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Abstract: Regardless of the rapid development of national gas centers around the world, oil price
indexation remains the prevailing pricing process in Continental Europe and the Far East.
The instance of Spain is a genuine case where gas supply conditions may, to some extent, clarify
the slower pace of execution of a traded gas hub in the nation. This article seeks to explain the
persistence of oil-indexed pricing mechanisms, a price model that differs oddly from that of other
major commodities, the price of which is normally discovered on the market. In order to do that,
we examine time-varying volatility to find that since 2013 until 2016, just about 33% of gradual
volatility clustering rooted within oil Brent prices is reflected in Spanish gas prices. In this sense,
our research provides quantitative tools to better understand that market-based approaches such as
spot and medium-term supply alternatives seem to be a key driver for success in transforming gas
markets. Regular updates on the size of the effects observed should facilitate an exact appraisal of the
level of progression of national gas liberalization processes and enhance gas markets transparency,
these issues of extraordinary importance for both policymakers and gas market agents.

Keywords: long-term gas price; oil price; energy policy; volatility clustering; autocorrelation;
volatility modeling

1. Introduction

With network energies traded in open markets, with many vendors and purchasers, prices
are generally determined by free market activity with price itself giving signs to guarantee market
balance. However, as it sometimes happens in traded markets such as electricity, limited supply of
a good, coupled with high demand for that good, may result in a serious mismatch between the
desired supply and demand equilibrium. Moreover, this situation would result in the exclusion of the
good only to those who can afford it. In the case of gas markets and due to the nature of gas trade
typically organized on the basis of regional needs, gas prices are not set everywhere under the same
competitive conditions and network topology limitations may lead to very high volatility of spot prices.
Furthermore, the strong push from governments for liberalization will continue to change the shape of
competition and to fuel the debate about the independence of gas prices in respect of oil prices [1–4].
A good example of this is the process of gas markets deregulation in Continental Europe (in this study
Continental Europe refers to the European area whose core gas supply is based on long-term contracts
mainly from Russia and Norway in the Northern area and from Algeria in the Southern countries like
Spain or Italy. In any case, different from UK and Northwest Europe pricing mechanisms), opening up
scope for the development of mature local gas hubs as well as increasing market integration. In spite of
the progress made and the rapid evolution of national markets, long-term gas contracting remains
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the prevailing price-setting mechanism around the world, except in the US and Northwest Europe
(Belgium, Denmark, France, Germany, Ireland, Luxembourg, Netherlands and the UK).

In this context, oil-gas indexation continues to play a crucial role given the fact that it is mainly
the part of demand not covered in long-term contracts for which prices are normally discovered on the
market according to supply and demand interaction. Indeed, the principle behind oil-gas indexation is
well-rooted in the gas market with standards for valuing and pricing gas in Europe being established in
the early 1960s when gas was first introduced as a substitute fuel in the Netherlands. The fact that gas
market fundamentals have significantly changed over the years may have led to inappropriate pricing
structures that have restricted gas markets development, thus resulting in additional exposure to price
risk for the companies.

The transition to market-oriented pricing has developed at different speeds. The International Gas
Union (IGU) statistics [5] confirm that although the share of oil-indexed imports in Northwest Europe
has declined significantly in the past years, i.e., to 8% in 2015 from 72% in 2005, there has been much less
variation in the Mediterranean countries (Greece, Italy, Portugal, Spain and Turkey.) where oil-based
gas imports only declined to around 63% over the same period. Similarly, there have been only minor
changes in the Asia Pacific (Japan, Korea, Taiwan, Singapore, Thailand, Malaysia, Philippines and
Australia.) and oil-indexed gas supplies have remained stable since 2005 at around 60% of the total.
It has to be noted that the transition to hub-based pricing in Asia overall is even less evident with a
share of oil-indexed gas imports increasing from around 35% in 2005 to 59% in 2015 in India and China.

In this environment of different pricing dynamics, there are compelling reasons to rely on Spain’s
gas import prices as an ideal reference to assess relationships between crude oil and long-term
gas globally. Firstly, the characteristics of Spanish gas traders’ portfolio with a majority of long-term
contracts indexed to oil and oil products similarly to Asia Pacific natural gas importers [1,2,5]. Secondly,
since Spain imports most of the gas it consumes, a key factor that also influences gas prices in Spain
is the importance of Liquefied Natural Gas (LNG) in gas procurement. In this sense, the ability to
arbitrate in the global LNG market, makes the Spanish gas importer dynamically interconnected with
other LNG markets, this influence resulting in higher exposure. Thirdly, the fact that Spain is the
largest LNG importer in Europe (see Figure 1), reveals a similar gas trade pattern to other large LNG
importers, especially in Asia. In this respect, it is important to note that the percentage of LNG over
total gas imported in Asia Pacific, i.e., about 49%, is very close to that of Spain, i.e., about 42% (2015).
In this regard, regulatory provisions to promote competition are more advanced than in many other
countries and Spain has access to diverse, competing sources of gas. From a corporate perspective,
in marked contrast to most of Continental Europe, there are credible competitors to the incumbent
Gas Natural Fenosa, now Naturgy (such as Endesa, Iberdrola, BP, Shell and CEPSA), partly owing to
the competitive long-term contracting practices of Spanish gas operators. It should be mentioned,
however, that legacy from contract terms embedded in those long-term contracts such as take-or-pay
(ToP) (a ToP obligation entails an unconditional obligation for payment, which enables the purchaser to
get up to a certain threshold quantity of gas) clauses, may limit market liberalization as ToP obligations
not only create problems in implementing third party access to transport infrastructures, but may
introduce incentives for firms to avoid competition for end-users.

Within this context, further research into the current relationship between oil and long-term gas
contract prices seems especially desirable at times when stable oil-gas relative pricing is under pressure
in Asia and Europe [2,6]. As a matter of fact although both gas and oil prices should not deviate from
pursuing common paths based on the oil-indexation hypothesis, the hypothesis is regularly challenged
as gas markets develop into more liquid trading environments. As can be inferred, gaining more
in-depth knowledge about price relationships between the two energy sources will definitely improve
the transparency of natural gas markets dynamics and at the same time enhance short-term price
forecasting and risk management, subjects of much interest for regulators and market players. In this
sense and in spite of the large amount of work analysing volatility of crude oil prices solely [7–11],
work related to long-term gas prices fluctuations and potential for an appropriate assessment of
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liberalization measures in gas markets is scarcer. This paper attempts to fill this gap by answering
three key questions: First, whether long-term gas prices and crude oil volatility stylized facts behave
similarly using a comprehensive GARCH framework. Secondly, supported by the fact that oil prices
are the determining factor behind long-term gas prices, to quantify the degree of variability exercised
by oil prices that are reflected in the gas price, using the proven methodology in the field of finance.
Thirdly, to advance in an analytical manner the degree of success in transforming national gas markets
following broader liberalization efforts by the EU Commission. In line with this and to the best of our
knowledge, this paper is the first that addresses a systematic review of long-term gas prices volatility
in a quantitative manner and seeks to make it directly applicable to energy policy.
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Although a broad range of econometric methods have been used to characterize energy
commodity variables and related features, those methods can be generally grouped into three
areas, mainly analysis of fundamental value (we refer here by fundamental analysis of a variable
to methodology intended to measure its intrinsic value, by examining mainly quantitative factors),
market dynamics and the business cycle. In this sense, to achieve our goals, strong focus has been given
to econometric tools in the first and second areas described. With regards to fundamental analysis we
concentrate on multivariate GARCH models whereas to investigate into gas and oil market dynamics,
the analysing volatility aspects seems most relevant to our aspirations (aside from volatility features,
other commodity prices characteristics such as spillover effects, cross-asset linkages, common risk
factors or even momentum features may be used for this purpose providing a different approach). In
this sense, our approach is not limited to a single framework and therefore it benefits from qualified
comparability of results.

Thus, this paper makes three main contributions: (i) it measures the extent to which crude oil
volatility is displayed in long-term gas prices to provide reference information for the countries and
regions where a majority of long-term gas contracts are oil-indexed. In this sense we anticipate that in
spite of long-tern similarities between natural gas and oil prices evolution, medium-term interaction
will be determined by volatility parametrization over the reference period 2002–2016; (ii) it unravels
the nature of long-term gas supply effects facilitating a more precise assessment of the degree of
liberalization of national gas pricing structures away from oil price indexation and (iii) it improves
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substantially clarity and understanding regarding the assessment of the level of transparency and
competition, being these matters of great interest to both policymakers and gas market agents.

Overall, results from our research will provide a sound platform to improve understanding and at
the same time explaining the development of traditional gas importing markets towards liberalization,
questions followed by great interest by regulators and traders.

2. Results

2.1. Volatility Clustering and Nonlinear Autocorrelation

As discussed before and based on the impressive amount of information obtained over the
last decade from financial markets and global commodities, researchers tend to agree on a few but
extremely representative set of stylized features, also applicable to crude oil markets. Interest on
such characteristics like heavy tails in asset return distributions, persistence, volatility clustering or
autocorrelation of squared oil returns are not purely academic but also associated with processes
leading to improve forecasting uncertainty. It is worth noting that two of these features are generally
found to be more relevant than others as regards to the characterization of volatility conditions. Firstly,
shocks to the variance of returns and changes in conditional volatility that generally persist rather than
die down suggesting inherited persistence effects. Secondly, and in addition to persistence, the fact
that large fluctuations seem to cluster together, reveals itself as one of the underlying elements which
helps to begin to understand how volatility is affected by past realizations.

2.2. The Model

Empirical findings in the literature and experience in long-term gas contracting overwhelmingly
support the fact that oil-driven stylized facts are also present in gas time series. Some of them appear to
have more direct implications, i.e., skewness, kurtosis, and heavy-tailed distributions but others are
more complex and difficult to trace like those affecting volatility of returns. In this section, we aim to
characterize a sound volatility modelling tool for gas returns able to capture the above stylized facts
prior to analyzing differences and similarities with other GARCH-type analysis of oil prices dynamics.
It should be noted at this point that heteroskedastic models are of special relevance for volatility
measuring not only because of the many applications in the econometric and financial domains but
also because of the efficiency in parameter estimation. As it is described below, judgments about the
appropriateness of GARCH-type models indicate a high degree of accuracy regarding the quality of
forecasting. Nonetheless, the share nature of volatility that needs to be measured over a period,
incorporates a certain degree of difficulty when comparing the volatility given by the models with the
true volatility against which forecasting performance is measured.

There is a wide variety of studies addressing the performance of crude oil volatility but there is
only a limited investigation into long-term gas contracts prices characteristics. In the literature of crude
oil modelling, the Generalized Autoregressive Conditional Heteroscedastic (GARCH) and Stochastic
Volatility (SV) models have been widely applied to improve understanding of the stochastic process
beneath crude oil prices [8–10,12–18]. Moreover, the autoregressive VAR, TVAR, VEC, VEC-GARCH,
and DCC-GARCH framework has been widely applied to investigate spillover effects [4,19,20].
In addition, other specific modelling approaches like Markov regime switching (MRS) model, support
vector machine (SVM), wavelet technique and a variety of hybrid methods combining the methods
mentioned before have also been used [21–26]. Possibly and in a category of its own the use of
computational insight systems to examine the complexity embedded in oil prices has increased steadily
in recent years [21,27–30]. These computational intelligence systems incorporate artificial neural
network, genetic networks, expert systems or hybrid intelligent systems. Finally, limited research
related to specific applications is also available, i.e., dynamic detection of fluctuation patterns [31]
or hybrid models incorporating financial variables [32]. In summary, while crude oil markets
form a complex system including non-linearities, multi-factor dimensions and are subject to the
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impact of structural breaks, forecasting methods are constantly emerging, and performance has been
continuously improving.

The common strand in GARCH-type representations allowing a finite, time-varying second
moment distribution of returns, addresses directly volatility clustering in the data and mitigates the
problem of fat tails. Within this field, it is difficult, however, to identify a model that consistently
dominates the other since model superiority is typically assessed with regard to both the flexibility in
capturing the stylized facts in which we concentrate, but also as regards to its ability to forecast [9].
There are ample studies addressing the accuracy of crude oil volatility modeling. Reference [7] for
instance finds that the GJR model fits well for heating oil and natural gas volatilities, whereas the
standard GARCH model fits better for crude oil and unleaded gasoline volatilities. Narayan and
Narayan [12] favor the use of the EGARCH model, whereas Kang and Yoon [8] conclude that the
CGARCH and FIGARCH models are better to capture persistence in the volatility of crude oil prices.
In contrast with this, Mohammadi and Su [13] compared the forecasting accuracy of four GARCH
models to suggest that conditional volatility of oil returns dissipate at an exponential rate as in the
GARCH models rather than at a slow hyperbolic rate implied by the FIGARCH model. Wei et al. [14]
also conclude that none of the GARCH-class models, including the FIGARCH one, outperforms the
others in all situations although non-linear models like EGARCH or GJR-GARCH exhibit greater
forecasting accuracy. More recently, Wang et al. [21] reveal that the multivariate GARCH model has
better performance than the univariate GARCH model overall.

Modelling Spanish gas (SG) returns volatility is performed in two steps. The first step involves
determining the specification of the GARCH (p, q) model for conditional volatility and its diagnostic
tests. Secondly, we analyze asymmetric effects through extended GARCH models. As regards the
first point the evidence gathered in the empirical literature on oil price volatility modeling tends to
support the view that GARCH models seem to work well in most applied situations in spite that there
is potential for improvement through alternative methods [17]. However, to model volatility, and
from experience in oil markets (evidence has been found for oil returns that ‘bad news’ have a greater
capacity to generate high volatility than ‘good news’), it is necessary to test the leverage effect of SG
returns. In line with this, three different volatility model specifications—GARCH, EGARCH, and
GJR-GARCH—are considered in the research.

Table 1. Model selection criteria.

Model Number of Parameters L AIC BIC

G11 4 301.647 −595.294 −583.415
EG11 5 300.629 −591.258 −576.409
GJR11 5 301.652 −593.305 −578.456

G21 5 301.647 −593.294 −578.445
EG21 6 304.176 −596.353 −578.534
GJR21 6 301.652 −591.305 −573.486

G33 8 303.121 −590.242 −566.483
EG33 11 304.790 −587.581 −554.913
GJR33 11 303.291 −584.583 −551.915

G23 7 303.036 −592.072 −571.284
EG23 10 304.669 −589.337 −559.639
GJR23 10 303.420 −586.840 −557.142

G31 6 301.647 −591.294 −573.475
EG31 7 304.177 −594.354 −573.565
GJR31 7 301.652 −589.305 −568.516

G32 7 303.073 −592.146 −571.357
EG32 9 304.604 −591.209 −564.480
GJR32 9 303.282 −588.564 −561.836
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Following standard practice in the literature, model estimation is based on the maximum-likelihood
principle once a distribution for the innovations, εt has been specified. Although we proceed from
the assumption that the innovations are Gaussian, we also verify that a t-distribution does not
characterize the distribution of the returns better than the Gaussian distribution regarding volatility
behavior. In model selection, three indicators, i.e., the log-likelihood, the Akaike information (AIC)
and the Bayesian information criteria (BIC) are used to evaluate the most appropriate models over
alternative GARCH-type (p, q) models by varying p and q parameters from 0 to 3. As can be seen
in Table 1, EGARCH shows superior results (largest log-likelihood and smallest AIC) to the rest.
However, the GARCH (1, 1) was superior in BIC as this criterion imposes additional penalties for
additional estimated parameters. This outcome is acceptable since EGARCH provides the richest
range of parametrization to capture the stylized facts such as volatility clustering, leverage effect and
long-memory in the volatility. We select within each class EGARCH (2, 1) as it has lower AIC, GARCH
(1, 1) and GJR-GARCH (1, 1) for detailed diagnostics.

Table 2 presents the in-sample estimation results for the different volatility models discussed.
The lower part of Table 2 shows some of the results of the diagnostic test on standardized residuals,
i.e., a Q test on squared standardized residuals, an ARCH test, and a Jarque–Bera test. The results
reported for Ljung-Box Q and the Engle’s Arch tests clearly confirm that the three models reproduce
ARCH effects in an appropriate manner revealing the absence of significant autocorrelation of εt2 at
the 95% confidence level.

Table 2. Estimation results for different volatility models

SG Returns

GARCH (1,1) EGARCH (2,1) GJR-GARCH (1,1)

Coefficients Error Statistic Coefficients Error Statistic Coefficients Error Statistic

C 0.007 0.003 1.954 0.006 0.003 2.110 0.007 0.003 1.958
K 0.001 0.000 1.630 −1.229 0.372 −3.305 0.001 0.000 1.526

GARCH(1) 0.531 0.186 2.853 1.507 0.138 10.952 0.536 0.196 2.737
GARCH(2) −0.705 0.160 −4.395
ARCH (1) 0.248 0.092 2.688 0.253 0.089 2.848 0.259 0.125 2.080
Leverage 1 0.020 0.049 0.398 −0.019 0.159 −0.118

Log(L) 301.647 304.176 301.652

Ljung-Box Q-test p-value Qstat Critical p-value Qstat Critical p-value Qstat Critical
p-value[2]/Q[2]/Critical 0.315 2.312 5.992 0.738 0.609 5.992 0.311 2.336 5.992
p-value[5]/Q[5]/Critical 0.357 5.513 11.071 0.664 3.234 11.071 0.336 5.706 11.071
p-value[10]/Q[10]/Critical 0.116 15.453 18.307 0.309 11.652 18.307 0.105 15.827 18.307
p-value[15]/Q[15]/Critical 0.197 19.377 24.996 0.405 15.665 24.996 0.183 19.713 24.996
p-value[20]/Q[20]/Critical 0.341 22.000 31.410 0.597 17.860 31.410 0.320 22.393 31.410

h Engle´s Arch test 0 0 0
p-value/stat/critical

Engle´s Arch 0.528 0.398 3.842 0.659 0.195 3.842 0.511 0.570 3.842

Jarque-Bera
Test/p-value/stat 0 0.221 2.553 0 0.500 0.532 0 0.208 2.652

Concluding results from the detailed comparison of the three selected models lead us to favor the
EGARCH (2, 1) model that not only shows the largest log-likelihood and the lowest AIC in spite of
being penalized on an additional number of parameters but also incorporates some attractive features.
First, it does not impose restrictions on any model parameters. Second, it includes a provision for
oscillatory behavior in the conditional variance and at the same time indicating whether shocks to the
variance are persistent or not. Third, the EGARCH model allows evaluation of asymmetric volatility
effects. Assuming εt = σtzt and zt iid N(0, 1) the selected EGARCH (2, 1) model reads as follows:

log σ2
t = −1.229 + 1.507 log σ2

t−1 − 0.705 log σ2
t−2 + 0.253

[
εt−1
σt−1
− E

{
εt−1
σt−1

}]
+ 0.020

(
εt−1
σt−1

)
(1)

It is interesting to note that the resulting EGARCH model could slightly improve the widely
used GARCH specification when modeling oil returns as evidenced by studies favoring nonlinear
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GARCH-class models [12,14]. More importantly and as seen in Table 2 estimates for ARCH and
GARCH parameters are statistically significant especially for the EGARCH (2, 1) model what leads
us to conclude that this specification is the more robust. Analysing further resulting parameters,
we have the following results regarding two main features of price volatility, namely asymmetry, and
persistence of shocks.

(1) ARCH effects. The model shows a positive and significant ARCH parameter with a value of 0.253.
This confirms the fact that larger shocks increase SG returns volatility, regardless of their signs,
to a greater extent than smaller shocks. The magnitude of the effect is measured by the term[

εt−1
σt−1
− E

{
εt−1
σt−1

}]
determining the size of the new innovation into the series.

(2) GARCH effects. These are determined by GARCH coefficients commonly named βi, i.e., those
determining the influence of the past conditional volatilities on the current conditional variance.
In our case since |Σ βi| < 1 (|β|< 1 shows that the necessary stationary condition is met and
establishes the conditions for covariance stationarity of the EGARCH model under particular
specifications of the error distribution.) and the EGARCH model is always stationary (if εt has
a Normal Distribution). Moreover, all ARCH and GARCH parameters are highly significant
whereas the leverage coefficient is not. Persistence (determined by |Σ βi|) is lower than one
reflecting no restrictions in the second moment although its value of 0.802 is not far from the
nonstationarity boundary allowed by EGARCH models. Results of the Ljung-Box and ARCH tests
on returns and residuals square respectively, using standardized innovations of the estimated
model, indicate acceptance (h = 0 with highly significant p-values) of their respective null
hypotheses and confirm the validity of the selected EGARCH model. Based on the above
mentioned, it is reasonable to state that volatility of SG returns is genuinely persistent, with the
estimated |Σ βi|) parameter controlling the decay of the autocorrelation function. Another
parameter widely used to measure volatility persistence is the half-life of a volatility shock
(HLS), i.e., the time it takes for the volatility to move halfway through its unconditional variance
after the shock is perceived. HLS can be measured as: HLS = Ln 0.5/Ln β [33]. In our case,
and to be able to compare the results with existing literature on oil price volatility persistence,
we consider the β value from our EGARCH (1, 1) specification of 0.781 implying HLS of about
2.8 months or approximately 85 days. Interestingly, the evidence found for high volatility
persistence in the Brent market of HLS about 87 days [14], 95 days [12] or even 128 days [13]
using also EGARCH (1, 1) specifications for Brent returns reflects the high level of persistence
inherited by long-term gas prices from Brent. Moreover, it can be observed that in spite of the
fact that volatility persistence is inherently unobservable, it is transmitted effectively through the
oil-indexation mechanism.

(3) Asymmetric leverage. Reported results for the asymmetric leverage coefficients show consistent
effects: the EGARCH coefficient is positive in agreement with negative coefficients found in all
the GJR-GARCH models analyzed, this indicating that positive shocks would increase volatility
more than negative shocks. However, none of the leverage parameters in the variance equation
are significant at either 5% or 10% levels indicating that evidence of asymmetric response to good
and bad news appears mixed in line with results found in literature for Brent returns [13,34,35]
and in spite of asymmetry coefficient found significant in other research also using EGARCH
models [14]. The potential for positive leverage effects is somehow unexpected as it is in
contradiction with negative asymmetric leverage effects sometimes reported for the Brent
market, i.e., downward movements (shocks) that raise oil prices are more often followed by
greater volatilities than upward movements of the same magnitude that reduce the oil price [12].
In our case, the small value of the leverage coefficients and the fact that parameters are always
non-significant would lead to rejecting the hypothesis of asymmetry effects on conditional
volatility overall. These results would reinforce the idea of mixed effects found in the literature
for asymmetric effects in oil prices.
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2.3. Quantitative Evaluation of Volatility Clustering

Among all the properties analyzed before, the phenomenon of volatility clustering has intrigued
many researchers and oriented in a major way the development of stochastic models in financial
forecasting and derivatives pricing. Observation of this feature in financial time series has led primarily
to the use of GARCH models as in essence these models are able to reflect the fact that fluctuations
in the current period will impact on expected fluctuations in the future. However, quantification of
volatility clustering effects using autoregressive heteroskedastic models is not generally sufficient since
this property is not intrinsically linked to a GARCH specification and other methodologies such as the
analysis of autocorrelation of absolute returns [36], the copula approach [37] or even factor models
for log volatilities [38] have been developed. Following this line of work, not necessarily linked to
ARCH-type modelling and also specific research based on rolling analysis of financial time series
(in our case we use rolling analysis to assess scale of volatility clustering effects a methodology that
reveals itself to be ideal for the proposed analysis within selected border zones) [39–42] we introduce an
index (Rn) as a quantitative measure of volatility clustering that can be used to compare the degree of
volatility clustering along SG and Brent time series. This index is calculated over a rolling window of
reference to obtain valid estimates of volatility clustering stability. The process is simple: we begin
by putting a window on the first month of the whole series and count the number of months over a
p% threshold fluctuation within an n-month window. We then move on to the second month of the
whole series and again count the number of months over the p% threshold fluctuations within this
next n-month window. We repeat the same procedure until we finish scanning through the whole-time
series. Finally, we calculate the ratio Rn, mathematically defined as Rn = σe/σG, where σe and σG are
the standard deviation of the number of days of the largest (1 − p)% fluctuations within an n-month
period for the empirical and for the simulated Gaussian datasets respectively. The larger the ratio, the
larger the degree of clustering is. As a preliminary step to selecting the best size of the rolling window,
a detailed analysis reveals that window size of 20 months delivers maximum visibility of clustering
effects over a wider range of p% largest fluctuations. Moreover, for different time periods considered,
the relationship between crude oil and gas prices established by the Rn index is a unique parameter
connecting crude oil and gas price volatility clustering characteristics.

Figure 2 shows the different p% threshold options (expressed as a rate over one), how standard
deviation (SD) and Rn vary from one period to another. Two different periods to be covered by our
investigation are identified. The first period, i.e., 2002–2013 (top row) mainly characterized by the
credit crunch in 2008 and the second period extended until 2016 (bottom row) to include the collapse of
oil prices since late 2014 and the current oversupply situation.

It is apparent from Figure 2 that for SG returns p = 20% shows the highest Rn values (implying
maximum clustering visibility) whereas Brent returns show maximum Rn values at about p = 40% for
both periods. Certainly, most relevant to our investigation is the fact that when taking into account
the 10% largest fluctuations (p = 90%), Rn values for Brent returns are consistently higher than for
SG returns, indicating that SG prices do not reflect entirely Brent volatility clustering dimension,
as it was to be expected from effects from other factors embedded into gas prices.

Examining the results more closely, we can evaluate how clusters of volatility evolve incrementally.
A simple calculation shows that the increase in the clustering index Rn between the first and the second
study periods is about 19% for gas whereas for Brent is about 58%, always considering the p = 90%
threshold. Consequently, it can be said that the amount of volatility effectively reflected by SG gas is
only about a 33% of the total, thus resulting in the diminished influence of oil price indexations since
2013 until 2016.
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In order to expand our investigation to effectively advance patterns of behavior for clustering
in both series, we simply compare results obtained for p = 20% (SG) and p = 40% (Brent), with those
obtained with a similar random Gaussian series (see the left chart in Figure 3).
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Figure 3. Clustering distribution (left) and SG vs. Brent frequency (right).

As it can be seen, both SG returns and Brent returns (solid) display a broader spread of occurrence
over the threshold than corresponding normally distributed returns (dash) implying an Rn higher than
one in each case.

Figure 3 (right) shows that when plotting Brent vs. SG returns clustering behavior, SG clustering
pattern although rather similar, seems to be lagging behind crude oil within a band of 3 to 6 months
(solid circle) as it would be expected from the lagging effects in the gas price formula. Interestingly,
the scale of volatility clustering variation is very similar on average in spite of sporadic opposite effects
(dash circle), possibly reflecting balancing of traders’ portfolios on an occasional basis.

Figure 4 below represents standard absolute crude oil and SG returns series against clustering
dimension, i.e., number of peaks over 40% and 20% threshold respectively.
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As it can be seen, bumps shaping volatility clustering from the analysis (dash) tend to be aligned
with heights and valleys in returns (solid) this being an indication that volatility clustering is intimately
related with largest and smallest changes over the time series. Moreover, a manifestation of maximum
volatility clustering effects coincides with a sharp decrease in returns in 2008.

2.4. Qualitative Assessment of Oil-Indexed Effects into Gas Market Dynamics

Although expectations for gas markets in Europe to replace oil indexation with liquid traded
benchmarks have been high over the last decades, these expectations very much inspired by the
success of United Kingdom gas market developments, replacement of the traditional long-term
oil-indexed bilateral contracts by a gas hub-based model has been limited. In this regard, the existing
literature on market liberalization development has been prescriptive, focusing on policy recommendations
but paying less attention to the main drivers that have contributed to the inertia brought about by
the existing contractual set-up in European imports. Moreover, while the oil-indexation model has
been criticized since the 1990’s, the causes for their persistence are only passingly explained as the
interests of companies are rather ignored [43]. Moreover, whereas analytical research to unveil gas
pricing evolution is scarce, it is noticed that the UK’s gas pricing arrangements differ significantly from
those of Continental Europe [44]. The legislator, the EU Commission although having successfully
provided open access for third parties to monopolistic gas infrastructure in most of the EU nations,
remains limited in regard to policies and directives related with gas sourcing issues, as this would
interfere with legacy gas supply agreements well into the 2020s, and in some cases the 2030s. The fact
that some of the key producers like Gazprom, Sonatrach or other several LNG exporting countries,
prefer long-term bilateral contracting results in oil-indexation playing still a very relevant role in
the future. Last but not least, in spite of the fact that upstream producers are forced to increasingly
incorporate gas hub price elements in their long-term contracts price indexation formulas, they have
an incentive also to actively trade on hubs in the hope of influencing price formation as this affects
their bilateral long-term contracts [45]. In this market environment, exploring the resilience of crude
oil prices to changes in regional gas markets in a dynamic manner is very relevant. The volatility
clustering decomposition method provides an analytical basis necessary to support further evidence
about the contribution of crude oil prices to regional natural gas price returns. Although we will not
discuss the economic mechanisms which have been proposed to explain the origin of this volatility
clustering, the assessment of the results of the previous sections sheds light on certain areas of interest:
Firstly, according to the values of the Rn index, which is the component that measures the resulting
fraction in the natural gas price returns explained by crude oil returns, the contribution of Brent price
volatility to the SG price returns has decreased since 2013 until 2016. This could be an indication that
gas supply contracting strategies of Spanish traders may have evolved towards a more spot and
short-term focus as contract prices have fallen due to upcoming oversupply over the same period.
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Figure 5 illustrates how since late 2012 while oil prices decrease, gas prices typically linked to oil
or oil products follow suit.

Secondly, the influence of open market references such as Henry Hub into Europe continues to be
very limited and the North American shale revolution has had little impact even on NBP prices [46,47].
The fact that most of the integrated gas suppliers would still be eager to retain commodity price risk and
upside in line with traditional business models, is very much at the heart of this results. Furthermore,
and although between 2011 and 2014, many LNG buyers have wanted to secure some Henry Hub
indexation to diversify exposure to oil, new projects fostering more Henry Hub indexation feeding into
Continental Europe, pricing arrangements may be constrained (pricing terms to be offered but also the
uncertain timing that new volumes face are relevant in that respect). Our research contributes, to better
understand, in this respect that market-based factors such as LNG spot and medium-term supply
alternatives are key drivers for the diminished influence of oil-indexed structures since 2013 and
until 2016. Thirdly, in regard to volatility patterns analysis, Figure 3 illustrates how oil and gas share
some similar characteristics and especially how gas prices reveal very clearly the lagging effects in
volatility clustering resulting from the lagging effects in the oil-indexed gas price formula. As discussed
previously, this analysis of clustering patterns reveals that sporadically Spanish traders are able to
balance their portfolios through traded hub supply with volatility clustering patterns being disrupted
when compared with oil prices. In this regard, our methodology allows for an in-depth diagnosis of the
evolution of gas portfolios in Spain showing the extent to which the use of market-based approaches
has resulted in significant effects away from oil-indexation influence.

It has to be noted that results from the volatility clustering analysis shown above are difficult to
compare with previous studies given the newly applied methodology in our research. However,
as the comments above show, quantification of volatility clustering effects from oil prices into gas
prices opens an interesting perspective to better understand timely effects of oil prices relative to other
variables in the equation.

3. Discussion

In this paper, we investigate into the intrinsic relationship between oil prices and long-term gas
contract prices using a novel approach to provide appropriate information and quantify the level of
influence reached by oil prices into gas prices. Consequently, we provide a tool to facilitate a sound
understanding of gas hub expansion and underlying gas market implications.
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In the first place, we analyze stylized facts of long-term gas prices characterizing the model
that best fit our reality to conclude on the EGARCH (2, 1) class as the optimum fit. As a result,
we find conditional volatility of gas prices to be modestly persistent, with a volatility half-life of
about 85 days against evidence found for higher volatility persistence in the Brent market up to
125 days. These results show that when comparing persistence of SG returns to that of oil returns,
this extensively studied in the last decades, we note that although gas returns persistence remains at
the lower end of the spectrum, it still reflects a high level of persistence overall. Moreover, the legacy of
Brent oil is clearly observed in gas prices in spite of the fact that volatility persistence is inherently
unobservable. Supported by modeling results, we propose a novel approach to quantify volatility
clustering characteristics of crude oil prices against those of long-term gas prices. In order to measure
the extent of the impact, we introduce an index, i.e., Rn, which allows to evaluate and compare
volatility clustering effects incrementally over a rolling window through the sample. In the light of
these results, it can be clearly seen that patterns of gas price clustering relative to crude oil prices is not
necessarily identical and in fact there is diminished influence of oil price indexations since 2013 until
2016. This shows that Spanish gas prices do not reflect entirely Brent volatility clustering dimension,
as it was to be expected from effects from other factors embedded into gas prices. Finally, we found
that the analysis of gas volatility clustering dynamics since 2002 versus gas market conditions over the
period, does also support the fact that sporadic supplies, being integrated into the portfolio of Spanish
traders on an opportunistic basis, are those leading to disrupted patterns from those of oil prices.

Results from our investigation have significant implications for economic analysis and
policy-making decisions. Broadly speaking, the novel analysis performed provides a quantitative
benchmark to assess oil price influence on gas price structures and in turn, it reveals the degree of
penetration of other price mechanisms rather than oil-indexed in an objective manner. In this sense,
our research provides quantitative tools to better understand that market-based approaches such
as spot and medium-term supply alternatives seem to be a key driver for success in transforming
gas markets following a broader privatization and liberalization paradigm. Furthermore, and in the
absence of similar research done in the past, it is expected that the new perspective that is opening up
within this framework will motivate new research to expand the scope of investigation.

Given the importance of oil-indexed contract structures in understanding the degree of
penetration of liquid hub pricing, regular updates on the size of the effects observed should facilitate
a precise assessment of the degree of liberalization of national gas markets and improve the level of
transparency, these matters of great interest to both policymakers and gas market agents. Finally,
it can be suggested that the traditional well-diversified portfolio of natural gas imports in Spain needs to
be maintained in order to reduce the excessive risk brought by the shock of crude oil price fluctuations.

4. Material and Methods

Many empirical studies have investigated on the long-term relationship between natural gas and
oil prices, mostly in the US and the UK, by large the most liquid markets worldwide and therefore
showing a less evident connection than gas markets in Continental Europe or Japan.

Special attention has been devoted in the past to the degree of integration between natural gas
and oil markets with a focus on whether a separation between the two types of prices was [48,49].
In the US, research has found that oil and gas series are generally cointegrated with strong evidence
for a regime-switching connection between natural gas and oil price [50]. More recently [51,52] deal
very accurately with the cointegrating relationship between natural gas and crude oil to find further
evidence that both prices do not permanently ‘decouple’ but rather experience a temporary shift
in regimes but also that the so called shale gas revolution has affected the relationship across both
variables although it is not possible to assess whether or not a new long-run relationship between oil
and gas has been established.
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In the UK, studies like [3] indicate that the UK energy market is highly integrated with oil prices
leading gas prices and that UK gas prices tend to decouple during fall and early winter, when they
increase relative to oil consistent with seasonal demand for natural gas creating gas-specific pricing.
Moreover, ref [53] show that European spot markets do also follow the same determination process as
in the UK. Interestingly, [4] using panel cointegration analysis conclude that oil price volatility has a
negative impact on gas price. The shock impact is weak in North America, lags in Europe and is most
significant in Asia. In addition, they find that the response of natural gas import prices to increases and
decreases in international crude oil prices shows an asymmetrical mechanism, of which the decreasing
impact is relatively stronger. The hypothesis that Brent oil prices play a leading role in European and
Japanese gas price fluctuations is reiterated in research from [19] using a VEC-MGARCH approach.
As a very relevant finding to this investigation, they confirm that volatility in the oil market spillovers
onto natural gas but not backward, this applies to both the US and European energy markets.

It has to be noted that in recent years, the nature of the non-linear relationships between crude oil
prices and regional natural gas prices has led to increased interest in multi-scale modeling approaches
interconnecting several gas markets simultaneously. In this regard, empirical mode decomposition
techniques (EMD) are increasingly being used to capture the different fluctuation features of the
original series at different scales. Using EMD and cross-correlation method, [54] confirm once more
that oil prices play the leading role in affecting Asian and European natural gas prices, having advance
effects of one to three months and one to six months, respectively. Interestingly, [46] using EMD and
the VAR model unveil that the effects of oil price shocks on the European gas market have become
stronger since the shale gas revolution.

In view of this evidence, the first step toward understanding the cause behind crude oil effects
seems most relevant to our case. Not surprisingly, and since oil is one of the most important drivers
in the economy, with an intriguing connection with other factors like inflation, stocks, bonds and
economic growth, the amount of research on the relationship between oil price volatility and other
aspects has been fluent and especially intense over the last few years in fields like macroeconomy
and exchange rates [55–60] or stock markets [61–63]. In a category of its own, a fewer number of
studies approach crude oil price and returns in relation to other commodities also including natural
gas [64–69]. Finally, and as for other traded commodities, a highly sophisticated category of research is
available on both volatility modelling and forecasting evaluation [8–15,21,70–73], both perhaps the
most relevant areas for our research.

It becomes especially important in the context of this study, the concept of persistence and the
notion of memory properties of time series, i.e., to what extent the effect of an infinitesimally small
shock in the price series will be influencing the future predictions for a long time. Although persistence
on the mean has been investigated in depth for oil prices series [74] the existing literature is far from
a consensus on its unit root properties in spite of the fact that generic tests are mostly unable to
reject non-stationarity of the crude oil prices meaning that oil prices are consistent with there being a
unit root.

Of all the factors involved in determining the term structure of crude oil prices, the effects of
structural breaks is the most challenging. According to [16,75], the inclusion of information regarding
structural changes reduces volatility persistence and improves the understanding of volatility
transmission in crude oil markets.
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Appendix A

ARCH Models

ARCH models develop a theoretical framework to simulate variance clustering in the residuals of
a stochastic variable implying nonlinear dependence among the squared errors of the first moment
model. A generic ARCH model [76] follows a process as below:

at = σtεt and σt
2 = α0 + α1 a2

t−1 + . . . αm a2
t−m (A1)

where σt
2 = E

(
at

2
∣∣Ft−1

)
= Var(at |Ft−1) = Var(Yt |Ft−1). Assuming et = at

2 − σt
2,

Equation (A2) can also be written as an AR (m) model as below:

at
2 = α0 + α1 a2

t−1 + . . . αm a2
t−m + et (A2)

where et is a white noise process.

GARCH Models

Bollerslev [68] expands on [77] original work by allowing the conditional variance to follow an
ARMA process. A GARCH (r, m) model can be written as:

at = σtεt and σt
2 = α0 + α1 a2

t−1 + . . . αm a2
t−m + β1 σ2

t−1 + . . . βr σ2
t−r (A3)

where α0 > 0, αi ≥ 0, β j ≥ 0 and |Σ αi + β j| < 1.
The latter constraint on αi + β j ensures that the unconditional variance of at is finite, even though

its conditional variance evolves over time.

ASYMMETRIC GARCH Models

A major assumption embedded into ARCH/GARCH modeling is that positive and negative
shocks have the same effect on volatility. In practice, the price of stochastic time series reacts
differently to lower or higher impulses causing what is called a leverage effects. Asymmetric GARCH
models are designed to capture leverage effects.

The asymmetric GARCH models discussed in the article include GJR-GARCH [78] and
exponential GARCH (EGARCH) models [33].

Glosten, Jagannathan, and Runkle [78] develop an additional parameter called at−1 as a
threshold to determine the leverage effect. A GJR-GARCH (1, 1) model can be generally expressed as:

σt
2 = α0 + α1a2

t−1 + . . . αma2
t−m + β1σ2

t−1 + . . . βrσ2
t−r + I(at ) α1a2

t−1 + . . . + I (at−m) αma2
t−1 (A4)

where I (at−i) = 1 if at−1 < 0 and I (at−i) = 0 if at−1 ≥ 0
Similarly, Nelson [33] develops a GARCH (EGARCH) model that ensures that all the estimated

coefficients are positive and therefore does not require non-negativity constrains.
The EGARCH (r, m) model in simplified form is:

ln (σt
2) = α0 + α1(|εt−1 |−γ εt−1 ) + . . . + αm(|εt−m |−γ εt−m ) + . . . + β1 ln(

(
σt−1

2 ) + . . . + βr ln(
(
σt−r

2) (A5)
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