE) [25] combined with ANN. In the
subsequence sections of this paper, the proposed hybrid algorithm is referred to as SaDE-ANN.

2. Artificial Neural Network Modeling

Artificial neural network (ANN) is computational method derived from the biological neural
network [26,27]. In the architecture of ANN, the input and the output are connected by specific
neurons. A normal ANN contains an input layer, one or more hidden layers, and an output layer.
Information is received by the input layer. In the hidden layer(s), a relationship between input(s) and
output(s) is developed. Every neuron of one layer is linked to every neuron in the following layer and
every connection has a related weight [28]. The relationship between the neuron and the source is
controlled by weights and biases [29].

To avoid overfitting and underfitting, an optimization process is performed to determine the
optimum number of neurons [28,30]. Training is the first step in the formation of the network.
After training the network with training data, the testing output can be predicted using the weighted
average of the outputs of training dataset, where the weights are calculated using the Euclidean
distance between the training and testing data [31,32].

3. Methodology

ANN has several control parameters, such as the number of hidden layers, number of neurons
at each layer, training and transferring functions, and ratio of testing over training datasets.
Conventionally, the values of these control parameters are assigned by several sensitivity trials. In each
single trial, different values of one parameter are assigned while keeping other parameters constant.
Then the value that achieved the minimum error between the measured (real) and predicted output is
selected. Similar processes are applied to the remaining parameters to find their best values. However,
because of the interdependency of these control parameters, this “trial” approach does not ensure the
accomplishment of optimum results.

Therefore, the methodology approached in this paper involves the simultaneous optimization
of these parameters to achieve the minimum average absolute percentage error (AAPE) and the
maximum CC. The definitions of AAPE and CC are shown in Appendix A. The stochastic optimization
method used in this paper is modified by self-adaptive differential evolution (MSaDE) [25]. In MSaDE,
the control variables of a differential evolution algorithm, such as scale factor, crossover, and mutation
strategy, are self-adapted during each iteration. In this paper, MSaDE is integrated with ANN to
optimize the control parameters of ANN.

The input parameters to the ANN are: reservoir temperature (T), oil gravity (American Petroleum
Institute (API)), and gas specific gravity (GG). The outputs are bubble point pressure (Pb) and solution
gas ratio (Rs). As mentioned earlier, ANN consists of two phases—training and testing. In the training
phase, the optimization process of SaDE-ANN continues running until one of two conditions: (1) the
AAPE is less than 5%, or (2) the maximum number of function evaluations (1000) is reached. Then the
optimized SaDE-ANN model is validated on unseen testing datasets to predict the values of Pb and Rs
using the input parameters T, API, and GG.

Data Analysis and Acquisition

The data points utilized in this paper were collected from the literature [7–9,33–35].
The data includes different oil sources with different concentrations. Data from the Middle East
(Al-Marhoun) [8], data from Malaysian Crudes (Omar and Todd) [34], data from North Sea Glasø [7],
data from fields all over the world (Vazquez and Beggs) [9], and data from the Mediterranean Basin,



Energies 2018, 11, 3490 4 of 14

Africa, the Persian Gulf, and the North Sea (De Ghetto) [35] were employed. Each data point contains
input parameters (reservoir temperature (T), oil gravity (API), and GG) and output parameters
(solution gas oil ratio (Rs) and bubble point pressure (Pb)). Table 1 shows the statistical parameters of
the studied 460 datasets after outlier removal using mean-standard deviation method; in which the
dataset (xj) would be considered as outliers if the condition shown in Equation (1) is achieved.∣∣xj − xj

∣∣ > 3 σj (1)

where xj is the data vector for the jth parameter, xj =
[
xj,1, xj,2, xj,3, . . . , xj,N

]
, j = 1, 2, . . . , J, J is the

total number of input parameters (in this case, J = 3), xj is the mean of the jth parameter, xj =
1
N

N
∑

i=1
xj,i,

N is the total number of datasets, and σj is the standard deviation of the jth parameter.

Table 1. Statistical parameters for the studied data.

Statistical
Parameter

Gas Specific
Gravity

Oil Gravity,
◦API

Reservoir
Temperature, ◦F

Solution Gas Oil
Ratio, SCF/STB

Bubble Point
Pressure, psi

Maximum 1.367 56.200 294.000 1718.000 4735.000
Minimum 0.589 15.300 74.000 9.000 126.000

Arithmetic Mean 0.904 36.048 170.926 518.981 1754.048
Geometric Mean 0.891 35.273 163.511 356.563 1357.907
Harmonic Mean 0.879 34.449 155.754 189.980 907.683

Mode 0.802 33.300 100.000 61.000 500.000
Range 0.778 40.900 220.000 1709.000 4609.000

Mid-Range 0.201 10.400 74.000 554.000 1633.000
Variation 0.389 20.450 110.000 854.500 2304.500

Interquartile Range 0.025 53.085 2,394 145,930 1101,077
Standard Deviation 0.160 7.286 48.933 382.008 1049.322

Skewness 0.820 −0.043 0.082 0.823 0.357
Kurtosis 0.285 −0.385 −0.772 0.202 −0.624

Coefficient of
Variation 0.176 0.202 0.286 0.736 0.598

The CC of the input parameters (T, API, and GG) with output parameters (Pb and Rs) are shown
in Figure 1. In this paper, a combined correlation coefficient (cCC) parameter is introduced to indicate
the combined CC of T, API, and GG to Pb and Rs. cCC is the arithmetic mean of the CCs of the three
input parameters calculated by Equation (2). cCC is estimated for Pb and Rs to determine which output
should be estimated first.

cCC =
|CCGG|+ |CCAPI|+ |CCT |

3
(2)

where CCGG, CCAPI, and CCT are the correlation coefficients between the output parameter and GG,
oil gravity, and reservoir temperature, respectively. Figure 1 shows that Pb has a higher cCC with the
input parameters (0.37) compared to Rs (0.32). Therefore, it is more convenient to estimate Pb first,
and then use the estimated Pb with the three input parameters to predict Rs.
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Figure 1. Correlation coefficients of reservoir temperature (T), oil API, and gas gravity (GG) to bubble
point pressure (Pb) and gas solubility (Rs).

4. Results and Discussion

4.1. Bubble Point Pressure Estimation

The SaDE-ANN model was built to correlate Pb with T, API, and GG. The optimum parameters
of ANN to generate the best results in terms of the lowest AAPE and highest CC were found
to be an ANN structure of 3-18-17-1; the input layer consisted of three neurons representing the
input parameters—reservoir temperature, oil API, and gas gravity. 18 neurons made up the first
hidden layer, 17 neurons made up the second hidden layer, and Pb was the only parameter in the
output layer. Data were divided into three sets—training (65%), validation (11%), and testing (24%).
The optimum training and transfer functions were Bayesian regularization backpropagation and
symmetric sigmoid, respectively.

Figure 2 shows the cross plot of the predicted values of Pb using the SaDE-ANN model vs. the
actual Pb values. Figure 2 shows that the AAPE was 5.18% and the CC was 0.994 for the training
data, while for the testing data the AAPE was 6.37% and the CC was 0.993. These results confirm the
stability and high accuracy of the SaDE-ANN model, which can be used to predict the Pb based on
reservoir temperature, oil API gravity, and GG.
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An AAPE of 6.37% for bubble point pressure prediction is acceptable considering two important
factors: (1) this approach is utilized when the solution gas oil ratio data are not available and depends
only on reservoir temperature and oil and gas gravities; (2) most of the published bubble point pressure
correlations and models, including this proposed model, use fluid properties data from oilfield service
companies, which has a lot of concerns in terms of data quality. In addition, when comparing the
outputs of the proposed SaDE-ANN model with other correlation and models, in which the solution
gas oil ratio is considered as the fourth input with the three inputs used in the SaDE-ANN model,
the results are superior compared to other models and correlations. Figure 3 shows the performance
comparison of validation data between different models and correlations. The outputs from the
proposed SaDE-ANN method has the highest R2 compared to other models. Figure 4 shows the
comparison between different models and correlations based on the AAPE and CC—as shown in the
figure, SaDE-ANN has the lowest AAPE and highest CC.
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Mathematical Model for Bubble Point Pressure

The mathematical model to estimate Pb derived from the optimized ANN model using GG, API,
and T as input parameters, where the limitations of each parameter are shown in Table 1, is shown
as follows:

Pbn =
N2

∑
j=1

w3jYj + b3 (3)
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where Pbn is normalized Pb (psi) and Yj is calculated as:

Yj =
N1

∑
i=1

w2j,i

2
1 + e−2 Xi

− 1 + b2j (4)

and Xi is calculated as:

Xi =
2

1 + e−2 (w1i,1
γgn + w1i,2

APIn + w1i,3
Tn+b1i

)
− 1 (5)

where:
N1, N2 number of neurons in the first and second hidden layers, respectively;
i, j neuron index in the first and second hidden layers, respectively, as shown in Tables 2 and 3;
w1j , b1i weights and bias between the input and first hidden layers, respectively, as shown in Table 2;

w2j,i , b2j

weights and bias between the first hidden and output layers, respectively; the values of W2j,i are
shown in Table 3;

w3j , b3
weights and bias between the second hidden and output layers, respectively; b3 = −0.2626 and the
values of W3j are shown in Table 3;

γgn normalized GG, as calculated by Equation (6);
APIn normalized oil API gravity, as calculated by Equation (7);
Tn normalized reservoir temperature (◦F), as calculated by Equation (8).

γgn = 2.5707
(
γg − 0.589

)
− 1 (6)

APIn = 0.0453(API− 15.3)− 1 (7)

Tn = 0.0091(T − 74)− 1 (8)

Pbn presented in Equation (3) is the normalized value of Pb. Pb is calculated as:

Pb =
Pbn + 1
0.000286

+ 126 (9)

Table 2. Weights and biases of the first hidden layer in the ANN structure of the bubble point
pressure model.

i w1i,1 w1i,2 w1i,3 b1i

1 0.0847 3.8463 0.5493 0.7595
2 3.91 −1.1935 4.9371 2.2716
3 −1.2509 2.3835 2.1648 −1.5377
4 0.3323 3.9022 0.3577 −1.27
5 −3.4482 −0.7113 −2.0318 0.3747
6 −4.184 0.6819 3.4924 −0.6621
7 −1.7434 4.3069 −2.8004 −1.7342
8 0.4419 −3.0066 4.0254 −0.8286
9 0.4158 4.5222 −2.392 1.6974

10 −3.9243 −1.6785 −1.0686 −1.4006
11 1.3103 0.1133 −1.5418 −1.4221
12 −2.0139 −0.2613 4.4812 −0.53
13 1.3382 −2.6467 −2.8971 −0.5727
14 3.0649 −3.291 −0.4142 0.0906
15 −2.6736 −3.06 1.1079 0.0082
16 −2.5812 5.0496 −0.5947 −1.4075
17 2.0543 1.3933 −1.2484 1.0663
18 −1.3636 −1.2778 −3.4035 1.2546
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Table 3. Weights and biases of the second hidden layer in the ANN structure of the bubble point pressure model.

j
w2j,i b2j

w3j
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13 i = 14 i = 15 i = 16 i = 17 i = 18

1 −0.410 0.184 0.134 −0.573 −0.403 −0.683 −0.406 −1.883 −2.377 0.335 0.963 0.693 −0.502 0.426 0.631 −0.165 1.085 −0.564 −0.140 2.45
2 1.839 0.385 −0.889 0.058 0.149 −1.337 0.649 0.125 1.038 −0.344 0.513 −1.343 −0.352 −2.096 0.143 −1.614 −0.257 −1.045 −0.043 2.33
3 −0.691 −0.169 −0.392 −0.738 0.966 −0.037 2.469 1.518 −0.477 0.860 0.060 −1.226 −0.331 0.086 0.986 0.814 −1.231 −1.200 0.658 −2.55
4 −0.066 −1.132 0.415 0.910 0.027 −0.677 −0.639 −0.017 −1.124 0.380 −0.161 0.106 1.061 −1.934 0.167 1.766 −1.055 0.291 0.475 3.03
5 −0.871 0.580 −0.018 1.068 0.210 −0.130 0.122 −0.208 0.603 1.078 −0.179 0.406 1.156 −0.458 0.470 −1.116 2.286 1.042 −0.308 −2.45
6 −0.398 0.099 0.129 −0.735 0.309 −0.698 1.262 0.292 0.307 −0.349 −0.255 −0.003 −0.508 −1.289 0.797 0.309 0.956 −2.374 0.030 −1.69
7 2.022 0.363 −0.565 0.045 1.093 0.642 1.615 −0.573 −0.532 −0.361 0.372 0.643 0.274 −0.125 0.750 −2.309 −1.358 1.216 −1.258 1.59
8 0.745 −0.001 −0.369 −0.999 0.947 0.635 −0.097 1.481 −1.005 0.766 0.153 0.541 1.084 −1.943 −0.291 0.116 0.892 −0.271 −0.179 2.88
9 −1.396 2.816 −1.460 −0.517 0.891 −1.169 −1.263 −1.146 0.977 −0.275 0.575 0.896 −0.382 1.573 −1.410 −0.920 0.249 −0.653 −0.376 2.16
10 0.178 0.040 0.676 −0.682 −0.926 0.075 1.437 −1.222 1.177 0.304 −0.626 1.318 0.117 0.112 0.620 1.398 0.775 −0.206 0.032 2.22
11 0.599 1.986 −0.004 1.060 −0.798 −2.162 −1.054 −2.858 −1.155 −0.851 −0.474 0.723 1.148 0.355 1.151 −0.598 0.802 −0.841 0.428 −2.01
12 1.621 1.076 −0.721 0.871 −0.406 −0.070 −0.468 0.738 −1.347 2.547 0.202 0.095 −0.247 −0.356 0.930 −0.132 −1.160 −1.164 −0.336 −2.26
13 0.754 0.041 0.499 −1.609 −0.795 −0.997 0.627 −0.995 0.422 0.316 0.195 −0.564 −0.831 −0.339 1.346 1.092 0.062 0.030 −0.425 −2.49
14 −0.106 2.295 −1.196 1.851 0.387 −1.079 0.522 −0.724 1.553 0.901 0.517 0.671 0.445 1.174 −0.451 −0.530 −0.803 0.275 −0.358 3.01
15 0.413 −0.554 0.719 −0.232 −0.347 −0.208 −0.588 −0.839 −1.993 −0.045 −1.883 0.534 0.749 0.201 −0.239 −0.480 0.826 −1.309 −0.795 −2.04
16 0.619 −0.603 1.597 −0.640 −0.289 −0.909 −0.746 −0.293 −1.093 0.489 −0.850 −1.021 −0.823 0.522 0.175 0.414 1.333 −1.094 0.347 3.26
17 −0.073 −0.903 1.402 −0.143 −1.191 0.156 0.652 −0.068 −1.299 0.760 −0.864 0.733 0.539 0.285 0.904 −1.034 −0.233 0.345 0.205 2.84
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4.2. Gas Solubility Estimation

In this section, gas solubility (Rs) is estimated based on the value of Pb predicted by the proposed
model as well as the three input parameters (T, API, and GG). The optimum values of ANN parameters
to generate the best results in terms of lowest AAPE and highest CC are an ANN with a structure
of 4-15-15-1; the input layer consists of four neurons (the input parameters of oil API reservoir
temperature, gas gravity, and Pb), while both the first and second hidden layers consist of 15 neurons.
Rs is the only output parameter in the output layer. Data were divided into three sets—training (67%),
testing (21%) and validation (12%). The best training function was trainbr and the best transferring
function was logsig.

Figure 5 shows the relative importance of input parameters (GG, oil API (API), reservoir temperature
(T), and predicted bubble point pressure (from the previous step) with solution gas oil ratio (Rs)).
As shown in Figure 5, the bubble point pressure had the highest relative importance with Rs, which is
why it was very challenging to predict Rs without considering Pb as an input parameter. Therefore, GG,
API, T, and predicted Pb were considered as the four inputs for SaDE-ANN to predict Rs.
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Training and testing cross plots of actual and predicted values of Rs, from SaDE-ANN, are shown
in Figure 6. The figure shows that the R2 was 0.99 for both the training and testing data, while the
AAPEs of the training and testing data were 5.89% and 6.54%, respectively. These results confirm the
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Mathematical Model for Gas Solubility

The mathematical model extracted from the optimized SaDE-ANN model to estimate Rs using
Pb, T, API, and GG, with the limitation of each value as shown in Table 1, is introduced by equations
as follows:

Rsn =
N2

∑
j=1

w3jYj + b3 (10)

where Rsn is the normalized Rs (SCF/STB) and Yj is calculated as follows:

Yj =
N1

∑
i=1

w2j,i

1
1 + e− Xi

+ b2j (11)

Xi is calculated as:

Xi =
1

1 + e− (w1i,1
γgn + w1i,2

APIn + w1i,3
Tn + w1i,4

Pbn+b1i
)

(12)

The definitions of N1, N2, i, j, b1i , b2j , b3, w1i , w2j,i , w3j , γgn , APIn, and Tn are similar to those
introduced in Section 4.1. The values of i, b1i , and w1i are listed in Table 4; the values of j, b2j , w2j,i ,
and w3j are listed in Table 5; b3 = 1.2091. Pbn is the normalized bubble point pressure (psi) and is
calculated as follows:

Pbn = 0.00029(Pb− 161.96)− 1 (13)

The value of Rsn from Equation (10) is normalized and can be converted to Rs as follows:

Rs =
Rsn + 1
0.000765

+ 21 (14)

Table 4. Weight and biases of each neuron in the first hidden layer in the ANN structure of the gas
solubility model.

i w1i,1 w1i,2 w1i,3 w1i,4 b1i

1 7.8528 −3.4231 2.4038 −2.2436 1.7801
2 −2.2089 −3.6357 −1.3463 4.094 0.1083
3 1.5981 −3.9961 4.4487 −0.4893 −1.9289
4 −0.3229 2.2407 5.5417 3.2776 0.0307
5 −5.2848 2.7897 3.7404 3.9076 1.3228
6 3.1948 6.484 3.2778 4.2005 2.2259
7 −1.6744 1.3062 2.0996 −4.7358 −1.6276
8 −1.0052 −0.6798 −1.2986 6.0228 3.8066
9 −7.2086 0.9991 3.2067 4.6079 −0.7049

10 −1.9889 3.5852 −1.5909 −4.3559 −1.9949
11 −1.7207 3.2091 −3.3657 6.883 −0.5073
12 −5.5474 0.9029 0.6965 0.6955 1.1485
13 −2.7482 −1.8183 −4.8786 −0.4023 1.0552
14 −6.9512 −4.748 3.7096 −2.0801 −0.5928
15 0.5709 −4.1858 −3.5728 3.9487 1.5681
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Table 5. Weight and biases of each neuron in the second hidden layer of the ANN structure of the bubble point pressure model.

j
w2j,i b2j

w3j
i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13 i = 14 i = 15

1 1.554 2.800 1.085 −0.860 −1.485 −2.396 −0.242 0.840 1.776 1.773 −2.829 0.694 −0.441 −0.082 1.385 −0.922 −5.681
2 −2.932 −0.424 0.263 −0.633 −0.212 −0.844 0.465 4.355 −2.354 1.788 −1.613 1.671 0.636 −0.997 −2.740 −0.434 4.585
3 −0.938 −0.749 −1.130 −1.269 4.179 1.264 1.402 0.393 −2.974 −2.532 1.927 −1.845 0.234 2.833 −1.008 0.310 −3.292
4 −2.711 −1.708 2.747 1.537 −0.662 −1.630 2.046 −1.875 −1.191 1.346 −2.360 0.289 2.147 −0.430 −0.108 2.778 −4.724
5 3.450 2.797 −1.875 0.605 −2.980 −4.805 3.414 −1.952 2.863 −0.029 2.960 1.690 −2.389 −0.267 0.929 0.854 4.937
6 3.137 −2.165 1.345 1.902 −0.208 −1.544 −1.150 −0.256 −1.293 1.383 −4.041 1.017 −0.175 0.102 −1.149 0.683 −2.076
7 1.598 0.386 0.274 1.047 1.528 0.021 0.477 −1.698 −0.732 0.598 −1.437 0.031 0.247 0.940 −2.502 −0.063 4.667
8 3.038 1.812 0.852 −4.579 2.510 1.750 −0.412 −1.840 −0.295 −0.441 −2.573 1.692 −0.174 1.624 1.293 −1.129 3.736
9 1.148 1.240 0.769 2.059 1.937 −1.253 0.274 −2.670 1.178 −0.013 −2.148 −3.262 1.213 1.012 1.594 −0.535 4.452

10 0.166 2.730 −3.771 1.449 −0.412 −0.376 −2.410 0.841 2.582 0.553 2.596 0.003 0.336 −1.986 −2.667 1.420 −4.039
11 −2.558 −2.640 0.543 −2.271 0.328 2.071 −0.171 1.974 −3.259 −1.002 2.292 −0.392 −0.611 1.001 1.955 −0.067 3.891
12 1.815 0.977 0.500 −0.962 −1.080 −1.207 0.502 −3.151 −0.801 −0.441 −0.533 1.825 −0.441 2.414 −1.809 1.262 −4.627
13 −2.361 −3.992 −3.165 −2.139 0.709 1.626 1.510 1.054 0.260 1.670 −0.604 −0.122 1.297 −1.834 −1.540 −1.014 2.243
14 −2.109 0.314 −0.084 −0.826 0.154 0.630 1.856 −0.959 −0.841 0.530 −2.510 0.546 2.185 −1.291 −0.992 −0.712 −3.847
15 0.563 −0.695 0.811 −0.402 1.825 1.529 −2.245 −1.279 −0.432 −0.295 4.792 −1.066 −1.730 −0.036 −0.070 0.922 −2.925
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5. Conclusions

Bubble point pressure (Pb) and gas solubility (Rs) have a significant effect on the accuracy of
modeling fluid flow in porous media. This paper introduced two data-driven correlations to predict
Pb and Rs using reservoir temperature and oil and gas gravities. These empirical correlations were
developed using a self-adaptive artificial neural network (SaDE-ANN). SaDE-ANN is a hybrid ANN
integrated with a modified self-adaptive differential evolution (MSaDE) algorithm. The proposed
correlations by SaDE-ANN were validated using previous experimental data reported in the literature
(760 data points).

The developed empirical correlation for Pb predicted the Pb with a CC of 0.99 and an average
absolute error (AAPE) of 6%. The same results were obtained for Rs, where the new empirical correlation
predicted the Rs with a coefficient of determination (R2) of 0.99 and an AAPE of less than 6%.

The proposed correlations showed the highest prediction accuracy when compared to different
empirical correlations. The proposed method outperformed other previously reported methods, as it
obtained the highest CC of 0.992 and lowest AAPE of 5.42% between measured and predicted values.
The correlations introduced in this paper used reservoir temperature and oil and gas gravities as input
parameters to predict Pb and Rs. Hence, this represents a breakthrough that minimizes the need for the
expensive and time-consuming PVT laboratory experiments commonly used to determine Pb and Rs.
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draft preparation, S.E.; writing—review and editing, M.M.; visualization, A.A.; supervision, S.E.
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Appendix A

The AAPE is the measure of the relative deviation from the experimental data and is defined by:

AAPE =
1
N

N

∑
i=1
|Ei|

where Ei is the relative deviation of an estimated value (Yest) from an experimental value (Yexp);

Ei =
[

Yexp−Yest
Yexp

]
× 100 i = 1, 2, . . . , N

The CC represents the degree of success in reducing the standard deviation by regression analysis,
defined by:

CC =

√√√√1−
∑N

i=1
[
Yexp −Yest

]2
i

∑N
i=1
[
Yexp −Y

]
where:

Y =
1
N

N

∑
i=1

[
Yexp

]
i
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