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Abstract: Energy crisis and environmental pollution have become global problems, and the increasing
use of energy has caused climate change. Electric vehicle (EV) is regarded as the future of the
automotive industry, because of the lesser impact on the environment than traditional vehicles.
In recent years, electric vehicles have developed rapidly. However, the development of charging
points and service cannot adapt to the development trend of EV. In urban areas, the distribution
characteristics of street lighting and charging points are similar. Therefore, the street lighting pole
with EV charging is proposed. However, due to the capacity limit of public grid, the single hybrid
pole is only suitable for slow charging. This paper proposes hybrid poles group based on renewable
energy, street lighting, and EV charging, which can realize fast charging and slow charging based
on DC micro-grid with help of energy storage device. For studying the suitable number in a group
of smart hybrid pole, the efficiency model of smart hybrid poles group is proposed. The efficiency
model indicates that the group approach has better performance than the single pole, which provides
a theoretical basis for practical construction.

Keywords: electric vehicle (EV) charging; street lighting; smart hybrid poles; DC micro-grid;
renewable energy; energy storage; cloud management system

1. Introduction

Nowadays, energy crisis and environment pollution have become the global problem, and the
increasing use of energy caused climate change. However, the renewable energy, clean energy,
other distributed generation such as solar-based photovoltaic (PV) and wind generation, the use of
light-emitting diode (LED) lighting [1–3], and new transport electric vehicle (EV) [4–12], positively
contribute to the reduction of the carbon footprint of electricity generation.

EV is considered as the future of automotive industry, which not only promotes energy-efficiency,
but also reduces emission of greenhouse gases [13,14]. In recent years, EV has been quickly developed.
In fact, automakers, including Germany-based BMW and Audi, Japan-based Toyota and Nissan,
the US-based General Motors and Tesla, and China-based BYD and ROEWE, launched a series of
new-energy vehicle models, which marks the initial popularity of new-energy vehicles. As expected,
China has a rapidly growing market of new-energy vehicles. In 2016, 517,000 new-energy vehicles
were produced, and 507,000 new-energy vehicles were sold in China, with the growth of 52% and 53%,
respectively, compared to the last year.

However, the development of EV charging points and services cannot match the growing trend
of EV in China. EV charging points increased with the growth of 12% compared to 2015. Until June
2016, Chinese total public charging poles are 81,000 and private charging poles are 55,000. The ratio
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of car to pole is about 8:1, so it is less than the theoretical ratio of 1:1~1.2. Currently, it needs to build
more charging poles [6]. In 2020, 435 thousand charging points will be built in Beijing to satisfy the
requirement for 600 thousand EV. Moreover, the lack of an adequate publicly accessible charging
infrastructure is considered to be a major obstacle to the growth of European market [15].

Charging facilities generally include private points and charging station. In recent years, it has
been suggested that EV charging points can be integrated with the existing street lighting network,
because the distribution characteristic of street lighting in the urban area is similar with the distribution
characteristic of charging points. Therefore, the street lighting pole with EV charging system is
presented [16]. Smith et al. introduced the concept of a DC Lighting and Charging network to
increase the power transfer capability of the lighting cables in order to enable charging of EVs at a
higher energy efficiency than AC [16]. In addition, BMW and Ubitricity company, respectively, have
deployed a street-light charging solution [17,18], which contribute to a greener city. However, this
single street-light charging pole is only suitable for EV slow charging because the power of public grid
for a single pole is not enough for EV fast charging.

For handling the incompatibility between fast charging and the power limit, the hybrid poles
group method with renewable energy, street lighting, and EV charging systems are proposed based on
DC micro-grid in this paper. The energy storage devices in hybrid poles group can collaboratively
work with the help of DC micro-gird and provide enough electric power for fast charging.

The remainder of the paper is organized as follows: Section 2 presents the architecture of street
lighting system. For the application of fast charging and the efficiency promotion, the architecture of
smart hybrid poles group method is proposed in Section 3. In Section 4, the efficiency model of smart
hybrid poles group method under the condition of different probability distributions is proposed for
studying the suitable number in a group of smart hybrid pole. Finally, concluding remarks are offered
in Section 5.

2. The Architecture Change of Street Lighting System

Street lighting is important for urban night scenery, because it can improve the appearance and
the attractiveness of the city [19,20]. A well-designed lighting system can ensure adequate comfort,
improve the quality of life and avoid excessive illumination [21]. It contributes to crime prevention,
property safety, night location, and obstacle avoidance [22]. Besides, LED as DC lighting is introduced
to street lighting system for energy saving.

The architecture of street lighting system is presented in Figure 1. In this system, traditional
alternating current (AC) street lighting can be supported by AC power directly. However, DC lighting
is required to be linked by an AC/DC converter [23,24].
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Urban lighting power consumption usually accounts for a certain proportion of the urban
financial expenditure [25]. Nowadays, public lighting (mainly street lighting) accounts for 3% of
total electricity consumption in the world [26]. For reducing the electricity expenditure of street
lighting, the renewable energy, such as solar energy and wind energy, are introduced into street
lighting system. The architecture of a street lighting pole with renewable energy is presented in
Figure 2. For promoting the efficiency of system, a DC bus is necessary to reduce the loss in energy
conversion. Furthermore, the energy storage device can ensure the voltage stability and operate in
island mode. In this system, both AC and DC lighting can be considered.
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3. The Proposed Group Approach of Smart Hybrid Poles

In this section, the group approach of smart hybrid poles was proposed. It is known that EV
charging points cannot match the growing trend of EV. An important reason for the low development
of EV charging points is the unreasonable distribution of the charging stations. There are a large
number of charging stations in urban area and few charging stations in rural areas. In addition,
centralized charging points will create enormous electrical power load on power distribution system,
which requires the capacity expansion of transformer and more investment.

Compared with charging stations, the street lighting poles as an important part of urban
infrastructure have the advantage of widespread distributions, and it is more convenient for EV
owners to find nearby street lighting pole with EV charging. This hybrid pole can serve people
who work or live in this block. Besides, the problem of insufficient transformer capacity can be
effectively handled.

3.1. The Architecture of a Smart Hybrid Pole

The proposed hybrid pole is shown in Figure 3. This hybrid pole is integrated with renewable
energy, street lighting, and EV charging. On the one hand, it can provide LED lighting for urban roads
with high efficiency. On the other hand, it can support DC charging service for EVs and the information
of charging is easy to be supervisory controlled. This hybrid pole system utilizes public electrical power
and distributed energy such as wind power and solar energy. The improved compatibility between DC
devices and DC power resource reduces and simplifies the power conversion links, thereby reducing
the power conversion losses and increasing the component-level reliability [27]. The hybrid pole can
operate in grid-connected mode and island mode, and the stability of DC bus voltage can be supported
by the storage device. As the DC voltage is tightly controlled, the DC micro-grid is more tolerant
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against disturbances on the AC side. In addition, harmonics and power frequency variations disappear
in the DC context, which exist in the AC context.

However, it should be noted that the single hybrid pole provides only EV slow charging, because
fast charging brings large electric current and creates voltage loss in distant cable.Energies 2018, 11, 3445 4 of 18 
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3.2. The Architecture of Smart Hybrid Poles Group and Mangement System

The hybrid poles group are integrated by use of DC micro-grid [28,29], as shown in Figure 4.
In this micro-grid system, smart hybrid poles are connected by DC bus. In this case, EV can get power
from AC grid and storage devices, so theoretically, it is suitable for EV fast charging if the power
control is reasonable.
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Compared to single hybrid pole, smart hybrid poles group can provide fast charging service and
other benefits as follows:

• The micro-grid system is flexible. The smart hybrid poles can operate in grid-connected mode
and island mode;
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• The system has more safety and reliability. With the connection of DC micro-grid, the power can
be dispatched between hybrid poles, so the DC bus voltage is in stable condition;

• It has more economical efficiency for consumer. Every smart hybrid pole with storage can be
management by DC micro-grid, so it can reduce its operational expenses in accordance with
peak-valley price.

Additionally, hybrid poles can also serve as the backup power for traffic lights, as shown in
Figure 5. When the power grid malfunctions, the storage battery in hybrid pole can provide emergency
electrical power for traffic signal, which avoids traffic disturbance.
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3.3. The Capacity Model of Energy Storage Device in Hybrid Poles Group

The capacity of energy storage device is mainly determined by the following two factors. The first
one is that it is necessary to fully charge the energy storage device when the hybrid pole is idle;
and the last one is that when the hybrid pole provides a charging service, the stored energy should be
discharged to EV as far as possible.

Supposing that the rated slow charging power is a kW, the rated fast charging power is n · a kW,
which is n times more than the rated slow charging power. Besides, supposing that the group of x
hybrid poles provides t-hour charging service per day and they are idle for (24, t) hours per day.

When 0 < t < 24
n , the hybrid poles group can provide t-hour fast charging service for

⌊ x
n
⌋

EV
per day. The fast charging power is from public grid and energy storage device under the control
of management system. There is

⌊ x
n
⌋
· a kW power from public grid and

⌊ x
n
⌋
· (n− 1) · a kW power

from storage device. Therefore, the total capacity of energy storage device in group should be
t ·
⌊ x

n
⌋
· (n− 1) · a kWh.

When 24
n < t ≤ 24, the hybrid poles group is idle for (24 − t) hours per day, and energy storage

device need to be charged. Since the power of each hybrid pole from the public grid is limited to⌊ x
n
⌋
· a kW, the capacity of the energy storage device in-group should be (24− t) ·

⌊ x
n
⌋
· a kWh.

When t = 24
n , the hybrid pole can provide fast charging service for 24

n hours, and the maximum
energy can be stored in the storage device in the remaining (24 − t) hours. Therefore, the maximum
total capacity of the energy storage device in-group should be 24(n−1)a

n ·
⌊ x

n
⌋

kWh.
The total capacity of the energy storage device in a group can be divided into each pole at average.

Therefore, the capacity of the energy storage device per pole C is as follows:

C =


t(n−1)a

x ·
⌊ x

n
⌋
, 0 < t < 24

n
24(n−1)a

nx ·
⌊ x

n
⌋
, t = 24

n
(24−t)a

x ·
⌊ x

n
⌋
, 24

n < t ≤ 24

(1)
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Supposing that the power of slow charging is 7 kW, ratio n of fast charging to slow charging
is 4, the functional image of capacity of the energy storage device per pole C is shown in Figure 6.
The maximum capacity of the energy storage device per pole Cmax is 31.5 kWh under the condition
that time of charging service t is 6 h per day and the number of hybrid pole x is 4, 8, 12, or more.
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Moreover, storage device should not only store renewable energy from PV panel and micro wind
turbine, but also provide lighting for street at night. According the paper in Reference [30], the power
of PV panel is 215 W, the rated power of wind turbine is 1444 W, the power of LED lighting is 60 W,
and the redundancy capacity per pole should be 1.92 kWh. The total capacity of the energy storage
device per pole should be 33.42 kWh.

In addition, the recycled EV batteries can be used as energy storage device of hybrid pole, which
is important not only for the treatment of waste but also for the recovery of useful resources.

3.4. The Management System of Smart Hybrid Poles Group

In order to control system operation and maintain stability, a powerful management system is
extremely essential. A cloud management system as shown in Figure 7 is proposed for hybrid poles
group. In this cloud management system, the terminal control system, the metering system and the
client application are combined to cloud intelligence management platform for collecting big data,
scheduling, remote monitoring, and other functions. Besides, the cloud management system controls
the charging and discharging of storage units judging by time-of-use electricity price.

In addition, battery management system (BMS) and power conversion system (PCS) can control
each pole. BMS can obtain information about the capacity, voltage, current, temperature, state of
charge (SOC), and expected life of battery. Besides, PCS can control the charging and discharging
process and ensures the safe operation of battery.



Energies 2018, 11, 3445 7 of 17
Energies 2018, 11, 3445 7 of 18 

 

 
Figure 7. The cloud management system of smart hybrid poles group. 

4. The Efficiency Model of Smart Hybrid Poles Group Approach 

The C-rate is defined as the charging or discharging current divided by the battery’s capacity to 
store an electrical charge. For example, when the 14-kWh battery is undergoing charging at 7 kW 
within two h, the C-rate is 0.5C or C/2. 

The power of LED street lighting is usually less than 0.25 kW [30–32], and the power of slow 
charging for EV is 7 kW (220 V × 32 A, which is equivalent to the C-rate of 0.1C~0.45C) or more. 
Therefore, the power of the EV charging poles should be primary part of the capacity of the hybrid 
poles group. 

For studying the suitable number in a group of smart hybrid pole, the efficiency model of smart 
hybrid poles group is proposed in this section. 

Supposing that the rated slow charging power is a kW, and the rated fast charging power is n a⋅  
kW, which is n times more than the rated slow charging power; the number of poles in a group is x (

*,  x Z x n∈ ≥ ). Taking x = 4 as an example, the total power of traditional poles in five cases is shown 
in Table 1, and the total power of hybrid poles in five cases is shown in Table 2. 

Table 1. The total power of 4 traditional poles in 5 cases. 

Case Pole 1 Pole 2 Pole 3 Pole 4 Total Power (kW) 
1 0 0 0 0 0 
2 a 0 0 0 a 
3 a a 0 0 2a 
4 a a a 0 3a 
5 a a a a 4a 

Table 2. The total power of 4 hybrid poles in 5 cases. 

Case Pole 1 Pole 2 Pole 3 Pole 4 Total Power (kW) 
1 0 0 0 0 0 
2 4a 0 0 0 4a 
3 a a 0 0 2a 
4 a a a 0 3a 
5 a a a a 4a 

Figure 7. The cloud management system of smart hybrid poles group.

4. The Efficiency Model of Smart Hybrid Poles Group Approach

The C-rate is defined as the charging or discharging current divided by the battery’s capacity
to store an electrical charge. For example, when the 14-kWh battery is undergoing charging at 7 kW
within two h, the C-rate is 0.5C or C/2.

The power of LED street lighting is usually less than 0.25 kW [30–32], and the power of slow
charging for EV is 7 kW (220 V × 32 A, which is equivalent to the C-rate of 0.1C~0.45C) or more.
Therefore, the power of the EV charging poles should be primary part of the capacity of the hybrid
poles group.

For studying the suitable number in a group of smart hybrid pole, the efficiency model of smart
hybrid poles group is proposed in this section.

Supposing that the rated slow charging power is a kW, and the rated fast charging power is n · a
kW, which is n times more than the rated slow charging power; the number of poles in a group is x
(x ∈ Z∗, x ≥ n). Taking x = 4 as an example, the total power of traditional poles in five cases is shown
in Table 1, and the total power of hybrid poles in five cases is shown in Table 2.

Table 1. The total power of 4 traditional poles in 5 cases.

Case Pole 1 Pole 2 Pole 3 Pole 4 Total Power (kW)

1 0 0 0 0 0
2 a 0 0 0 a
3 a a 0 0 2a
4 a a a 0 3a
5 a a a a 4a

Table 2. The total power of 4 hybrid poles in 5 cases.

Case Pole 1 Pole 2 Pole 3 Pole 4 Total Power (kW)

1 0 0 0 0 0
2 4a 0 0 0 4a
3 a a 0 0 2a
4 a a a 0 3a
5 a a a a 4a
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Table 1 is changed to the following 5 × 4 matrix:

A5×4 =


0 0 0 0
a 0 0 0
a a 0 0
a a a 0
a a a a

 (2)

Table 2 is changed to the 5 × 4 matrix as follow:

B5×4 =


0 0 0 0
4a 0 0 0
a a 0 0
a a a 0
a a a a

 = A5×4 +


0 0 0 0
3a 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (3)

Extending to each x and n, there should be (x + 1) cases in traditional poles and hybrid poles, as
shown in the following (x + 1) × x matrixes:

A(x+1)×x =



0 · · · · · · 0 0
a 0 · · · 0 0

a a
. . .

...
...

...
...

. . . 0 0
a a · · · a 0
a a · · · a a


(4)

B(x+1)×x =



0 · · · · · · 0 0
na 0 · · · 0 0

na na
. . .

...
...

...
...

. . . 0 0
a a · · · a 0
a a · · · a a


= A(x+1)×x +



0 · · · · · · 0 0
(n− 1)a 0 · · · 0 0

(n− 1)a (n− 1)a
. . .

...
...

...
...

. . . 0 0
0 0 · · · 0 0
0 0 · · · 0 0


(5)

4.1. Under the Condition of Uniform Distribution

Supposing that the probability of each case is equal, when x = 4, the average power of four
traditional poles is 2a kW, and the average power per pole is 0.5a kW. Table 3 shows average power of
4 traditional poles under the condition of uniform distribution.

Table 3. Average power of 4 traditional poles under the condition of uniform distribution.

Case Pole 1 Pole 2 Pole 3 Pole 4 Total Power (kW) Probability

1 0 0 0 0 0 20%
2 a 0 0 0 a 20%
3 a a 0 0 2a 20%
4 a a a 0 3a 20%
5 a a a a 4a 20%

Average power 2a
Average power per traditional pole 0.5a
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The probability of uniform distribution Ex in matrix form under x = 4 is:

E4 =
[

0.2 0.2 0.2 0.2 0.2
]

(6)

Supposing that the matrix Mx under x = 4 is for the accumulation of cases:

M4 =
[

1 1 1 1
]T

(7)

The average power per traditional pole f (x, a) under x = 4 is:

f (x = 4, a) = 0.25× P4 × A5×4 ×M4 = 0.5a (8)

Extending to each x, probability Ex, matrix Mx and the average power per traditional pole f (x, a) are:

Ex =
[
(x + 1)−1 · · · (x + 1)−1

]
(9)

Mx =
[

1 · · · 1
]T

(10)

f (x, a) =
1
x
× Ex × A(x+1)×x ×Mx = 0.5a (11)

If the poles can provide the serves of fast and slow charging, x smart hybrid poles will maximally
at the same time support

⌊ x
n
⌋

poles with fast charging, (where
⌊ x

n
⌋

means that x
n is rounded down).

In the case of x = 4 and n = 4, as shown in Table 4, the average power of 4 hybrid poles is 2.6a kW,
and the average power per hybrid pole is 0.65a kW. So, the expectation value of each hybrid pole power
with slow and fast charging is more than with only slow charging, which means efficiency promotion.

Table 4. Average power of 4 hybrid poles under the condition of uniform distribution.

Case Pole 1 Pole 2 Pole 3 Pole 4 Total power (kW) Probability

1 0 0 0 0 0 20%
2 4a 0 0 0 4a 20%
3 a a 0 0 2a 20%
4 a a a 0 3a 20%
5 a a a a 4a 20%

Average power 2.6a
Average power per hybrid pole 0.65a

The average power per hybrid pole f (x, n, a) under x = 4 and n = 4 is:

f (x = 4, n = 4, a) = 0.25× E4 × B5×4 ×M4 = 0.65a (12)

Extending to each x and n, the average power per hybrid pole f (x, n, a) is:

f (x, n, a) = 1
x × Ex × B(x+1)×x ×Mx

= [0.5 +
2(x+1)−(b x

n c+1)n
2(x+1)x ·

⌊ x
n
⌋
· (n− 1)]a

(13)

In the actual project, hybrid poles have fixed power of fast and slow charging, so n is constant.
Taking 7 kW slow charging power and 28 kW fast charging power (which is equivalent to the C-rate of
0.4C~1.8C) as an example, f (x, n = 4, a = 7) is shown in Figure 8.
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The efficiency promotion α of hybrid poles relative to traditional poles is following formula,
as shown in Figure 9.

α =
[0.5+

2(x+1)−(b x
n c+1)n

2(x+1)x ·b x
n c·(n−1)]a−0.5a

0.5a × 100%

=
2(x+1)−(b x

n c+1)n
(x+1)x ·

⌊ x
n
⌋
· (n− 1)× 100%

(14)
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under uniform distribution.

4.2. Under the Condition of Binomial Distribution

Supposing that the probability of each case satisfies binomial distribution, when the number of
hybrid poles x = 4 and the parking possibility of each parking spot p = 40%, the average power of
4 traditional poles is 1.6a kW, and the average power per traditional pole is 0.4a kW. Table 5 shows
average power of 4 traditional poles under the condition of binomial distribution.
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Table 5. Average power of 4 traditional poles under the condition of binomial distribution.

Case Pole 1 Pole 2 Pole 3 Pole 4 Total Power (kW) Probability

1 0 0 0 0 0 12.96%
2 a 0 0 0 a 34.56%
3 a a 0 0 2a 34.56%
4 a a a 0 3a 15.36%
5 a a a a 4a 2.56%

Average power 1.6a
Average power per traditional pole 0.4a

Extending to each x and p, according to the properties of the binomial distribution, the probability
of binomial distribution Ex,p is:

Ex,p(X = i) = Ci
t pi(1− p)t−i, i = 0, 1, 2, · · · , x (15)

Ex,p is in matrix form:

Ex,p =
[

C0
x p0(1− p)x C1

x p1(1− p)x−1 · · · Cx
x px(1− p)0

]
(16)

The average power per traditional pole g(x, p, a) is:

g(x, p, a) = 1
x × Ex,p × A(x+1)×x ×Mx

=

x
∑

i=0
Ci

x pi(1−p)x−i ·i·a

x

= x·p·a
x

= p · a

(17)

As shown in Table 6, in the case of x = 4, n = 4 and p = 40%, the average power of four hybrid
poles is 2.6368a kW, and the average power per hybrid pole is 0.6592a kW

Table 6. Average power of 4 hybrid poles under the condition of binomial distribution.

Case Pole 1 Pole 2 Pole 3 Pole 4 Total Power (kW) Probability

1 0 0 0 0 0 12.96%
2 4a 0 0 0 4a 34.56%
3 a a 0 0 2a 34.56%
4 a a a 0 3a 15.36%
5 a a a a 4a 2.56%

Average power 2.6368a
Average power per hybrid pole 0.6592a

Extending to each x, n and p, the average power per hybrid pole g(x, n, p, a) is:

g(x, n, p, a) = 1
x × Ex,p × B(x+1)×x ×Mx

=

x
∑

i=0
Ci

x pi(1−p)x−i ·[i+(n−1)·min(i,b x−i
n−1c)]·a

x

= [p +

t
∑

i=0
Ci

x pi(1−p)x−i ·(n−1)·min(i,b x−i
n−1c)

x ] · a

(18)

Supposing 7 kW and 28 kW as slow and fast charging power respectively, g(x, n = 4, p, a = 7) is
shown in Figure 10.
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The efficiency promotion α of hybrid poles relative to traditional poles is in following formula,
as shown in Figure 11.

α =
[p+

x
∑

i=0
Ci

x pi(1−p)x−i ·(n−1)·min(i,b x−i
n−1c)

x ]·a−p·a
p·a × 100%

=

x
∑

i=0
Ci

x pi(1−p)x−i ·(n−1)·min(i,b x−i
n−1c)

p·x × 100%

(19)
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4.3. The Loss of Voltage

In actual situation, the optimum number of smart hybrid poles also depends on the voltage loss
of electrical system and actual road lighting planning. In general, the maximum permissible voltage
loss rate β is 10% in 220 V single-phase circuit and 7% in 380 V three-phase circuit. The maximum
permissible voltage loss ∆Umax is:

∆Umax = U · β (20)

where U is the rated working voltage.
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The total current of x poles ΣI is:

ΣI =
ΣP
U

=
P · x

U
(21)

where ΣP is the total power of x poles, and P is the power of a pole.
The voltage loss in cable should be less than the maximum permissible voltage loss. According to

Ohm’s law, the following formula can be obtained.

∆Umax ≥ ΣI · R
= P·x

U · ρ ·
L
S

(22)

where R is the resistance of cable, ρ is the resistivity of cable, L is the total length of cable and S is the
sectional area of cable.

The total length of cable L is:
L = d · (x− 1) (23)

where d is the distance between two adjacent poles.
Based on the above formula, the value range of x can be shown in following formula:

x2 − x− U2 · β · S
P · ρ · d ≤ 0 (24)

1 < x ≤
1 +

√
1 + 4·U2·β·S

P·ρ·d

2
, x ∈ Z∗ (25)

Supposing that U = 220 V, β = 10%, S = 240 mm2, P = 7 kW, ρ = 1.75 × 10−8 Ω·m (copper cable)
and d = 15 m, the value range of x is:

1 < x ≤
1 +

√
1 + 4·U2·β·S

P·ρ·d

2
= 25.64, x ∈ Z∗ (26)

If U is 110 V (in USA, Canada, etc.) and the other condition is invariant, the value range of x is:

1 < x ≤
1 +

√
1 + 4·U2·β·S

P·ρ·d

2
= 13.08, x ∈ Z∗ (27)

In USA and Canada, the maximal number of hybrid poles in a group is only 13. Additionally, the
maximal number of hybrid poles group increases with the growth of voltage. Therefore, this group
method in the 220 V system can support more hybrid poles than in 110 V system.

4.4. The Results and Discussion

On the basis of the above analysis, the efficiency model of hybrid poles group is presented.
The main results and discussion can be summed up as follows:

• This group method can support fast charging under power limit of public grid and has better
performance than the single pole.

• According to Figure 11, the proposed hybrid poles group is conducive to the place with the
lower parking probability. If the hybrid poles group is built in the parking lot with high parking
probability, the hybrid poles group has inapparent efficiency promotion.

• According to Figures 9 and 11, the efficiency promotion increases with the quantity growth of
poles and it initially increases rapidly, and then rises slowly.
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• Taking 7 kW slow charging as an example, under the limit of permissible voltage loss, the number
of hybrid poles should not more than 25 in 220 V system and 13 in 110 V system, respectively.
Therefore, this group method in the 220 V system can support more hybrid poles than in the 110 V
system. In addition, the minimum number of poles in a group is n. Therefore, the permissible
number of hybrid poles in a group should more than n and less than 25 in 220 V system, and more
than n and less 13 in the 110 V system, respectively.

5. Conclusions

The street lighting poles as an important part of urban infrastructure have the advantage of
widespread distributions. The single hybrid pole as decentralized charging point can support charging
service for circumjacent EV owners. However, the single pole support only slow charging under the
power limit of public grid. In this paper, a group method of smart hybrid poles with renewable energy,
street lighting, and EV charging is proposed to support EV fast charging service. The main conclusions
are summarized as follows:

• The framework of hybrid poles group is proposed. The proposed group can support EV fast
charging service, because EV can obtain power from AC public grid and storage devices under
the control of management system. The proposed group can operate in grid-connected mode or
island mode and the stability of DC bus voltage can be stable with the help of energy storage
devices. For ensuring the functions of fast charging, the relationship among maximum capacity
of energy storage devices per pole, the number of poles, service time of charging, and power of
fast and slow charging is presented.

• The efficiency model of smart hybrid poles group is proposed under the condition of uniform
distribution and binomial distribution, respectively. The model indicates that the group method
has better performance than the single pole. The proposed group is conducive to the place with
the lower parking probability rather than high parking probability.

• The group method in the 220 V system can support more hybrid poles than in 110 V system.
Considering the voltage loss, the permissible number of hybrid poles in a group should more
than n and less than 25 in the 220 V system, and more than n and less 13 in the 110 V system,
respectively. In accordance with the functional image of efficiency model, the efficiency promotion
increases with the quantity growth of poles and it initially increases rapidly, and then rises slowly.

In next research, we will focus on further experiments and verify the actual performance of hybrid
poles group. In addition, the type and capacity of battery for the hybrid poles group are also in our
research directions.
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Nomenclature

Abbreviations Description
AC Alternating Current
BMS Battery Management System
BMW Bavarian Motor Works
BYD Build Your Dream Company Limited
DC Direct Current
EV Electric Vehicle
LED Light Emitting Diode
PCS Power Conversion System
PV Photovoltaic
SOC State of Charge
List of symbols Description
A(x + 1) × x The power matrix of x traditional poles in (x + 1) cases (kW)
a Power of EV slow charging (kW)
α Efficiency promotion of hybrid poles relative to traditional poles (%)
B(x + 1) × x The power matrix of x hybrid poles in (x + 1) cases (kW)
β Maximum permissible voltage loss rate (%)
C Capacity of energy storage device per pole (kWh)
Cmax Maximum capacity of energy storage device per pole (kWh)
d Distance between two adjacent poles (m)
Ex The probability matrix of x hybrid poles under uniform distribution
Ex,p The probability matrix of x hybrid poles under binomial distribution
f (x,a) The average power per traditional pole under uniform distribution (kW)
f (x,n,a) The average power per hybrid pole under uniform distribution (kW)
g (x,p,a) The average power per traditional pole under binomial distribution (kW)
g (x,p,n,a) The average power per hybrid pole under binomial distribution (kW)
ΣI Total current of x poles (A)
L Total length of cable (m)
Mx The matrix for the accumulation of cases
n Ratio of fast charging to slow charging
P Power of a pole (kW)
ΣP Total power of x poles (kW)
p The parking possibility of each parking spot (%)
ρ Resistivity of cable (Ω·m)
R Resistance of cable (Ω)
S Sectional area of cable (mm2)
t Time of charging service per day (h)
U The working voltage (V)
∆Umax The maximum permissible voltage loss (V)
x The number of poles
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