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Abstract: Load forecasting is a key issue for efficient real-time energy management in smart grids.
To control the load using demand side management accurately, load forecasting should be predicted
in the short term. With the advent of advanced measuring infrastructure, it is possible to measure
energy consumption at sampling rates up to every 5 min and analyze the load profile of small-scale
energy groups, such as individual buildings. This paper presents applications of deep learning using
feature decomposition for improving the accuracy of load forecasting. The load profile is decomposed
into a weekly load profile and then decomposed into intrinsic mode functions by variational mode
decomposition to capture periodic features. Then, a long short-term memory network model is
trained by three-dimensional input data with three-step regularization. Finally, the prediction results
of all intrinsic mode functions are combined with advanced measuring infrastructure measured
in the previous steps to determine an aggregated output for load forecasting. The results are
validated by applications to real-world data from smart buildings, and the performance of the
proposed approach is assessed by comparing the predicted results with those of conventional
methods, nonlinear autoregressive networks with exogenous inputs, and long short-term memory
network-based feature decomposition.

Keywords: deep learning; empirical mode decomposition (EMD); long short-term memory (LSTM);
load forecasting; neural networks; variational mode decomposition (VMD); weekly decomposition

1. Introduction

Accurate load forecasting optimizes power loads, reducing costs and stabilizing electric power
distribution. Load forecasting accuracy depends on the time series data of non-stationary and
non-linearity characteristics. These characteristics are influenced by the prediction time scale and
energy consumption scale. Depending on the prediction time scale, load forecasting is classified into
four types.

Long-term load forecasting (LTLF) has a time scale of more than a year, medium-term load
forecasting (MTLF) a time scale from one week to one year, and short-term load forecasting (STLF) a
time scale from one hour to one week. System operators typically estimate demand by referring to
load profiles from several hours ago. Ultra-short-term load forecasting (USTLF) is a key issue for smart
grids, real-time demand side management (DSM), and energy transactions because energy trading in
DSM requires precise load forecasting in the order of minutes, and profit is strongly related to forecast
accuracy. Therefore, the USTLF time scale is from several minutes to one hour [1].
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Conventional load forecasting methods use statistical models based on inherent characteristics
of historical data. Previous STLF studies have proposed auto-regressive integrated moving average
(ARIMA), Gaussian processing regression (GPR), support vector regression (SVR), and neural network
models [2]. ARIMA is a common method for linear time series-based methods. GPR and SVR provide
alternative methods to model time series loads, using external data such as weather data to consider
non-linearity and non-stationarity. GPR is a supervised machine learning model based on statistical
regression and a kernel function that refines variance and step length [3].

To reduce the nonlinearity of the time series data and to analyze their statistical characteristics, a
seasonal analysis combined prediction method is used [4,5]. Recent research activities divide profiles
into sub-profiles according to the load patterns of customers based on human factor, contract type,
and region. After dividing the profiles into sub-profiles, a clustering algorithm is used for hierarchical
classification [6–9].

To improve the accuracy of load forecasting using external data such as temperature, humidity,
weather information, and electricity prices, a method has been proposed [10–13]. However, measuring
such data is a challenging task for low-level distribution and small-scale loads. Furthermore,
data processing and data storage of each piece of the dataset are required because the resolution
of time-series data is different. Therefore, recent research trends use the technique of feature
selection [14,15] or decomposing the load profile to extract the characteristics of the load using signal
processing theory [16–24].

Wavelet decomposition with neural networks [1,16–18] has been employed to increase prediction
accuracy. In [1], a wavelet algorithm dealt with the noise of the actual electrical load data, and load
forecasting based on artificial neural networks (ANN) was proposed. Empirical mode decomposition
(EMD) with machine learning has also been proposed for load forecasting, wind speed, or energy
prices [19–22]. However, EMD lacks a mathematical definition and has weaknesses that diverge
at end-points when decomposing the signal. To overcome the weakness of EMD, load forecasting
studies using variational mode decomposition (VMD) have been proposed [22–25]. Existing regression
methods with various decompositions, clustering algorithms, and probabilistic analyses have been
investigated, as they can be used to identify load characteristics; however, they increase the dimension
of the input [26–28]. Clustering and decomposition methods are applied in the pre-processing stage
to improve the accuracy of the load prediction, and current state-of-art load forecasting studies have
improved the performance of the prediction model through deep learning [29–33].

A recurrent neural network (RNN) has a memory structure and a hidden layer suitable for
processing big data using deep learning techniques. However, an RNN has vanishing gradient
problems caused by an increase in the number of layers. Nonlinear autoregressive exogenous (NARX)
RNNs offer an orthogonal mechanism for dealing with the vanishing gradient problem by allowing
direct connections or delays from the distant past data [34,35]. However, NARX RNNs have a limited
impact on vanishing gradients, and the delay structure increases the computation time. Most successful
RNN architectures have long short-term memory (LSTM), which uses nearly additive connections
between states, to alleviate the vanishing gradient problem [36–41]. In [42], gated recurrent unit
(GRU) neural networks with K-mean clustering were proposed. A GRU is a variant LSTM with
a simpler structure, but it has similar performance, and convolutional neural networks (CNNs)
are also widely used in deep learning for image classification [43,44]. As the load prediction model
becomes more sophisticated, shorter prediction time scales [1,5] and lower level feeders of distributions,
such as behind-the-meter individual load, business buildings, and household electric usage, are being
studied [6,26–28].



Energies 2018, 11, 3433 3 of 17

This paper proposes a deep learning method whereby features are extracted through
multi-decomposition for short-term load forecasting. The scale of the predicted load is a feeder-level
business building. Feeder-level load forecasting is more complicated than that of an aggregated
load because the statistical characteristics are greatly changed even with a slight change in power
consumption. The proposed decomposition method significantly captures intrinsic load pattern
components and periodic features.

A load forecasting method based on LSTM with VMD is designed and implemented in this paper.
The proposed two-stage decomposition analysis identifies the characteristics of the load profile with
AMI only, i.e., without external data. In addition, the three-step regularization process removes the
problem of data processing in deep running and improves LSTM. The proposed method simulates
load forecasting within a few minutes (USTLF) to several days (STLF) using real-world building data
and shows the advantages that LSTM has over the traditional models.

The rest of the paper is organized as follows. Section 2 introduces the proposed feature extraction
method and provides background information. Section 3 presents deep learning. Section 4 introduces
the experiments, and Section 5 presents the analysis results using the proposed multi-decomposition.
In Section 6, the prediction results with different models are compared, and Section 7 summarizes and
concludes the paper.

2. The Proposed Multi-Decomposition for Feature Extraction

2.1. Enhanced AMI for Small-Scale Load and Real Time

Load forecasting aims to determine the future power plan based on a series of given historical
datasets. For efficient power planning, a minimum weekly load must be predicted according to the
time scale of the task, e.g., demand side management, economic dispatch, and energy scheduling [2].
As the prediction time scale and load scale become smaller, the non-linearity problem must be solved
through a more sophisticated prediction method. State-of-the-art AMI with 5-min sampling provides
more samples per hour than conventional 15-min AMI. As a result, power consumption measurements
that are close to real-time measurements are achieved. However, as the amount of data increases,
conventional machine learning causes problems such as overfitting, the vanishing gradient problem,
the long-term dependency problem, and increased calculation times.

2.2. Empirical Mode Decomposition

Decomposition methods are widely used to analyze similar signals and extract features. The EMD
decomposition method uses extreme signal values, and the VMD method decomposes the signal
by reflecting frequency characteristics to compensate for the weaknesses EMD. Both methods were
employed to analyze time series data in [22]. The EMD method preprocesses data by recursively
detecting local minima and maxima in a signal and estimating lower and upper envelopes by spline
interpolation of the extreme values, then removing lower and upper envelope averages. To decompose
a signal into a sum of intrinsic mode functions (IMFs), the following two conditions must be
satisfied [18–22]:

• In the entire dataset, the number of zero crossings must either be equal to or differ from the
number of extrema by no more than one;

• The lower and upper envelope means, defined by interpolating the local signal minima and
maxima, respectively, must equal zero.
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2.3. Variational Mode Decomposition

The goal of VMD is to decompose a signal into a discrete number of sub-signals (modes)
that have specific sparsity properties while reproducing the signal. VMD replaces the most recent
definition of IMFs; for example, an EMD mode is defined as a signal whose number of local extrema
and zero-crossings differ at most by one or as AM-FMsignals by the corresponding narrow band
property [23].

Variational mode decomposition provides an analytical expression that relates AM-FM parameter
descriptors to the estimated signal bandwidth, i.e., each mode k is required to be mostly compact
around a center pulsation, wk, that is determined along with the decomposition. This IMF definition
complements the weakness of EMD of lacking a mathematical definition. VMD also reduces EMD
end-point effects because it decomposes the signal into k discrete IMFs, whereas each IMF is band
limited in the spectral domain [23–25].

VMD Algorithm

1. For each mode, vk, compute the associated analytic signal using the Hilbert transform to obtain
the unilateral frequency spectrum;

2. For each mode, vk, shift the mode frequency spectrum to the baseband (narrow frequency) by
mixing it with an exponential tuned to the corresponding estimated center frequency;

3. Estimate the bandwidth using the Gaussian smoothed demodulated signal.

The resulting constrained variational problem is expressed as:

min
vk ,wk

{
K

∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ vk(t)

]
e−jwkt

∥∥∥∥2

2

}
(1)

subject to
K

∑
k

vk = Wp(t). (2)

where Wp(t) is the p weekly load profile with mode v and frequency w, δ is the Dirac distribution,
k is the mode index, K is the total number of modes and the decomposition level, and ∗ denotes
convolution. Mode v with high order k represents low frequency components. In contrast to that of
EMD, the decomposition level of VMD, k, must be pre-determined [22–25].

2.4. Decomposition for Feature Selection

Figure 1 shows the proposed load profile decomposition method. The building load profile has
similar weekday patterns, and the load is measured at 5-min intervals by AMI. To classify seasonal
patterns, the typical load profile (xt) of the building is decomposed on a weekly basis for weekly
seasonality features (xp

t ). The typical load profile is decomposed into two dimensions. The load
variations can be extracted if they are periodic because the VMD decomposes the load profile in terms
of the frequency (xp

k,t). Thus, all the IMFs exhibit periodic characteristics. As each IMF has a specific
frequency, the VMD identifies periods that cannot be identified in the typical load profile and the
weekly load profile. As a result, the typical load profile is decomposed into three-dimensional data
according to time, weekly seasonality, and IMF-level. The feature decomposition process of the load
profile contributes to the load characteristics without external data, such as the calendar information
about holidays, temperature, and humidity.
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Figure 1. Load profile feature decomposition process.

2.5. Three-Step Regularization Process

The sampling of AMI used in this study is three-times larger than that of conventional AMI,
which collects data at 15-min intervals. In addition, as the load profile is decomposed into sub-profiles,
the sub-profiles that have detailed frequency characteristics can be learned as the input variables,
but the number of input variables increases. As the number of input variables increases, the curse
of dimensionality degrades the learning ability because the number of hidden nodes increases. As a
result, the number of hidden layers is increased to solve the curse of dimensionality, but this causes
the vanishing gradient problem. Moreover, without feature selection, overfitting occurs. The learned
hypothesis may fit the training set very well, but it cannot be extended to new samples. In addition,
without the normalization process, the covariate shift problem degrades performance. The covariate
shift, which refers to the change in the distribution of the input variables present in the training and
test data, should be prevented. Therefore, the proposed method includes a three-step regularization
to solve each of the above-mentioned problems. First, the delay factor of weekly data is estimated.
Although a large amount of data can be beneficial for deep learning, the distant past data can result in
overfitting problems and increase the computation time. A similar problem was addressed in [36] to
solve the dependence on distant historical data. In [36], a decay factor was used to solve the long-term
dependency problem of NARX-RNN.

In this paper, the weekly decay’s exponent by a factor is proposed as Equation (3):

Dp = 2−(p−1) (3)

where p is the number of weeks, which gives high weights to nearby weekly data in time and lower
weights to distant weekly past data.

Secondly, the separated IMF signals (xp
k,t) are normalized against the original signal size (xp

t ). This
is because these signals correspond to residual noise such as frequencies that are too high or too low
to be identified in a certain pattern. The IMF normalization process is performed to identify features
that degrade learning. The IMF normalization factor given by Equation (4) and T′ is the number of
samples of the weekly data.

Nk =
∑T′

t=1 xp
k,t/T′

∑T′
t=1 xp

t /T′
(4)

Finally, as the number of hidden layers increases, the internal covariance can be shifted.
The internal covariate shift causes the distribution of the training set and test set to differ, which can
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lead to local points. Batch normalization (BN) is used to address internal covariate shift. BN normalizes
the output of a previous activation layer by subtracting the batch mean and dividing by the batch
standard deviation. The advantages of BN are (1) fast learning, (2) less careful initialization, and (3) a
regularization effect. BN is one of the regularization techniques used in the deep learning field [41,42].
The regularization process contributes to the accuracy of the load forecasting and the optimization
of the model by applying a high weight to the input data having the most definite period, reducing
dependency on the past distant data and avoiding the covariate shift of the data group. The three-step
regularization process increases the accuracy of the load forecasting by minimizing problems that can
occur when several inputs are learned.

3. Deep Learning

Deep learning is one of the machine learning techniques that proposes to model high-level
abstractions in data by using ANN architectures composed of multiple non-linear transformations.
Deep learning refers to stacking multiple layers of neural networks and relying on stochastic
optimization to perform efficient machine learning tasks. To take advantage of deep learning, three
technical constraints must be solved. The three technical constraints are (1) the lack of sufficient data,
(2) the lack of computing resources for a large network size, and (3) the lack of an efficient training
algorithm. Recently, these constraints were solved by the development of big data applications, the
Internet-of-Things, and high performance smart computing [37–39]. One of the most efficient deep
learning processes is RNN.

RNNs are fundamentally different from traditional feed-forward neural networks; RNNs have
a tendency to retain information acquired through subsequent time-stamps. This characteristic of
RNNs is useful for load forecasting. Even though RNNs have good approximation capabilities, they
are not fit to handle long-term dependencies of data. Learning long-range dependencies with RNNs
is challenging because of the vanishing gradient problem. The increase in the number of layers and
the longer paths to the past cause the vanishing gradient problem because of the back-propagation
algorithm, which has the very desirable characteristic of being very flexible, although causes the
vanishing gradient problem [30,32–34].

3.1. Long Short-Term Memory Neural Networks

The long-short term memory network has been employed to approach the best performance of
state-of-the-art RNNs. The problem of the vanishing gradient is solved by replacing nodes in the RNN
with memory cells and a gating mechanism. Figure 2 shows the LSTM block structure. The overall
support in a cell is provided by three gates. The memory cell state st−1 interacts with the intermediate
output ht−1. The sub-sequent input xt determines whether to remember or forget the cell state.
The forget gate ft determines the input for the cell state st−1 using the sigmoid function. The input
gate it, input node gt, and output node ot determine the values to be updated by each weight matrix,
where σ represents the sigmoid activation function, while φ represents the tanh function. The weight
matrices in the LSTM network model are determined by the back-propagation algorithm [37–42].

The LSTM has become the state-of-the-art RNN model for a variety of deep learning techniques.
Several variants of the LSTM model for recurrent neural networks have been proposed. Variant LSTM
models have been proposed to improve performance by solving issues such as computation time
and the model complexity of the standard LSTM structure. Among the variants, the GRU maintains
performance by simplifying the structure with an update gate that is coupled with an input gate and
forget gate. The structure of the GRU is advantageous for forecasting in a large-scale grid to reduce
calculation time [42]. In [45], variants of the LSTM architecture were designed and their performances
were compared through implementation. The results revealed that none of the variants of LSTM could
improve upon the standard LSTM. In other words, a clear winner could not be declared. Therefore,
the popular LSTM networks are used in this study [45,46].
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Figure 2. The structure of the LSTM.

3.2. Nonlinear Autoregressive Network with Exogenous Inputs

NARX RNNs and LSTM solve the vanishing gradient problem with different mechanisms. NARX
RNNs allow delays from the distant past layer, but this structure increases computation time and has a
small effect on long-term dependencies. The LSTM solves the vanishing gradient problem by replacing
nodes in the RNN with memory cells and a gating mechanism [36].

4. Experiments

This section describes the process used to obtain time series models for load forecasting. Figure 3
shows the proposed load forecasting model using LSTM with multi-decomposition for feature
extraction. We will discuss each step in detail.

Figure 3. Deep-learning load forecasting based on the multi-decomposition method.
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4.1. Prediction of the Time Scale

Reference load profiles reflect the load profiles that are close to real-time load profiles before h
steps ago, where h determines the prediction time scales, which depend on the purpose of the load
forecasting. STLF techniques can be used for a variety of purposes by enabling smaller scales and
faster prediction. USTLF, which predicts the load within a few minutes to one hour, can be used for
electricity theft detection or can provide information for emergency power supply [47]. STLF, which
predicts the load from one hour to a day, can be used for electricity transactions or economic dispatch
of renewable energy resources [2].

4.2. Extract Feature Layer

Through the multi-decomposition method, the features of time-series data are extracted.
The number of decomposition levels (K) is 10, which is the value obtained when the decomposition
loss rate is 0.1% or less. The weight of the weekly load profile (Dp) considers the trend of load patterns
according to seasonal changes. Each IMF decomposed through the VMD has a frequency characteristic
and is normalized to make the feature stand out (Nk).

4.3. Long Short-Term Memory Layer

The LSTM can capture long-term dependencies in time-stamps; therefore, it can address the
vanishing gradient problems. In the proposed method, the number of hidden layers increases due to
the decomposition of input data, but the vanishing gradient problem is solved through the memory
cell structure with three-step regularization. In addition, to minimize the covariate shift problem, batch
normalization is performed prior to the activation phase of the input. IMFs and reference load profiles
are trained at each LSTM layer and have predictive values, all of which are summed to predict the
load profile.

4.4. Model Construction

4.4.1. Hyperparameter Tuning and Training Options

The LSTM model has several hyperparameters such as the number of input neurons, hidden
layers, input window size, number of epochs, regularization weight, batch size, and learning rate.
The window size of input and output parameters depends on the time scale of load forecasting.
The input neuron parameter is determined by the dimensions of the input data. The input dimension
of the proposed method is 11, which is the sum of the reference profile and 10 IMF signals. We selected
the hyperparameters and used ADAM optimization, one of the optimization techniques used in deep
learning [30–40].

4.4.2. Training and Testing

The overall AMI dataset of each day is divided into a ratio of 70:15:15 for the purposes of model
training, validation, and testing, respectively.

4.4.3. Performance Measures

The root mean squared error (RMSE) is used to compare differences between the predicted value
ŷt and measured value yt and is computed for T (which is the number of samples of the weekly load
profile) different predictions as the square root of the mean of the squares of the deviations:

RMSE =

√
∑T

t=1(ŷt − yt)2

T
. (5)



Energies 2018, 11, 3433 9 of 17

The mean absolute error (MAE) is one of a number of ways of comparing forecasts with their
eventual outcomes.

MAE =
1
T

T

∑
t=1
|yt − ŷt| . (6)

The mean absolute percent error (MAPE) is also widely used to evaluate accuracy. Accuracy can
be compared via MAPE using percentages when the scale of the loads is different [37–40].

MAPE =
100
T

T

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ . (7)

5. Load Profile Analysis by Multi-Decomposition Methods

5.1. Weekly Seasonality

This study used real-world load profile data from the R&D business building that utilized
enhanced AMI for demand side management. Figure 4 shows the real-world load profile of the business
building. The building generates 288 samples per day, 2016 samples per week, and 8640 samples per
month. The load profile is measured and stored in data storage.

The electrical load profile of the office building is usually light on weekends compared to
weekdays because energy is consumed according to the business schedule. In contrast to those
of residential load profile patterns, energy the increase and decrease times of office building load
profiles are related to commute time and have similar daily characteristics. Figure 4 shows a typical
profile for building electricity load over one week, from which a clear weekly seasonality pattern
can be observed. The weekly load pattern is quite similar over four weeks, with a weekly average
correlation of 0.93. Therefore, many studies have proposed load forecasting methods using weekly
statistical methods or dividing the time series data into holidays, weekends, and weekdays [4,5].

However, the process of dividing the time series data in a database into weekdays, weekends,
and holidays is inefficient because the calendar information may not be provided in advance, and
each consumer group may have different days off. Moreover, the simple method of dividing the data
into weekdays and holidays cannot capture the periodicity of the load profile such as the commute
time and periodic power system on/off states. In Figure 4, the fourth week load pattern deviates
somewhat from the previous pattern, with significant peak load shift in the afternoon, particularly on
Wednesday and Friday (average correlations for Wednesday and Friday are 0.82 & 0.84, respectively).
As the patterns deviated greatly on weekends (the weekend average correlation is 0.71), it is difficult to
predict accurately energy consumption using daily statistical data alone. Therefore, feature extraction
from the load profile is required to capture periodic components caused by commuting time, meal
times, thermal control change, elevator system operation, etc.

Figure 4. The typical load profile of the business building.
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5.2. Comparison of Decomposition Performance

Figures 5 and 6 show the load profiles of Figure 4 decomposed by EMD and VMD, respectively,
where each IMF of each load profile covers four weeks. To analyze various frequency components and
preserve the signal energy, in EMD, the standard deviation as the stop criterion is determined as 0.1%;
hence, the weekly load profiles are decomposed into 10 IMFs.

As EMD decomposes the signal using extrema envelopes (Figure 5), the results are similar to
those obtained with a low pass filter. However, VMD is similar to a high pass filter, as it decomposes
the load profile from low frequency components. VMD IMFs (VMFs) are band limited; hence, they
are similar to harmonic components. Therefore, VMD efficiently identifies periodic characteristics in
non-linear and non-stationary signals compared to EMD IMFs (EMFs).

Figure 5. Weekly load profile decomposition using EMD (k = 10). EMF, EMD IMF.

Figure 6. Weekly load profile decomposition using VMD (k = 10). VMF, VMD IMF.

The first VMF (VMF-1) is effectively the DC bias (Figure 6), i.e., the average daily load
consumption. VMF-2 and VMF-3 show high correlation signal periodicities. Office buildings typically
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exhibit a commute period, and this appears in VMF-2. This R&D building has two peaks around
the commute time, and this pattern appears in VMF-3. On the other hand, EMF-10 and EMF-9
show high correlation trends, whereas the other EMFs show low correlations. High frequency
EMFs (EMF-5–EMF-10) also include end-point problems, whereas VMD decomposes the signal into
band-limited signals; hence, VMFs have no end-point issues.

Table 1 shows the correlations for each IMF. The VMFs capture similar frequency signals better
than the EMFs and decompose high frequency signals well. As VMD is done mathematically,
the correlation between VMFs is gradually reduced, whereas EMD IMFs are irregular. Therefore, in the
case of high sampling or short prediction time scales, VMD shows better performance than EMD
because VMD can reflect the high frequency characteristics of the dataset.

Table 1. Correlation index comparison of EMD and VMD.

Decomposition IMF
1 2 3 4 5 6 7 8 9 10

EMD 0.58 0.42 0.40 0.28 0.46 0.35 0.02 0.43 0.82 0.96
VMD 0.98 0.83 0.80 0.63 0.53 0.26 0.15 0.01 −0.02 −0.02

In addition, VMD can remove the inherent noise. Actual AMI data have noise owing to the interference
due to peripheral electronic devices. VMD can improve the accuracy of the load forecasting through
the deep learning training and regularization process by reducing the weight of high frequencies that
are susceptible to noise, such as VMF-8, VMF-9, and VMF-10, which have low correlation indices of less
than 1%. The AMI used in this study has a three-times higher sampling than conventional AMI and can
reduce the model uncertainty as more samples are measured. The proposed method reduces the prediction
uncertainty by training the decomposed signal with the high sampling AMI.

6. Case Studies

The time series forecasting models were simulated on real-world datasets of business buildings.
We conducted the case studies with different prediction models and prediction time scales. The weekly
prediction results for one hour ahead load forecasting are shown in Figure 7.
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Figure 7. Actual and different load forecasting for a week. (a) Weekly load forecasting; (b) Monday
load forecasting.
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6.1. Comparative Conventional Load Forecasting Models

To validate the efficacy of the proposed VMD-LSTM RNN, eight load forecasting models,
including ARIMA, SVR, GPR, NARX, NARX with EMD, NARX with VMD, LSTM, LSTM with
EMD, and LSTM with VMD, were compared under the same benchmarks (RMSE, MAE, and MAPE).

The ARIMA model has been used for time-series prediction. However, with the rise of machine
learning, the GPR and SVR models are being utilized. To account for seasonality in an ARIMA model,
three hyperparameters were used: autoregression, stationarity, and moving average. The GPR model
uses statistical hyperparameters, including variance and length, whereas the SVR model depends on
kernel parameters, a penalty factor, and insensitive zone thickness. The ARIMA, GPR, and SVR models
are trained through cross-validation and ADAM optimization or particle swarm optimization [2,26–29].
To compare the performance of the RNNs, we compared the results of applying two decomposition
methods to the NARX and LSTM models The prediction results of all models are shown in Figure 7,
and the prediction accuracy by day of the week is shown in Figure 8. Table 2 also summarizes the
performance at different time scales.

6.2. Weekly Load Forecasting

Figure 7 illustrates the STLF for building load with one hour ago (12 steps ahead). To check the
performance of the proposed method based on VMD and LSTM, the prediction results of different
methods were compared. A closer look at the prediction results reveals the Monday load forecasting in
Figure 7b. The proposed model showed robust performance under abrupt load increases and decreases
in 400 samples and 500 samples, respectively. Conventional models exhibited conservative changes to
sudden load changes, and EMD-LSTM exhibited excessive weight changes.

Figure 8 shows the average predictive error of the different methods. The result of load forecasting
with one-month AMI data is shown in Figure 8a, and Figure 8b is the prediction result with three
months of AMI data. There are distinct load characteristics for each day of the week. EMD-LSTM
had large errors with an RMSE of 32.68 kWh, MAE of 28.61 kWh, and MAPE of 12.24% on Sunday in
Figure 8a. However, if the size of the dataset is sufficiently large or the prediction time scale is long
enough, the initial error can be corrected. When the data are insufficient with a short time scale, the
input of the reference load profile (which is measurement data at the maximum observable time before
load forecasting) can be a dominant feature of machine learning, which causes a large error. Figure 8
shows that, if the LSTM correctly decomposed periodic features, it had high accuracy even with small
amounts of data, but if there was an error in the feature, the prediction error also increased because of
the memory cell structure of LSTM.

VMD can reflect more dominant patterns than EMD with distinct periodicity. The performance
difference of decomposition between EMD and VMD is shown in Figures 4 and 5. The RNNs
using VMD showed performance improvements. However, there was a difference in performance
improvement between NARX and LSTM because the vanishing gradient problem was solved
differently, where NARX used the delay factor and LSTM had the memory cell structure. As LSTM
preserved characteristics of dominant features through the memory cell, LSTM showed higher accuracy
than NARX in STLF.
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Figure 8. Benchmarks of different models. (a) One-month AMI data; (b) Three-month AMI data.

The MAPE of VMD-LSTM was around 2%. In the weekly comparison, the least error occurred on
Tuesday: RMSE of 6.49 kWh, MAE of 3.98 kWh, and MAPE of 1.48%. This was because the correlation
between days of the week was the highest on Tuesday. On the other hand, there was a large error on
Wednesday and Friday because the correlation was relatively lower than on other days of the week.

The proposed VMD-LSTM reflecting the mixed periodic pattern of the load profile based on
multi-decomposition with deep learning had the lowest error.

6.3. Benchmark for Different Prediction Time Scales

Finally, in this section, we analyze the accuracy of the load forecasting methods for the case study
considering different prediction time scales (5 m, 1 h, 3 h, 24 h, 48 h, 72 h). The accuracy results are
summarized in Table 2. The best accuracies were obtained for the shortest prediction time scale (5 m)
for all models. The proposed model, VMD-LSTM, showed the best accuracy with an MAE of 1.95 kWh,
RMSE of 4.28 kWh, and MAPE of 0.71%.

In addition, EMD-LSTM and VMD-LSTM showed better accuracy on the previous day when
compared to the 36 steps ahead (3 h) and one day to three days ahead (24 h, 48 h, 72 h) time scales.
The 24 h, 48 h, and 72 h cases show that RNN-based models had higher accuracies than ARIMA or
GPR, but eventually showed similar errors, and their performances were saturated. This result was
obtained because the reference load profile was learned as a dominant input according to the prediction
time scale to reflect the power consumption trend, so the 288 steps ahead case and 576 steps ahead
case, which had similar patterns, were slightly more accurate than the 36 steps ahead case (3 h).
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Table 2. Load forecasting errors of different models.

Prediction
Horizon Index ARIMA GPR SVR NARX EMD

NARX
VMD
NARX LSTM EMD

LSTM
VMD
LSTM

1 step
ahead

(5 min)

MAE 7.45 6.03 3.43 7.52 7.33 3.25 2.92 5.53 1.95
RMSE 11.77 10.21 6.89 11.89 11.21 6.62 4.98 8.72 4.28
MAPE (%) 3.46 2.67 1.96 3.61 3.39 1.84 1.12 2.21 0.71

12 steps
ahead
(1 h)

MAE 17.28 16.11 14.76 17.71 17.02 15.12 9.01 11.69 4.81
RMSE 22.12 20.94 20.12 24.12 22.49 19.31 12.87 15.08 7.53
MAPE (%) 6.20 6.06 5.70 6.35 6.27 5.43 3.54 4.27 1.90

36 steps
ahead
(3 h)

MAE 57.14 53.96 48.72 58.85 56.54 50.69 30.25 38.52 16.27
RMSE 64.50 61.35 59.31 70.64 66.80 56.38 38.05 43.66 22.40
MAPE (%) 20.62 19.91 18.17 21.79 20.97 20.03 11.63 14.26 6.01

288 steps
ahead
(24 h)

MAE 51.22 48.55 43.25 52.68 51.50 45.12 28.19 32.65 15.60
RMSE 59.38 58.81 56.88 58.12 57.24 56.85 35.98 37.38 21.80
MAPE (%) 18.90 17.91 16.13 19.16 19.06 16.71 10.62 11.78 5.75

576 steps
ahead
(48 h)

MAE 57.24 52.87 46.57 57.48 55.65 48.23 28.60 32.48 15.85
RMSE 63.28 60.31 59.72 62.51 61.49 57.53 36.24 42.27 22.11
MAPE (%) 22.08 19.72 17.76 21.49 20.99 17.18 10.92 12.18 5.89

864 steps
ahead
(72 h)

MAE 60.45 58.55 51.92 59.75 59.01 53.44 29.12 34.37 16.09
RMSE 68.24 62.42 58.35 67.38 66.26 58.72 36.85 43.52 22.18
MAPE (%) 24.14 21.76 18.72 22.43 21.19 19.05 11.05 12.86 5.96

7. Conclusions

This paper proposes short-term load forecasting using deep learning based on
multi-decomposition. The results of the proposed approach were validated by applications
to real-world data from a business building, and the performance of the proposed approach was
assessed by comparing the predicted results with those of other models.

To monitor small-scale load and demand side management, an enhanced AMI that provides
three-times more sample data points per hour than conventional AMI was used, increasing the
accuracy of the load forecasting using deep learning. In this study, to detect the features of the load
profile, the load profile was decomposed by a weekly seasonality and variational mode decomposition.
Two decomposition methods can identify features such as seasonality, load increase/decrease pattern,
and periodicity without any external data, such as temperature.

The three-step regularization process reduced the long-term dependency, overfitting, and covariate
shift problem caused by feature decomposition, which increases the data samples and dimensions.
The results also reveal the effectiveness of the long short-term memory neural networks based on
variational mode decomposition with different prediction time scales. We expect the proposed method
to be a key technique for demand side management, electrical power theft detection, energy storage
system scheduling, and energy trading platforms in future smart grids.
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Nomenclature

AMI advanced measuring infrastructure
ANN artificial neural network
LSTM long short-term memory
EMD empirical mode decomposition
VMD variational mode decomposition
LTLF long-term load forecasting
MTLF medium-term load forecasting
STLF short-term load forecasting
USTLF ultra-short-term load forecasting
DSM demand side management
ARIMA auto-regressive integrated moving average
GPR Gaussian processing regression
GRU gated recurrent unit
SVR support vector regression
RNN recurrent neural network
NARX nonlinear autoregressive exogenous
CNN convolutional neural network
IMFs intrinsic mode functions
k the mode index
vk kth intrinsic mode
Wp(t) pth weekly load profile
w frequency of mode
K the total number of modes
xt the typical load profile
xp

t the load pth weekly seasonality feature
xp

k,t kth IMF of the load pth weekly seasonality feature
δ the Dirac distribution
Dp the weekly decay’s exponent factor
Nk the IMF normalization factor
BN batch normalization
st the memory cell state of LSTM
ft the forget gate of LSTM
it the input gate of LSTM
gt the input node of LSTM
ot the output gate of LSTM
ht the output value of LSTM
RMSE root mean squared error
MAE mean absolute error
MAPE mean absolute percent error
VMF variational mode function
EMF empirical mode function
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