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Abstract: The monitoring of the Internet of things networks depends to a great extent on the
availability and correct functioning of all the network nodes that collect data. This network
nodes all of which must correctly satisfy their purpose to ensure the efficiency and high quality
of monitoring and control of the internet of things networks. This paper focuses on the problem
of fault-tolerant maintenance of a networked environment in the domain of the internet of things.
Based on continuous-time Markov chains, together with a cooperative control algorithm, a novel
feedback model-based predictive hybrid control algorithm is proposed to improve the maintenance
and reliability of the internet of things network. Virtual sensors are substituted for the sensors that
the algorithm predicts will not function properly in future time intervals; this allows for maintaining
reliable monitoring and control of the internet of things network. In this way, the internet of things
network improves its robustness since our fault tolerant control algorithm finds the malfunction nodes
that are collecting incorrect data and self-correct this issue replacing malfunctioning sensors with
new ones. In addition, the proposed model is capable of optimising sensor positioning. As a result,
data collection from the environment can be kept stable. The developed continuous-time control
model is applied to guarantee reliable monitoring and control of temperature in a smart supermarket.
Finally, the efficiency of the presented approach is verified with the results obtained in the conducted
case study.

Keywords: control system; fault-tolerant control; algorithm design and analysis; IoT (Internet of Things);
nonlinear control

1. Introduction

The advances in communications techniques, network topologies and control methods,
have contributed to the development of Networked Control Systems (NCSs), expanding their
possibilities. As a result, in the last several decades, NCSs have received considerable attention form the
scientific community, mainly due to their wide-ranging application possibilities [1]. Once an Internet
of Things (IoT) network is formed by multiple IoT nodes, controller or actuator nodes, it is feasible for
them to capture data from a large range of existing structures. However, when the accuracy of IoT nodes
is reduced, the data they capture is faulty and causes inappropriate decisions. Therefore, it is critical
to increase the ability of the IoT network to detect IoT nodes which are not operating properly [2].
This work introduces a new predictive temperature control algorithm for fault tolerant detection
of a large number of IoT nodes, providing an efficient temperature control. The implementation of
a system to control and monitor the precision states of the IoT nodes will ensure reliability of the data
captured by the IoT network. The discrete time control focuses on system efficiency at a discrete time
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range rather than a continuous time range. The discrete-time control issues, such as linear systems
have been investigated. Amato et al. deal with the finite-time stabilization of continuous-time linear
systems is considered. The main result provided is a sufficient condition for the design of a dynamic
output feedback controller which makes the closed loop system finite-time stable [3,4]. Therefore,
Polyakov et al. consider the control design problem for finite-time and fixed-time stabilizations of
linear multi-input system with nonlinear uncertainties and disturbances, so the robustness properties
of the network are improved [5]. The works presented above show that the quality of any linear control
algorithm is estimated by different performance indices such as robustness with respect to disturbances.
Although these authors make their study in discrete time, the algorithm we have developed is
an important starting point. Meanwhile, the studies on the discrete-time control of nonlinear system
have also been carried out for triangular systems [6] or nonlinear dynamical networks [7]. These two
papers have a different approach to the problem of discrete-time control. Korobov et al. solve the
issue of global stabilization in finite-time for a general class of triangular multi-input multi-output
(MIMO) systems with singular input–output links combining the controllability function method with
a modification of the global construction. Hui et al. focus on the analysis of semistability and stability
in finite time and on the synthesis of systems with a continuous equilibrium. These two approaches
address the problem of control in nonlinear systems in very specific cases of triangular and semi-stable
systems. Although these are two rather limited case studies, they give a very good focus on how to
deal with nonlinear control problems. Discrete-time control techniques have been applied for many
practical applications, for instance, multi-agent systems [8] and secure communications [9]. Both works
present a new adaptive fuzzy output feedback control approach composed for a type of nonlinear
single input and single output feedback control systems with unmeasured status and input saturation.
In these two works, we can see that fuzzy control is a good approach to the problem of nonlinear
control, but the authors think that, for this case, it is an invalid technique, since all the control functions
of the system are known. Feedback nonlinear systems representing a class of nonlinear control systems
have been widely considered [10,11]. The problem we address is the topic of predictive maintenance
of IoT networks in continuous-time, with the aim of increasing the monitoring and control reliability
of IoT networks, as it is done in continuous-time. By using continuous-time Markov chains to predict
the future accuracy states of sensors, IoT networks will collect quality data because their nodes will
always work in an optimal state.

Motivated by the above observation, this paper proposes a new feedback control algorithm to
improve predictive maintenance of the IoT networks. The algorithm finds the IoT nodes that do not
function correctly and collect false data. To optimize the monitoring and control processes of the IoT
network, a novel application of the continuous-time Markov chains is used. We predict the future
accuracy states of the IoT nodes and, in case it is predicted that a sensor will become faulty after the
time control period has expired, the controller sends a signal that this IoT node has to be replaced.
Moreover, if an IoT node has to be replaced, the control algorithm creates a virtual sensor in that
position. This virtual sensor estimates the temperature of that sensor based on the temperature of its
neighboring nodes. In this way, the IoT network collects data in continuous-time range without any
loss of reliability in the data due to malfunctions in the IoT devices.

The problem of data quality and the detecting of incorrect data has been extensively studied [12];
these works search the quality of data applying different techniques as game theory [13] or other types
of metrics [14]. These articles provide a solid design of how to increase the quality of data; in our
opinion, these works are focused on homogeneous data and discrete time; even so, they are an excellent
support for our research. The above-mentioned studies on data quality and detection of incorrect
data concern discrete time, and the outputs for continuous time systems are quite limited. Actually,
continuous time control systems have been applied in a large range of fields, such as feedback control
of nonlinear systems [15,16]. These papers deal with the stability of discrete-time networked systems
with multiple sensor nodes under dynamic scheduling protocols. In fact, this is a great advancement
for the stability of nonlinear systems because it addresses dynamic systems with multiple nodes.
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In our research, we are using similar techniques for improve fault tolerant control with multiple
IoT nodes. Although the work of these authors is in discrete time, the techniques they use are very
sophisticated and useful in the field of control theory. Decision-support is an important topic in control
theory. Automated trading plays a crucial role in supporting decision-making in bilateral energy
transactions [17,18]. In fact, a proper analysis of the past actions of opposing traders can increase the
decision-making process of market players, allowing them to choose the most appropriate parties
with whom to trade in order to increase their performance. Demand–response aggregators were
developed and deployed around the world, and more in Europe and the United States. Aggregator
involvement in energy markets increases the access of a small resource to them, enabling case studies
to be presented for flexibility of demand [19,20]. Real-time simulations [21,22] have applications
to control theory. In fact, this work analyzes the way in which the players’ features are modeled,
particularly in their small-scale performance, thus simplifying the simulations while preserving the
quality of the results. Authors also carried out a comparative analysis of the real values of the electricity
market with the market results obtained from the scenarios generated. In [23,24], Zhang et al. proposes
a new time-delay communications algorithm based on adapted control. Although in our research
we have used a control algorithm based on feedback, we think that a possible improvement of our
proposal is that the control algorithm is adaptive. This article is a good example of how to use adaptive
control to stabilize a system. In addition, control theory has several applications in the field of demand
response. In [21,25], the authors propose an algorithm to predict demand response based on a simplex
optimization method. Although this is a nice approach to solve this kind of problem, we think that this
approach can be optimized for its application to control theory. However, some problems related with
the above topics can be solved using neural networks [26]. In other areas such as supply chain [27,28],
fraud detection [29] and edge/fog computing architectures [30], control techniques are beginning
to be applied to optimize processes. Control algorithms face the following challenges in the field of
temperature data quality and predictive maintenance of IoT networks.

1. For the fault tolerant control in continuous time, solving differential equations with complex
conditions and boundaries that change in every loop is needed.

2. Algorithms that improve data quality and detect incorrect data can lead to false positives.
It is essential to differentiate between a hot (cold) temperature point and a faulty IoT node.

In this paper, we address research gaps in the supervision and control of continuous time
networked systems with multiple IoT devices. Our goal is to present an optimized control algorithm
to achieve maximum efficiency in fault tolerant control. A unified model of a continuous time hybrid
control system is presented along with a data quality and incorrect data recognition algorithm and
a feedback control algorithm to provide prediction of the accuracy status of the IoT nodes. The output
of the data quality algorithm is the input of the predictive feedback control algorithm. The main
contribution of this paper can be summarized as follows:

1. To the best of our knowledge, the suggested method provides efficient feedback control for the
continuous time system model regarding detection of incorrect data or malfunction of IoT devices.

2. A new way of predicting IoT node accuracy states from error measurements and, through
the Markov continuous time chains, algorithm predict future IoT node accuracy states in
continuous time.

3. A novel control algorithm capable of integrating the above contributions to provide an innovative
IoT network temperature control mechanism.

The efficiency of the presented approach is illustrated by a numerical case study. Preliminary
results on the improvement of data quality and detection of wrong date in WSNs have been presented
in the work of Casado et al. [13].

The rest of the paper is organized as follows. Section 2 shows the procedure of the control
algorithm design in this paper. A case study is shown in this section and simulation studies are
performed in Section 3. Finally, Section 4 concludes this paper.
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2. System Model

This section presents the control algorithm that we have developed. The control algorithm is
a hybrid of two other algorithms: (1) Cooperative control algorithm (Section 2.1). This algorithm
receives the data collected by the IoT network and increases the quality of the data by searching and
self-correcting false data. The output variables of this algorithm are the input variables of the following
algorithm; (2) accuracy state prediction algorithm (Section 2.2). This algorithm implements a predictive
maintenance system to make the IoT network more robust. Figure 1 shows the model described in
this paper, where ε is the measurement error that temperature IoT node are allowed to have. u(t+k) is
the controller function, this function detects if an IoT node is faulty or operates correctly at time t + k
(i.e., t is the current algorithm step time, while k is a time interval that we want to control. In this way,
t + k is the time interval that elapses from the current time t). z(t+k) is the prediction accuracy states
function; this function predicts the accuracy state of IoT nodes in the time window t + k (i.e., we know
the accuracy state of the IoT nodes at time t, so this function gives us the most probably precision state
in time t + k). f (t) is the feedback function at time t.

Figure 1. This algorithm improves the fault tolerance of the IoT network via the designed control
algorithm in the time interval (t, t + k), where k is the interval of time that we want to control.

The algorithm proposed in this paper controls the temperature of a smart building. For this
purpose, data collected in time t from the IoT network is the input of the algorithm (i.e., T(t)

i in
blue block). The cooperative control algorithm forms coalitions of neighboring IoT nodes to detect
incorrect data and thus auto-correct temperature. This first part of the proposed algorithm calculates
the difference between the collected temperature collected by the IoT network and the optimal output
temperature of the cooperative control algorithm. Then, this calculated error (i.e., T(t)

e ) in time t is
sent to the controller as input of the prediction step. The prediction step resolves the Markov strings
in continuous-time resulting in the probability that the IoT nodes have the same error that in time
t or this error will change. Forecasts of the accuracy state of the IoT nodes are sent to the actuator
(i.e., thermostats) to set the process (i.e., smart building) temperature. From the controller, there are
two send signals: (1) Since t is the current time in the current loop, assume that k is the time interval
to be determined; z(t+k) predicts the accuracy of the IoT nodes at the end of the time interval t + k.
(2) The second signal that comes out of the controller u(t+k) determines which IoT nodes need to be
repaired and which are operating correctly. The process sends the final temperature coming out of
the algorithm to the feedback function that compares the prediction of the accuracy states with the
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new temperature inputs of the algorithm and corrects the error in the predictions for the next step of
the algorithm.

2.1. Cooperative Control Algorithm

The cooperative control algorithm is located in the reference input. The cooperative control
algorithm requires the data to be in a matrix. The input of this algorithm is the temperature collected
by the IoT network of the smart building. This data has a transformation process until it is in the
correct form so that the algorithm can process it. The IoT nodes collect the data as follows, IoT node
places in: s(i,j) have the following temperature: ts(i,j) . The other IoT nodes behave in a similar way.
Therefore, the first transformation that data has is to place them in an ordered mesh from point (1, 1)
to point (n, n) so that each of these points matches the position of the smart nodes. It is easy to create
a matrix from the mesh and apply the cooperative control algorithm to it. If we have a mesh with n
sensors ordered from (1, 1) to (n, n), a matrix shown in Equation (1) is created without loss of generality:

Tn,n =

 ts1,1 . . . ts1,n
...

. . .
...

tsn,1 . . . tsn,n

 . (1)

2.1.1. Mathematical Description of the Algorithm

Let n ≥ 2 be the amount of players in the game, ordered from 1 to n, and let N ={1, 2, ..., n} be
the group of players. A coalition, S, is formed to be a subgroup of N, S ⊆ N, and the group of the
whole coalitions is called by S. A cooperative game in N is a function u (characteristic function of the
game) that applies to every coalition Si ⊆ S a real number u(Si). Moreover, one of the conditions is
that u(∅) = 0. In this case, the game will be non-negative (the outputs of the characteristic function
are always positive), monotonous (if there are more players in the coalition, the expected characteristic
function value does not change), simple and 0-normalized (the players are required to cooperate with
one another, as each player will obtain no profit on his own).

In this case, the group of players is the group of organized IoT nodes S and the characteristic
function u is denoted as:

u : 2n −→ {0, 1} (2)

so that, for every coalition of nodes, u = 1 or 0 according to a particular coalition can vote or not,
respectively (see Equantions (2) and (3)):

S 3 Si −→ u(Si) = {0, 1} ∈ R, (3)

where R are the Real numbers.

2.1.2. Cooperative IoT Nodes Coalitions

The potential for IoT nodes to form coalitions will be restricted by their location, i.e., coalitions
can only be composed of neighbouring IoT nodes. Let us consider the matrix of the IoT nodes and
a pair of IoT nodes si,j and sk,m will be in the same neighbourhood if and only if:

‖ (i− k)2 − (j−m)2 ‖≤ 1; (4)

in other words, if every IoT node to which the game is applicable is the centre of a Von Neumann
neighborhood, its neighbors are those who are at a Manhattan range (in the matrix) equal to one.
In addition, authorized coalitions have to meet the following conditions:

1. Coalition of IoT nodes have to be in the same neighborhood as presented in Equation (4).
2. Coalitions cannot be formed by a single IoT node.
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2.1.3. A Characteristic Function to Find Cooperative Temperatures.

In the suggested game, we want to decide in a democratic way the temperature of the current IoT
nodes. To do this, the IoT nodes will create coalitions that will determine the final temperature of the
IoT nodes, which will be decided by whether or not they can vote in the election process. From the
characteristic function defined in Equation (2), if the value is 1(0), the coalition can vote (not vote)
respectively. Assume that si is the master IoT node with its related temperature tsi , the characteristic
function is built in the following way:

1. First, the average temperature of all the IoT node is calculated:

Tk
si
=

1
V

V

∑
i

tsi . (5)

Here, T1
si

represents the average temperature of the IoT node’ neighbourhood si (including it) in
the first iteration of the game and V is the amount of neighbours in the coalition.

2. The next iteration is to compute an absolute value for the temperature difference between the
temperatures of each IoT node and the average temperature:

Tk
si
=

(
1
V

V

∑
i
| tsi − Tk

si
|2
) 1

2

. (6)

3. Using the differences in temperature values with regards to the average temperature Tk
si

(see Equation (6)), a confidence interval is created and defined as follows:

Ik
si
=

Tk
si
± t(V−1, α

2 )

Tk
si√
V

 . (7)

In Equation (7), we use the Student’st-distribution with a significance level of α = 1%.
4. In this step, we use a hypothesis test. If the temperature of the sensor lies in the interval Ik

si
,

it belongs to the voting coalition; otherwise, it is not in the voting coalition. Once the confidence
interval is calculated, the algorithm runs the characteristic function of the game (uk) to find which
elements will be in the voting coalition:

uk(s1, . . . , sn) =

{
1, if tsi ∈ Ik

si
,

0, if tsi 6∈ Ik
si

.
(8)

5. The characteristic function will repeat this process iteratively (k is the number of the iteration)
until all the IoT nodes in that iteration belong to the voting coalition. In the cooperative game
theory, the Payoff Vector (PV) is the outcome of cooperative actions carried out by coalitions
(i.e., the output of applied the characteristic function to the coalitions). At each iteration k,
the following PV of the coalition is available Sj (with 1 ≤ j ≤ n where n is the number of sensors
in the coalition) in step k (PV(Sk

j )):

PV(Sk
j ) = (uk(s1), . . . , uk(sn)) where

n

∑
i

uk(si) ≤ n. (9)

The stop condition of the game steps is PV(Sk
j ) = PV(Sk+1

j ), at which the algorithm ends.

That is, let PV(Sk
j ) = (uk(s1), . . . , uk(sn)) and let PV(Sk+1

j ) = (uk+1(s1), . . . , uk+1(sn)). The step
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process ends when both payoff vectors contain the same elements. This process is shown in the
following equation: 

uk(s1) = uk+1(s1)
...
uk(sn) = uk+1(sn).

(10)

Then, the game can find the solution that is shown in the following subsection.

2.1.4. Solution of the Cooperative Game

Once the characteristic function has been applied to all IoT nodes involved in this iteration of
the game, a payoff vector is available in iteration k (see Equation (9)). Since the proposed game is
cooperative, the solution is a coalition of players that we have called game equilibrium (GE). The GE
of the proposed game is defined as the minimal coalition with more than half of the votes cast. Let n be
the amount of players in this iteration of the game. The winning coalition has to comply with the
following conditions:

1. The sum of the elements of the coalition PV must be higher than half plus 1 of the votes cast:

n

∑
i

uk(si) ≥
n
2
+ 1. (11)

2. The coalition is maximal (i.e., coalition with the greatest number of elements, different from 0,
in its payoff vector PV(Sk

j )).

Therefore, the solution to the proposed game is the coalition, from among all possible coalitions
that are formed at each step k of the game, that satisfies both conditions.

2.1.5. Temperatures of the Winning Coalition

Once the characteristic function finds which is the winning coalition, it is possible to compute the
temperature of the main IoT node. Let {s1, . . . , sj} be the winning coalition’s IoT node and {ts1 , . . . , tsj}
be their related temperature.

The temperature that the game has voted to be the main IoT node’s temperature (MST) is
computed as follows:

MST = max
j∈|Swinner |

{j · tsi}si∈Swinner
, (12)

where |S| is the amount of elements in the winning coalition. Therefore, the MST will be the maximum
temperature that has the highest involved frequency. In the case of a draw, it is resolved by the
Lagrange criterion.

2.1.6. Diffuse Convergence

There is a temperature matrix at each game iteration (see Equation (1)). Hence, we define
a sequence of arrays {Mn}n∈N where the Mi element corresponds to the temperature matrix in step i
of the game. Therefore, it can be said that the sequence of matrices is convergent if:

∀ε > 0, there is i0 ∈ N such that |Mi−1 −Mi| ≤ ε ∀i ∈ N. (13)

That is, if the element mi−1
n,m ∈ Mi−1 and the element mi

n,m ∈ Mi are set and the convergence
criterion is applied, we have:

∀εn,m > 0 there is N ∈ N such that |mi−1
n,m −mi

n,m| ≤ εn,m

∀i ∈ N , ∀i ≥ i0 and mi−1
n,m ∈ Mi−1, mi

n,m ∈ Mi.
(14)
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Therefore, by applying the criterion of convergence in Equation (14) to all the elements,
a new matrix is obtained; it calculates the difference in the temperatures obtained in the game’s
previous step and those obtained in the current step:

|mi−1
1,1 −mi

1,1| . . . |mi−1
1,m −mi

1,m|
...

. . .
...

|mi−1
n,1 −mi

n,1| . . . |mi−1
n,m −mi

n,m|

 . (15)

For the succession of matrices to be convergent, each of the sequences of elements that are formed
with the |mi−1

n,m − mi
n,m|must be less than the fixed ε > 0. In this work, it is established that ε = 0.01.

With the definitions provided above, we are now ready to define the diffuse convergence of the
game. The game is diffuse convergent if at least 80 % of the elements of the matrix are convergent;
then, the game reaches the equilibrium.

2.2. Accuracy State Prediction Algorithm

In this subsection, we propose a new feedback control algorithm for predictive fault tolerant
control to improve the monitoring and control of the IoT networks. Section 2.2.1 presents the accuracy
state categories of IoT nodes. The predictive algorithm is based in the continuous-time Markov chains,
and, in our model, we compute the solution of this equation in Section 2.2.2. We provide the theoretical
solution of the Markov chains (i.e., the transition matrix). Finally, in Section 2.2.3, the elements of the
algorithm are shown (i.e, controller, feedback and process).

2.2.1. Initial Accuracy State

Initially, it is necessary to define a scale of accuracy degradation expressed in percentages. This is
done according to the data obtained by the algorithm that we had developed in previous research [13].
This scale will be the discussion universe of the random variable Xn that defines the current state
of precision of the system related to the error of the sensors. Therefore, the sensors’ possible states
are Xn = {A = high accuracy, B = accurate, C = low accuracy, F = f ailure}. Below, Table 1 has the
selection made for each variable.

Table 1. Accuracy state of sensors.

Xn IoT Nodes Accuracy State Error (%)

A High accuracy e ≤ 10
B Accurate 10 < e ≤ 20
C Low accuracy 20< e ≤ 35
F Failure e ≥ 35

Let T(t)
i be the matrix of initial temperatures collected by the WSN, and let T(t)

f be the final
temperatures, obtained after applying the data quality algorithm. Then, the accuracy error matrix of
the sensors, according to the data quality algorithm, is given by the following equation:

T(t)
e = |T(t)

f − T(t)
i |, (16)

where the coefficients eij of the matrix T(t)
e are the differences between the initial and final temperature

in absolute value for each sensor.
Given the T(t)

e matrix, we now apply the error correction given by the allowed error margin ε,
and adjust the error matrix:

T(t)
ε = |T(t)

e − Id · ε|. (17)
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Now, let’s centralize these measures to calculate the states of the sensors. To this end, we calculate
the average of the elements of the array mε and the maximum of the array T(t)

ε that we call maxε.
Therefore, the centralizing measure is defined as:

δ = mε + maxε. (18)

This measure is applied to the matrix T(t)
ε to calculate the percentages associated with each error

and therefore calculate the states of each sensor:

T(t)
δ =


tδ
1,1 =

(t1,1·100)
δ . . . tδ

1,n =
(t1,n ·100)

δ
...

. . .
...

tδ
n,1 =

(tn,1·100)
δ . . . tδ

n,n = (tn,n ·100)
δ

 . (19)

Then, one can define the following function in order to estimate the accuracy state of the sensors
in time t. For this purpose, we use the Solution of Kolmogorov’s differential equations to design
this function:

g(t) : Mn,n(R) −→ Mn,n({Xn}) = Tg(t) (20)

defined as follows:

g(t)(tδ
i,j) =


A, i f tδ

i,j ≤ 10%,
B, i f 10% < tδ

i,j ≤ 20%,
C, i f 20% < tδ

i,j ≤ 35%,
F, i f tδ

i,j ≥ 35%,

(21)

where ti,j ∈ T(t)
δ , and let Tg(t) be the matrix with the accuracy states of the sensors at time t.

2.2.2. Transition Matrix

Let λA be the time the sensor remains in state A (exponential distribution). λB and λC are defined
in a similar way. In addition, let ξA be the time the sensor that remains in state A. Let µA (µB, µC) be
the probability that a sensor in state A (B, C) at time t shifts to state F in the time interval (t, ∆t + t).
Thus, if the sensor was in state A at time ti , the probability of the sensor remaining in state A at time
ti+1 is given by the following equation:

pAA = P(ξA > t + ∆t|ξA > t) =
e−λA(t+∆t)

e−λAt = e−λA∆t = 1− λA∆t + o(∆t). (22)

Similarly, the probability that a sensor in state A at the beginning will shift to state B is given by
the following equation:

pAB = P(ξB > t + ∆t|ξA > t) = 1− ((1− λA∆t + o(∆t))− (µA∆t + o(∆t)))

= (λA − µA)∆t + o(∆t).
(23)

In this way, we can build the transition matrix between t and t + ∆t, where the coefficients of the
transition matrix are the probabilities of the sensors’ switching states (e.g., pAF is the probability that
a sensor in state A at the beginning will eventually shift to state F in the interval (t, ∆t + t)).

In this way, the transition matrix P(t) is built:

P(t) =

 P(ξA > t + ∆t|ξA > t) = pAA . . . pAF
...

. . .
...

P(ξA > t + ∆t|ξF > t) = pFA . . . pFF

 . (24)
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2.2.3. Predictive Control Algorithm

Here, we describe how the control algorithm works. This algorithm is used by the sensor control
system to monitor and control the accuracy of the sensors. In Figure 1, the set point (green arrow) with
the reference inputs contain the following variables: (1) The accuracy error matrix, Te (see Equation (16)).
This matrix has the precision errors of the mesh of sensors. For each step of the algorithm at every time t,
this matrix is introduced to update the data of the algorithm. (2) The allowed error ε. This parameter
enters the flow in each of the steps of the algorithm.

Controller

The first action performed by the controller is the prediction step. In this stage of
the algorithm, the transition matrix of the developed model is used (see Equation (24)).
Let z(t) : Tg(t) −→ z(t)(Tg(t)) = Tz(t+k) be the prediction function of accuracy states (i.e., Prediction step)
for each time t and let t + k where k ∈ {1, 2, · · · } be the predicted time. Given tδ

i,j ∈ Tδ, the controller
function u is defined as follows:

z(t+k)
ij (tg

i,j) = max{P
tg(t+k)
i,j A

,P
tg(t+k)
i,j B

,P
tg(t+k)
i,j C

,P
tg(t+k)
i,j F

}. (25)

Let z(t)(Tg) = Tz(t+k) be the matrix of the states of accuracy given by the prediction function.
The output of this function is the accuracy state of the sensors at time t.

The next step of the algorithm is to compare the measurements with the feedback function in
order to update them. Let x(t) : Tz(t)xT f (t−k) −→ x(t)(Tz(t)) = Tx(t) be the comparison function
defined by the following numerical values {A = 1, B = 2, C = 3, F = 4} as follows:

x(t)(tz(t)
i,j , t f (t−k)

i,j ) = wx1(t)t
z(t)
i,j + wx2(t)t

f (t−k)
i,j , (26)

where wxn(t) with n ∈ {1, 2} are the weights given for each of the coordinates of the function x.
Let y(t) : Tx(t) −→ y(t)(Tx(t)) = Ty(t) be the update function defined as follows:

y(t)(Tx(t)) =



1 i f 0 ≤ tx(t)
i,j ≤ 1.5,

2 i f 1.5 < tx(t)
i,j ≤ 2.5,

3 i f 2.5 < tx(t)
i,j ≤ 3.5,

4 i f tx(t)
i,j ≥ 3.5.

(27)

The update function refreshes the accuracy states of the prediction function with the results
obtained from the comparison function.

Let u : Ty(t) −→ u(t)(Ty(t)) = Tu(t) be the controller function (i.e., output estimate step) and let
Tu(t) be the system controller matrix at time t. Then, this function finds sensors that are in faulty state
(F). In this way, the system creates a virtual sensor to maintain system monitoring. In addition, it will
send a request to the service staff to replace the malfunctioning sensor. Given ty(t)

i,j ∈ Ty(t), u is defined
as follows:

u(ty(t)
i,j ) =


1 i f ty(t)

i,j = F,

−1 i f ty(t)
i,j 6= F.

(28)

Thus, if u(y(t)) = 1, the system creates a virtual sensor in the position (i, j) and
requests maintenance.
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Feedback

Let h(t) : Tg(t)xTg(t+k)xTz(t+k) −→ h(t)(Tz(t+k)) = Th(t) be the auxiliary feedback function.
Given k ∈ {1, 2, · · · } and the accuracy states in numerical values are {A = 1, B = 2, C = 3, F = 4},
h is defined as follows:

h(t)(tg(t)
i,j , tg(t+k)

i,j , tz(t+k)
i,j ) = wh1(t)t

g(t)
i,j + wh2(t)t

g(t+k)
i,j + wh3(t)t

z(t+k)
i,j , (29)

where whn(t) with n ∈ {1, 2, 3} are the given weights for each of the coordinates of the function h.
Let f (t) : Th(t) −→ f (t)(Th(t)) = T f (t) be the feedback function defined as follows:

f (t)(Th(t)) =



A i f 0 ≤ th(t)
i,j ≤ 1.5,

B i f 1.5 < th(t)
i,j ≤ 2.5,

C i f 2.5 < th(t)
i,j ≤ 3.5,

F i f th(t)
i,j ≥ 3.5

(30)

The feedback function returns the accuracy state of the sensor (i, j) back to the flow. In this way,
it is verified that the controller is working correctly and that virtual sensors are not created for the
repair of sensors that are working properly.

Process

The process matrix Tp(t) shows when sensors need maintenance. The process matrix is defined
as follows:

Tp(t) = Tu(t−1) + Tu(t). (31)

Thus, when the coefficient of the matrix corresponds to a particular sensor, it means that it has
to be replaced tp(t)

(i,j) ≥ 0.5%tmax time periods with tp(t)
(i,j) ∈ Tp(t) (i.e., assuming that tmax = 5 years,

then a sensor has to be replaced if tp(t)
(i,j) ≥ 9 days ).

Then, the controller function sends a signal to the process which sends back the matrix of final
virtual temperatures at time t (i.e., T(t)

v f ). When the controller sends the signal that a sensor is in the
state of failure, the process creates a virtual sensor in that position and simulates the temperature so
that the monitoring and control of the building does not lose efficiency. Let {T(t)

f }t≥0 be the matrix
succession with the final temperatures at time t given by the algorithm described in Casado et al. [13].
Moreover, let VS(t)

i,j be the virtual sensor in the position (i, j) at time t. Then, the temperature of the tv
i,j

is provided by the temperature ti,j ∈ T(t)
f .

3. Results

In this section, we present the case study and the results obtained during the experiment.
The control algorithm gets data collected by the IoT nodes and auto-corrects the faulty data.
Furthermore, in case the controller predicts that an IoT node will be in fault state, it will create a virtual
temperature sensor in order to keep the reliability of the IoT network. In this way, the monitoring and
control efficiency of the IoT network is improved. This section is organized as follows: In Section 3.1,
we provide the solution of the continuous-time Markov chain and its transition matrix (P(t)) for
every t. Section 3.2 shows the experimental details of the case study (i.e., hardware, temperature
collected, etc.). Finally, Section 3.3 presents the results of the application of the control algorithm in the
case study and the error decrease in the IoT nodes.
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3.1. Case Study Experimental Setup

This case study supposes that the IoT nodes (i.e., temperature sensor) can undergo four accuracy
states throughout their useful life (A = high accuracy, B = accurate, C = low accuracy, F = failure).
The probability that a sensor in state A at instant t shift to state F in the time interval (t, t + ∆t) is
0.1∆t + o(∆t), if it is in state B it is 0.2∆t + o(∆t) and if it is in state C it is 0.5∆t + o(∆t). In this
simulation, we assume that the time during which the sensors remain in state A is an exponential time
of 2.1 in state A and 1.2 in state B.

From A in a time interval (t, t + ∆t), the sensor can pass to F with probability 0.1∆t + o(∆t). If ξ is
the time the sensor stays at A, you have:

P(ξ > t + ∆t|ξ > t) =
e−2.1(t+∆t)

e−2.1t = e−2.1∆t = 1− 2.1∆t + o(∆t). (32)

Therefore, Equation (32) is the probability of remaining in state A at instant ti+1 if it was in A at
instant ti. Then, the probability of shifting to B between t and t + ∆t is

1− ((1− 2.1∆t + o(∆t))− (0.1∆t + o(∆t))) = 2∆t + o(∆t). (33)

In the successive stages, we finally reach a calculation in which the transition matrix is between t
and t + ∆t, as shown in Table 2.

Table 2. In this simulation, we have assumed that state F is absorbent. That is, for the sensor to move
from F to any other state, it needs to be repaired by a maintenance worker.

A B C F

A 1− 2.1∆t + o(∆t) 2∆t + o(∆t) o(∆t) 0.1∆t + o(∆t)
B 0 1− 1.2∆t + o(∆t) ∆t + o(∆t) 0.2∆t + o(∆t)
C 0 0 1− 0.5∆t + o(∆t) 0.5∆t + o(∆t)
F 0 0 0 1

Thus, the derivative of the matrix in the zero is:

P′(0) =


−2.1 2 0 0.1

0 −1.2 1 0.2
0 0 −0.5 0.5
0 0 0 0

 , (34)

which may be expressed using the Jordan matrix form for the whole period of time t as follows:

P(t) =


1 1 2 1
1 0.8 0.9 0
1 0.56 0 0
1 0 0 0




1
e−0.5t

e−1.2t

e−2.1t




0 0 0 1
0 0 0.9

0.504
−0.9
0.504

0 0.56
0.504

−0.8
0.504

0.24
0.504

1 −1.12
0.504

0.7
0.504

−0.084
0.504

 . (35)

For example, the term pAF(t) represents the probability that a sensor that begins its useful life at
stage A functions incorrectly at time t, so:

P(Life span ≤ t) = pAF = 1− 0.9
0.504

e−0.5t +
0.48

0.504
e−1.2t − 0.084

0.504
e−2.1t. (36)

In Figure 2, the graphical representation of the Markov chain is presented. Probabilities of changes
in the accuracy states of the sensors are shown in Table 2. The instance simulation presented in this
section demonstrates that sensors in any of the precision states (i.e., A,B,C) can move to the fault state
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(F)—while from state A it goes to state B, and from state B to state C. This is so, since, in this example,
we assume that the sensor from any of its precision states can fail, while we assume that a high accuracy
sensor (A) has to go through the precise state (B) before moving to the low accuracy state (C).

A
B

C

F

0.1Δt + o(Δt)

2Δt + o(Δt) Δt + o(Δt)

1 − 2.1Δt + o(Δt)
1 − 1.2Δt + o(Δt)

1 − 0.5Δt + o(Δt)

0.2Δt + o(Δt)
0.5Δt + o(Δt)

Figure 2. Graphical representation of the Markov chain of the solution of the Kolmogorov differential
equations of the proposed simulation.

Given the Markov chain used for this simulation with transition matrix given by Equation (35),
the stationary paths given by the probabilities of change of precision state of the sensors are shown
in Figure 2. This figure illustrates the probability that a sensor’s initial accuracy, state A, will shift to
a different state in time t. Let’s assume that tmax = 5 years (i.e., lifespan of the sensor is five years),
then, at t = 0, the probability that the sensor remains in state A is 1, while, at t ≥ 0, the probability that
the sensor remains in state A decreases. Thus, the greater the value of t , the greater the probability
that a sensor changes to state B, C and F, respectively. For t −→ ∞, the accuracy state F of the sensor
has a probability of 1 (i.e., the sensor is in failure state) [31].

3.2. General Description of the Experiment

To validate the proposed algorithm, we have selected a smart building. In the moment that the IoT
nodes measured the temperature, the actuator (i.e., thermostat) in the selected building showed 23 ◦C.
A grid was applied to locate the IoT nodes on the ground. With the assistance of laser measurements,
the IoT nodes were vertically positioned in each section of the building. A total of 25 IoT nodes
were deployed.

A combination of the ESP8266 microcontroller in its commercial version “ESP-01” was the type
of sensor deployed in the building and a DHT11 temperature and humidity IoT nodes (Figure 2).
The sum of the two allows us more versatility in data gathering and adaptation to the case study, as the
DHT11 sensor is specifically designed for indoor environments (it has an operating range of 0 ◦C to
50 ◦C) according to its datasheet [32]. The microcontroller obtains the data of this IoT nodes through
the onewire process and transmits it to the surroundings through Wi-Fi by using HTTP protocols and
GET/POST petitions. The ESP-IDF scheduling system supplied by the microcontroller maker was
used to schedule the device.

The temperature sensors had been collecting data at 15 minute intervals, for an entire day.
For the analysis, we selected the data collected by the sensors in the following time interval
2018-11-02T08:30:00Z and ended on 2018-11-02T21:30:00Z. A particular point in time has been chosen
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because the game is static and not dynamic (in other words, the game does not handle data in a time
period). Below, a mathematical overview of the measured values with the IoT nodes is provided
in Table 3.

Table 3. Statistical table of measurements of the IoT nodes.

Timestamp Start Total Timestamp Min Temp Max Temp Mean Standard Deviation

2018-11-02T09:00Z 13:00:00Z 20.1 ◦C 24.6 ◦C 22.91 ◦C 0.71 ◦C

We assume that t = 5 years, so if we want to find an interval of one day, we have to do some
transformation in t. In this experiment, we have considered the next time interval (t, t + ∆t), a year
has 365 days, and 5 years has (365 · 5) days, so an interval of one day in five years is written as follows:
∆t = 1

365·5 (i.e., a day). To validate the model, we applied the accuracy state prediction model to the
data collected by the sensors placed in the building.

3.3. Case Study Results

In this case study, we have tested the proposed model to increase the efficiency of monitoring
and control of an IoT network. This is achieved by improving the quality of data collected by the IoT
nodes and the predicted maintenance of these nodes. In this way, the reliability of the data is increased
and the energy efficiency of the smart building is increased. The temperature collected by the IoT
nodes is the input of the control algorithm. In Figure 3, the evolution of the temperature can be found
from its initial state (i.e., data collected by the IoT nodes) until the control algorithm sends the data to
the process to set the regulators that control the temperatures of the building sections. The building
temperature is slightly warmer in areas where there are large temperature differences. The control
algorithm finds these zones and self-corrects if necessary these temperatures to reach the equilibrium
in which the temperatures are consistent in the whole building.

1 2

54

3

6

Figure 3. Graphic representation of the matrix of initial temperatures, the evolution of the temperature
and the final temperatures in this case study. In Figure 3 (1) can be found the temperatures collected by
the IoT nodes. In addition, the measurements that the control algorithm will find as false data can be
found in the same figure. Also, the evolution of the controlled temperature is shown in Figure 3 (2)–(5).
Final temperatures after the control algorithm is executed are shown in Figure 3 (6).

The suggested algorithm performs an efficient transformation in the ETL system. We can
implement our approach as a process step included in the ETL system for the creation of new
temperature data, which are self-corrected and ready-to-use. A major part of the thermal noise
caused by the data arriving from the IoT node is removed (noise is generated when the IoT node is
faulty or non-accurate). Figure 4 provides the amount of IoT nodes (in percents) containing thermal
noise for every step of the game. It can be remarked that, when changing the accuracy of the IoT nodes
from 0.05 ◦C to 0.1 ◦C, the results achieved are quite distinct.
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Figure 4. Board with thermal noise reduction in the progression of the algorithm with several
confidence intervals from 0.05 ◦C to 0.1 ◦C. In the display board, the noise of the % in the temperature
matrix is shown opposite the amount of steps. For every one of them, the permitted error range for
the temperature collected by the IoT nodes is variable. As the allowable error range is increased,
the thermal noise in the temperature matrix also is increased.

However, if it changes to 0.05 ◦C, 45% of the IoT nodes had thermal noise, and, in a few (<10)
steps, the noise was decreased to less than 15%. When the relative permitted error was incremented,
the percentages of IoT nodes that had a bit of thermal noise also incremented. For instance, with 0.1 ◦C
of relative error, 70% of the IoT nodes had thermal noise and as the step increment was decreased
below 25 percent. However, at a certain point, the noise began to freeze. These IoT nodes will keep
having some noise for the selected error (Table 4).

Table 4. Table showing the possible errors and % of noise both during and after applying the game.

Allowed Error (◦ Celsius) IoT Nodes with Noise at the Beginning (%) IoT Nodes with Noise at the End (%)

0.05 47.06 13.25
0.1 70.59 24.22

There are also two useful implementations of our current approach: (1) Identifying the IoT nodes
that supply incorrect data and setting up the new IoT node by inserting them in the IoT network;
(2) Smart detecting of incorrect data in an IoT network is a major issue, as it allows fault tolerant
control of the IoT network and a high quality of data. Furthermore, predictive maintenance allows
the good operation of the IoT network. As faulty IoT nodes are detected, the maintenance cost is
significantly decreased, as the service technician can focus only on faulty nodes.

4. Conclusions

This paper has addressed the problem of fault tolerant control of IoT nodes in continuous-time
NCSs. The feasibility of the proposed approach was verified with a case study in which the closed-loop
system was modeled as a continuous-time feedback system with the continuos-time Markov chains to
improve the quality of the data collected by the IoT nodes. Through a newly constructed feedback
control-based algorithm, an improved control system has been created. It allows for deriving a smart
building’s maximum allowable energy efficiency such that the resulting closed-loop system improves
the control of an IoT network. A numerical case study illustrates the efficiency of our model in Section 3.
Figure 3 shows a graphic representation of the evolution of the temperatures and how the fault tolerant
control algorithm works. In this figure, one can find how the incorrect data are self-corrected by the
control algorithm, improving the monitors and controls of the IoT network. In addition, in Figure 4,
we present the percentage of IoT nodes that are collecting incorrect data and how the control algorithm
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decreases the amount of malfunction IoT nodes. This claim is also supported by Table 4. In it, you can
find that, after applying the control algorithm, the amount of malfunctioning IoT nodes is greatly
reduced. However, in many real scenarios, the ability to detect an imprecise or malfunctioning IoT
node from a hot (cold) spot is limited. In a future work, we will try to solve this problem with
artificial intelligence.
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