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Abstract: The application of the phasor measurement units and the wide expansion of the wide area
measurement units make the time delay inevitable in power systems. The time delay could result in
poor system performance or at worst lead to system instability. Therefore, it is important to determine
the maximum time delay margin required for the system stability. In this paper, we present a new
method for determining the delay margin in the power system. The method is based on the analysis
in the s-domain. The transcendental time delay characteristics equation is transformed to a frequency
dependent equation. The spectral radius is used to find the frequencies at which the roots cross the
imaginary axis. The crossing frequencies are determined through the sweeping test and the binary
iteration algorithm. A single machine infinite bus system equipped with automatic voltage regulator
and power system stabilizer is chosen as a case study. The delay margin is calculated for different
values of the power system stabilizer (PSS) gain, and it is found that increasing the PSS gain decreases
the delay margin. The effectiveness of the proposed method has been proved through comparing it
with the most recent published methods. The method shows its merit with less conservativeness and
fewer computations.

Keywords: communication time delays; delay margin; delay dependent stability; excitation control;
power system; sweeping test

1. Introduction

A time delay exists inherently in many dynamical systems. In a power system, the time delay
is inevitable, especially if open communications are adopted [1]. Time delays could arise in power
systems for different reasons and their magnitudes depend on the type of the communication link,
for example, telephone lines, fiber-optics, power lines, and satellites [2]. Additionally, the advances
and the wide expansion of the phase measurement units (PMUs) and the wide area measurements
systems (WMAS) make the time delay unavoidable in the power system. In power systems, the time
delay for the feedback signals is in the order of 100 ms [3]. The time delays in the communication
links induced into the power systems are within the range of a few milliseconds to one hundred
milliseconds depending on the communication network type used, the transmission protocol, network
load, and other factors [3,4]. The time delay is in the order of a few seconds in the load frequency
control systems [5,6]. The presence of the time delay could lead to poor system performance, or at
worst, system instability.

Extensive research has been carried out in the last few decades to tackle the problems associated
with the delay in the power system, the readers can refer to References [7–17]. The delay margin is
defined as the maximum time delay that the system can withstand without losing stability. In the
published research work, two approaches are used to determine the delay margin. The first one is
based on Lyapunov–Krasovskii theorem and the second approach is based on tracking the eigenvalues
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in the s-domain. The s-domain methods proved to give less conservative delay margins; however,
they can only be applied to constant time delay.

The small-signal theorem is used in Reference [7] to study the stability of a power system with
a time delay. The impacts of the time delay on the supervisory power system stabilizers have also
been investigated. In the power system, to achieve a robust performance over wide range of operating
conditions, the centralized control with wide area measurements is usually adopted. The remote
signals are received by the corresponding power system stabilizer through the PMUs where the time
delay is introduced [8,9]. In Reference [8], the authors reported the improvement of the performance of
the power system with the remote signals and they also found that the time delay could lead to power
system instability if it is not considered during the design. An H∞ Smith predictor is implemented
in Reference [9] to compensate for the time delay. The simulation is used in Reference [10] to study
the impact of the constant and random time delay on the stability of the load frequency control (LFC)
system. In References [11,12], a less conservative criterion for computing the delay margin is presented
where the Lyapunov–Krasovskii functional is used along with the Wirtinger inequality and Jenson
integral inequality to bound the derivative of the Lyapunov function. In Reference [13], the delay
margin for single-area and multi-area LFC system is computed through solving a set of linear matrix
inequalities (LMIs). The LMIs are derived through solving Lyapunov–Krasovskii functional, replacing
the time delay terms with the Newton–Leibnitz formula and introducing free weighting matrices
(FWMs). It is reported in References [14,15] that the number of decision variables are reduced compared
to the number of decision variables in Reference [13], and this will lead to less conservative results for
the delay margin. Yu and Tomsovic [16] applied a simple LMI stability criterion for calculating the delay
margin; however, the results are very conservative. In Reference [17], an exact method for computing
the delay margin is introduced. The transcendental equation is transformed to normal polynomial in
jω. The analysis is carried out in the frequency domain without any approximations, which reduces the
conservativeness of the results. The exponential terms are eliminated and the transcendental equation
is converted to a frequency dependent equation where the number of frequencies that cross the
imaginary access are finite. The published research work either focuses on stabilization of the power
system with the presence of the time delay or computing the delay margin required for system stability.

In Reference [18], the impact of the time delay on the power system is investigated. The impact of
the parameters on the stability is studied by investigating their effect on the eigenvalues loci where a
single-machine-infinite-bus (SMIB) is used as a case study. Jia et al. [19] used the Rekasius substitution
to transform the transcendental characteristic equation into a polynomial, then the Routh criterion
is used to determine the delay margin. Additionally, the impacts of the exciter gain, the generator
mechanical output, and the generator damping on the delay margin are investigated. The impacts
of the time delay on the stability region are investigated in Reference [20] and it is found that the
time delay reduces the stability region of the power system. A direct frequency domain method was
introduced in Reference [21]. The transcendental characteristic equation is converted to polynomial.
The positive real roots of this polynomial coincide with the imaginary roots of the original characteristic
equation and a formula is used to calculate the delay margin. The delay margin calculation is carried
out analytically, and if a change in the system structure or the system order occurs, then the polynomial
coefficients needs to be recalculated, which is the main weakness of the method; however, it gives
accurate results. In Reference [22], a method based on the Lyapunov–Krasovskii theorem is used to
analyze the delay-dependent stability of the power system; however, the delay margin results are a
little bit conservative. A linear matrix inequalities approach is used in Reference [23] to study the
delay dependent stability of the power system. Three criteria are introduced to compute the delay
margin. The criterion with the least number of free weighting matrices has the least conservative
results. In Reference [24], the order of the time-delayed power system is reduced using Jordan
standardization, Taylor separation, and Schur simplification. This, in turn, increases the efficiency
and reduces the computations. In Reference [25], Rekasius substitution is used to transform the
transcendental characteristic equation into normal polynomial and a single-machine-infinite-bus
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system equipped with an automatic voltage regulator (AVR) and a power system stabilizer (PSS) is
chosen as a case study. The delay margin is calculated for different values of the PSS gain.

In this paper, we present a method for computing the delay margin for the power system. Relative
to the methods reported in the literature, the proposed method has a simple structure and is easy to
follow while giving accurate values of the delay margin, which is very important in practice. The rest
of the paper is organized as follows: In the next section the general dynamic model of the power system
with time delay is briefly described. Then, the stability criterion for determining the delay margin is
introduced where the sweeping test and the binary iteration are used to compute the delay margin.
A single-machine-infinite-bus system equipped with automatic voltage regulator and power system
stabilizer is chosen as a case study. In the results section, the results of the delay margin computation
using the proposed method are compared with the results of the most recent published research work.
The main findings of the paper are summarized in the discussion section. The last section contains the
conclusions drawn from this work.

2. Materials and Methods

The presented method is based on the analysis in the s-domain without any approximation.
The dynamics of the power system is nonlinear, therefore the model of the power system should
be linearized around its operating point. The dynamic of the power system with time delay can be
described using the following [19–21]:

.
x = f (x, y, xτ , yτ , p)
0 = g(x, y, p)
0 = g(xτ , yτ , p)

(1)

where x ∈ Rn is the states vector, y ∈ Rm is the algebraic variables vector, p ∈ Rp is the bifurcation
variables vector, xτ := x(t − τ) ∈ Rn and yτ := y(t − τ) ∈ Rm are the delayed states vector and
delayed algebraic variables vector, respectively. Linearizing the power system around an equilibrium
point (x0, y0), then the following equation can be derived [19–21]:

∆
.
x = A0∆x + Aτ∆xτ + B0∆y + Bτ∆yτ

0 = C0∆x + D0∆y
0 = Cτ∆xτ + Dτ∆yτ

(2)

where

A0 = ∂ f
∂x

∣∣∣
p
, B0 = ∂ f

∂y

∣∣∣
p
, C0 = ∂g

∂x

∣∣∣
p
, D0 = ∂g

∂y

∣∣∣
p
, Aτ = ∂ f

∂xτ

∣∣∣
p
, B0 = ∂ f

∂y

∣∣∣
p
, C0 = ∂g

∂x

∣∣∣
p
, Dτ = ∂g

∂yτ

∣∣∣
p

Given that D0 and Dτ are nonsingular, then Equation (2) can be simplified to [19–21]:

∆
.
x(t) = Ã0∆x(t) + Ãτ∆x(t− τ) (3)

where
Ãi = Ai − Bi · D−1

i · Ci, i = 0, τ

Taking the Laplace transform of Equation (3), the stability of the delay-dependent power system
stability is determined through solving the following characteristic equation:

det(λ · I − Ã0 − Ãτ · e−τ·λ) = 0 (4)

Equation (4) is a transcendental equation and has been the subject of research for many years.
The system is asymptotically stable for a given delay if all the roots of Equation (4) lie in the left-half
plane. The free delay system is assumed to be stable and all the roots are on the left-half plane.
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For some value of the delay, one or more roots will cross the imaginary axis. One of the approaches is
to replace s with jω and perform the analysis in the frequency domain.

2.1. The Proposed Method

Time delay systems can be either delay independent or delay dependent. The delay-dependent
system is asymptotically stable for τ < τd, marginally stable for τ = τd, and unstable for τ > τd.
The delay-independent system is asymptotically stable for any positive value of the time delay.
For the power system represented by Equation (3) to be asymptotically stable independent of delay,
we must have:

det(sI − Ã0 − Ãτe−sτ) 6= 0 ∀s ∈ C+, ∀τ ≥ 0 (5)

where C+ is the open right-half plane. If Equation (5) is satisfied, then there are no positive roots for
any value of the time delay. The linear system can be delay independent (see Figure 1a), where the
roots of the system remain in the left-half plane for any time delay τ > 0. The time delay dependent
system may have only one delay margin as shown in Figure 1b, in this case when the time delay
equals the delay margin, τ = τd, where one or more roots will cross the imaginary axis moving from
the left-half plane to the right-half plane, resulting in system instability. The roots will remain in
the right-half plane as the time delay is increased beyond the delay margin, τ > τd. In some cases,
the system may have multiple delay margins as shown in Figure 1c. In this case, as the time delay
increases, one or more roots will cross the imaginary axis at ωc1 when τ = τd1. If the time delay is
increased to more than τd1, the roots move and stay in the right-half plane, and when the time delay
equals τd2, the roots move back to the left-half plane and cross the imaginary axis at ωc2 and the system
returns to stability again. When the time delay is increased to more than τd3, the roots will cross the
imaginary axis at ωc3. The roots will remain in the right-half plane as the time delay is increased and
the system becomes unstable.
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Figure 1. (a) A delay-independent system, (b) a delay-dependent system with a single delay margin,
and (c) a delay-dependent system with multiple delay margins.

The delay-dependent stability implies that for time delays less than the delay margin, the system
is asymptotically stable and all the roots are on the closed left-half plane, and when the time delay
exceeds the delay margin, the system becomes unstable and some roots will be on the right-half plane.
In this manner, the roots will cross the imaginary axis when τ = τd. We are interested in determining
both the delay-independent and delay-dependent conditions of the system. To simplify the analysis,
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we replace s with jω. Now, we turn our attention to finding the delay that produce frequencies on the
imaginary axis. Then Equation (3) is said to be asymptotically stable independent of delay if [26]:

det(jωI − Ã0 − Ãτe−jωτ) 6= 0 ∀ω ∈ (0, ∞), τ ≥ 0 (6)

If Equation (6) is not satisfied for some values of ω, then the system is delay-dependent stable.
Now the problem is to find the crossing frequency, ωc, where the roots cross the imaginary axis. To find
the crossing frequencies, we use the spectral radius in the following definition.

Definition 1 [27].
The spectral radius of a two-matrices pair is defined as:

ρ(Ã0, Ãτ) := min
{
|λ|
∣∣∣det(Ã0 − λÃτ) = 0

}
(7)

where λi(Ã0) is the ith eigenvalue of the matrix Ã0 and λi(Ã0, Ãτ) is the generalized eigenvalue of
matrix pair Ã0, and Ãτ .

The computation of the delay margin is carried out in the ω domain. To compute the maximum
delay margin we adopt the sweeping test [28]. The sweeping test is very valuable tool especially with
the advances in the computing capabilities of the today’s computers. The seeping test is better for its
simplicity with less computation and accurate results. To find the delay margin of the power system
we use the following theorem.

Theorem 1 [27].
For Equation (3) stable at τd = 0, i.e., Ã0 + Ãτ is stable and rank (Ãτ) = q, we define:

τi :=


min

1≤k≤n

θi
k

ωi
k

, i f λi(jωi
k I − Ã0, Ãτ) = e−jθi

k

f or some ωi
k ∈ (0, ∞), θi

k ∈ [0, 2π]

∞, ρ(jωI − Ã0, Ãτ) > 1 ∀ω ∈ (0, ∞)

Then τd := min1≤i≤qτi, and Equation (3) is stable for all τ ∈ [0, τd) and becomes unstable at
τ = τd.

Proof [26–29]:
Equation (3) is stable independent of the time delay if the following condition is satisfied:

ρ(jωI − Ã0, Ãτ) = ρ(jωI − Ã0, Ãτe−jωτ) > 1 for ω > 0, τ ≥ 0 (8)

Condition (8) implies that the system is stable with τ = 0, that is, det(Ã0 + Ãτ) 6= 0. Now
we assume that the system becomes unstable for some value of τ. This means τd < ∞. Now,
we assume that:

det(jωI − Ã0 − Ãτe−jωτ) 6= 0, ∀ω ∈ (0, ∞) (9)

This can be true for ω 6= ωi
k, and consequently at this condition:∣∣∣λi(jωI − Ã0, Ãτ)

∣∣∣ 6= 1 i = 1, . . . , n (10)
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For any τ ∈ [0, τd), τωi
k 6= θi

k we must have:

det(jωi
k I − Ã0 − Ãτe−jωi

kτ) 6= 0 (11)

When τ = τd there is a pair (ωi
k, θi

k) that satisfies τd = θi
k/ωi

k, and consequently:

det(jωi
k I − Ã0 − Ãτe−jωi

kτd) = det(jωi
k I − Ã0 − Ãτe−jθi

k ) = 0 (12)

Corollary 1 [27]: Equation (3) is stable independent of delay if and only if:

(i) Ã0 is stable,

(ii) Ã0 + Ãτ is stable, and

(iii) ρ(jωI − Ã0, Ãτ) > 1, ∀ω > 0

The three conditions in Corollary 1 represent the delay-independent stability, where (i) states that
the system is stable at τ = 0, (ii) states the system is stable at τ = ∞, and (iii) states the system is stable
for every τ in the range τ ∈ [0, ∞).

Theorem 1 determines both the delay-independent and the delay-dependent stability. First,
we can verify the delay-independent stability by checking the following condition:

ρ(jωI − Ã0, Ãτ) > 1 ∀ω ∈ (0, ∞)

If the above condition is satisfied, then the system is stable independent of time delay, and if it
is not satisfied for some values ofω that makes ρ(jωI − Ã0, Ãτ) < 1, then we calculate the crossing
frequencies and the corresponding delay margin.

2.2. The Single-Machine-Infinite-Bus Power System with AVR and PSS

A single machine infinite bus system with AVR and PSS is shown in Figure 2 and the block
diagram of the system is shown in Figure 3 [25,30,31]. The time delay is present in the terminal voltage
measurement. For the stability analysis, the linear model is usually used. The flux-decay model with
an exciter is shown in Figure 4 [25,30,31]. PSSs are used in power systems to dampen the inherent
oscillations and improve the stability. The PSS signal is fed to the AVR to regulate the terminal voltage
of the generator. The basic block diagram of a PSS is shown in Figure 5 [25,30,31]. The generator speed
deviation is the input signal of the PSS. The PSS contains gain, KPSS, washout block, and a lead-lag
compensator. The washout is a high-pass filter and the lead-lag block compensates the phase lag
between the exciter input and the electrical torque of the generator [30].
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The SMIB system with AVR and PSS can be expressed as Equation (3) where;

∆x(t) = [ ∆δ ∆ω ∆E′q ∆E f d ∆Vω ∆VPSS ]
T

Ã0 =



0 ω0 0 0 0 0
−K1

M − D
M −K2

M 0 0 0
− K4

T′d0
0 − 1

K3T′d0

1
T′d0

0 0

0 0 0 − 1
TA

0 KA
TA

−KPSSK1
M −KPSSD

M −KPSSK2
M 0 − 1

Tω
0

−KPSSK1T1
MT2

−KPSSDT1
MT2

−KPSSK2T1
MT2

0
(

1
T2
− T1

T2Tω

)
− 1

T2



Ãτ =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−K5KA
TA

0 −K6KA
TA

0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


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The parameters in the model are defined as [25,30,31]:
The SMIB with an exciter:

δ The generator angle
ω The generator speed with ωB the base speed
E’q The generator voltage behind the transient reactance
Efd The exciter output voltage, and Efd0 is the reference
KA, TA The time constant and the gain of the exciter
Pm The mechanical power
D The generator damping factor
M The moment of inertia
T′d0 The open-loop time constant of the armature winding
V0 The infinite bus voltage
VT The generator terminal voltage
xe The transmission line reactance
x′d The transient reactance
xd The synchronous reactance
T1, T2 The time constants of the Lead-lag compensator
Tw The time constant of the washout filter
KPSS The gain of the power system stabilizer

The constants K1–K6 are given in Appendix A. K1–K6 can be determined using the initial
conditions through solving the following set of equations. Linearizing Equation (1) around
the operating point and using a number of simplifications, the Heffron–Phillips Model can be
derived [32–34].

3. Results

The parameters of the SMIB system with AVR and PSS are given in Table 1.

Table 1. The parameters of the single-machine-infinite-bus power system [35].

M D xd x
′

d T
′

d0 xe

6.4 0.0 2.5 0.39 9.6 0.5
xq Vt KPSS V∞ ω0 rs
2.1 1.0∠15 5 1.05 377.0 0.0
re T1 T2 TW KA TA
0.0 0.5 0.1 2.0 100 0.05

To find the delay margin, we used Theorem 1 and the following algorithm:
Step 1: With the system parameters, compute Ã0 and Ãτ . Using the sweep test, check if the

system is stable independent of delay, that is ρ(jωI − Ã0, ) > 1 for ω ∈ (0, ∞). If for some values of ω,

ρ(jωI − Ã0, Ãτ) = 1, then proceed to step 2; else the system is stable independent of the time delay.

Step 2: Define a range ω ∈ [ω1, ω2]. At ω1 the spectral radius ρ(jωI − Ã0, Ãτ) < 1 and at ω2 the

spectral radius ρ(jωI − Ã0, Ãτ) > 1. Now, ωc ∈ [ω1, ω2].
Step 3: Use the binary iteration to find the crossing frequency with a given error tolerance ωe. We

set ωnew = (ω1 + ω2)/2. If ρ(jωnew I − Ã0, Ãτ) > 1 then ω2 = ωnew, and if ρ(jωnew I − Ã0, Ãτ) < 1
then ω1 = ωnew. Now the search range is reduced until the desired accuracy is reached.

Step 4: When the desired accuracy is reached, we calculate θi
k through solving λi(jωi

k I− Ã0, Ãτ) =

e−jθi
k . Finally, τd = min

1≤k≤n
(θi

k/ωi
k) is the desired delay margin.
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The procedure for calculating the constants is given in Appendix A and they were given as:
K1 = 0.9223, K2 = 1.0737, K3 = 0.2967, K4 = 2.2655, K5 = 0.0050, and K6 = 0.3572. For computing the
delay margin, the algorithm is given in Figure 6. With KPSS = 5, the system linear model was given as:

Ã0 =



0 377 0 0 0 0
−0.14411 0 −0.16777 0 0 0
−0.23599 0 −0.35112 0.10417 0 0

0 0 0 −20 0 2000
−0.72055 0 −0.83884 0 −0.5 0
−3.6027 0 −4.1942 0 7.5 −10


Ãτ =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−10.005 0 −714.41 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


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Figure 6. The delay margin computation algorithm.



Energies 2018, 11, 3466 10 of 22

Applying the algorithm, the crossing frequencies were given as: ωc1 = 2.8854,ωc2 = 8.8884, and
ωc3 = 9.5856, which are shown in Figure 7. The corresponding crossing angles were: θc1 = 1.2712,
θc2 = 2.8827, and θc3 = 1.8194. The spectral radius as a function of the frequency is shown in Figure 7.
This made the delay margins τ1 = 0.44056 s, τ2 = 0.32432 s, and τ3 = 0.18981 s. The minimum delay
margin was 0.18981 s, which was obtained with ωc3 = 9.5856 rad/s and θc3 = 1.8194 rad. The terminal
voltage with the different delay margins is shown in Figures 8–10.

Using the parameters in Reference [25], with KPSS = 20, the constant parameters K1–K6 were given
as K1 = 1.0058, K2 = 0.8441, K3 = 0.36, K4 = 1.0805, K5 = 0.0468, and K6 = 0.4991. With the proposed
method, the crossing frequencies were ωc1 = 2.5141 rad/s, ωc2 = 11.0472 rad/s, and ωc3 = 13.1185
rad/s, and the corresponding crossing angles were θc1 = 1.2465 rad, θc2 = 2.6160 rad, and θc3 = 1.0310
rad. Therefore, the delay margins were τ1 = 0.4958 s, τ2 = 0.3320 s, and τ3 = 0.0786 s. The spectral
radius as a function of the frequency is shown in Figure 11. The results of the proposed method and
the method reported in Reference [25] are shown in Table 2. The terminal voltage with the different
delay margins is shown in Figures 12–14. The delay margin with different PSS gains is shown in
Table 3 along with the results of Reference [25]. The results of the proposed method are the same
results reported in Reference [25]; however, for KPSS = 0, the proposed method gave less conservative
results. The terminal voltage with KPSS = 0 and different time delays is shown in Figure 15.

Table 2. The delay margins and the corresponding crossing frequencies with the proposed method and
the method in [25].

The parameter Method 1 2 3

ωc (rad/s)
The proposed method 2.5141 11.0472 13.1185

The method in Ref. [25] 2.5140 11.0473 13.1187

τ (s)
The proposed method 0.4958 0.3320 0.0786

The method in Ref. [25] 0.4958 0.3320 0.0786
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Table 3. The delay margin with different values of the PSS gain, KPSS.

Method τ1 (s) τ2 (s) τ3 (s)

KPSS = 0 The proposed method 0.1854 0.4635 0.3984
The method in Ref. [25] 0.1788 0.4579 0.3678

KPSS = 5 The proposed method 0.1632 0.3774 0.4262
The method in Ref. [25] 0.1632 0.3774 0.4262

KPSS = 10 The proposed method 0.1289 0.3539 0.4508
The method in Ref. [25] 0.1289 0.3539 0.4508

KPSS = 15 The proposed method 0.1010 0.3407 0.4738
The method in Ref. [25] 0.1010 0.3407 0.4738

KPSS = 20 The proposed method 0.0786 0.3320 0.4958
The method in Ref. [25] 0.0786 0.3320 0.4958

KPSS = 25 The proposed method 0.0600 0.3258 0.5171
The method in Ref. [25] 0.0600 0.3258 0.5171

KPSS = 30 The proposed method 0.0439 0.3214 0.5378
The method in Ref. [25] 0.0439 0.3214 0.5378

The terminal voltages with KPSS = 5 and different time delays are shown in the Figures 16–22.
The behavior of the system can be explained as follows (see Figure 23): As the time delay increases,
one or more roots will cross the imaginary axis and the system becomes unstable. If the time delay is
increased further, the roots will cross the imaginary axis from the opposite side and the system returns
to being stable again. As the time delay is increased, the roots will cross the imaginary axis and the
system will become unstable as long as τ > τ3. The spectral radius as a function of the radian frequency
with different values of the PSS gain is shown in Figure 23.
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Figure 16. The terminal voltage with a 0.16 s time delay.
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Figure 18. The terminal voltage with a 0.3 s time delay.
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Figure 20. The terminal voltage with a 0.4 s time delay.
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4. Discussions

The presented methods in the literature are either less conservative and too complex to be
implemented or simpler and more conservative. Using the sweeping test and the binary iteration
algorithm, the method can accurately determine the maximum delay margin with fewer computations
compared with the published methods in the literature. The method can be applied to analyze the
stability of the power system or a general time-delay system. In this paper, the spectral radius is
used to find the crossing frequencies, which leads to an exact calculation of the time-delay margin.
For the single-machine-infinite-bus power system with AVR and PSS, increasing the PSS gain reduces
the delay margin; this observation can be used in practice to aid in tuning the PSS gain to achieve
the optimum performance. For the single-machine-infinite-bus power system with AVR and PSS,
an interesting phenomenon has been observed. The system had multiple delay margins where three
delay margins have been identified. The proposed method has two limitations. First, as the analysis
in the s-domain, the method is only applicable to constant time delays. The method can be a useful
tool for computing the delay margin and analyzing the stability of the power system with constant or
bounded time delay. Second, the proposed method is applied to a single-delay, time-delay system and
Theorem 1 cannot be applied for a time-delay system with multiple delays. In the case of multiple
equal time delays, a similar theorem to Theorem 1 can be used; for more details the reader can refer to
References [26–29].

5. Conclusions

In this paper, we proposed a method for computing the delay margin in a power system with
a communication delay. The method is a frequency domain method without any approximation to
the resultant delay system. The delay margins were computed through the binary iteration and the
sweeping test. A single-machine-infinite-bus load power system has been chosen as case study and
the delay margin values have been compared with values reported in the literature. The method gives
accurate delay margins, which was proved using the time delay simulation and by comparison with
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the published methods. A single-machine-infinite-bus power system with AVR and PSS was used as a
case study. The effect of the power system stabilizer gain on the delay margin has been investigated in
the paper. The delay margin decreased with increasing power system stabilizer gain. The method is to
be extended to analyze multi-time delays power system.

Author Contributions: A.K. derived the mathematical model and applied the stability criterion. A.S.P. made the
simulations. A.K. and A.S.P. wrote and edited the paper.

Funding: This research received no external funding.
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Nomenclature

δ The generator angle
ω The generator speed with ωB the base speed
E’q The generator voltage behind the transient reactance
Efd The exciter output voltage, and Efd0 is the reference
KA, TA The gain of the exciter and the time constant
K1 − K6 Constants
Pm The mechanical power
D The generator damping factor
M The moment of inertia
T′d0 The open-loop time constant of the armature winding
V0 The infinite bus voltage
VT The generator terminal voltage
VPSS The Power System Stabilizer (PSS) signal
Vref The reference terminal voltage
Vw The washout filter voltage
Vd The direct axis voltage
Vq The quadrature axis voltage
re The transmission line resistance
rs The windings resistance
xe The transmission line reactance
x′d The transient reactance
xd The synchronous reactance
T1, T2 The time constants of the Lead-lag compensator
Tw The time constant of the washout filter
KPSS The gain of the power system stabilizer
Id The direct axis current
Iq The quadrature axis current

Appendix A

K1–K6 can be determined by the initial conditions through solving the following set of equations:

IGejγ =
Vt −V∞

jxe
(A1)

E0∠δ0 = Vt + (rs + jxq)IGejγ (A2)

Id + jIq = IGejγe−j(δ0−π/2) (A3)

Vd + jVq = Vte−j(δ0−π/2) (A4)

Eq = Vq + x′d Id (A5)

E f d = Eq + (xd − x′d)Id (A6)
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Ere f = Vt +
E f d

KA
(A7)

Tm = Eq Iq + (xq − x′d)Id Iq (A8)

The constants K1–K6 are given as:

∆ = r2
e + (xe + xq)(xe + x′d) (A9)

K1 = − 1
∆ [IqV∞(x′d − xq)

{
(xq + xe) sin δ0 − re cos δ0

}
+ V∞

{
(x′d − xq)Id − Eq

}{
(x′d + xe) cos δ0 + re sin δ0] (A10)

K2 =
1
∆
[Iq∆− (x′d − xq)(xq + xe)Iq − re(x′d − xq)Id + reEq] (A11)

K3 = [1 + (xd − x′d)(xq + xe)/∆]−1 (A12)

K4 =
V∞(xd − x′d)

∆
[(xq + xe) sin δ0 − re cos δ0] (A13)

K5 =
1
∆

{
Vd
Vt

xq[reV∞ sin δ0 + V∞ cos δ0(x′d + xe)] +
Vq

Vt
[x′d(reV∞ cos δ0 −V∞(xq + xe) sin δ0)]

}
(A14)

K6 =
1
∆

{
Vd
Vt

xqre −
Vq

Vt
x′d(xq + xe)

}
+

Vq

Vt
(A15)
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