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Abstract: Tectonic coals in coal seams may affect the process of enhanced coalbed methane recovery
with CO2 sequestration (CO2-ECBM). The main objective of this study was to investigate the
differences between supercritical CO2 (ScCO2) and intact and tectonic coals to determine how
the ScCO2 changes the coal’s properties. More specifically, the changes in the tectonic coal’s pore
structures and its gas desorption behavior were of particular interest. In this work, mercury intrusion
porosimetry, N2 (77 K) adsorption, and methane desorption experiments were used to identify
the difference in pore structures and gas desorption properties between and intact and tectonic
coals after ScCO2 treatment. The experimental results indicate that the total pore volume, specific
surface area, and pore connectivity of tectonic coal increased more than intact coal after ScCO2

treatment, indicating that ScCO2 had the greatest influence on the pore structure of the tectonic
coal. Additionally, ScCO2 treatment enhanced the diffusivity of tectonic coal more than that of intact
coal. This verified the pore structure experimental results. A simplified illustration of the methane
migration before and after ScCO2 treatment was proposed to analyze the influence of ScCO2 on
the tectonic coal reservoir’s CBM. Hence, the results of this study may provide new insights into
CO2-ECBM in tectonic coal reservoirs.
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1. Introduction

As a major greenhouse gas, CO2 causes global warming and initiated a series of negative effects
on the balance of the natural ecosystem and the sustainable development of human society [1–7].
To mitigate CO2 emissions into the atmosphere, enhanced coalbed methane recovery with CO2

sequestration (CO2-ECBM) is considered to be a promising technology, and it receives widespread
attention [8–12]. This technology can not only provide CO2 storage, but can also enhance the
production of coalbed methane (CBM). To date, many scholars proved the feasibility of injecting
CO2 into methane-bearing coal seams using various experimental methods and field tests. Fulton
et al. observed that the recovery of CH4 after CO2 injection was 57% higher than that of natural
emissions [13]. Reznik et al., Jessen et al., and Dutka et al. also verified that CO2 injection could
contribute to the improvement of CH4 recovery [14–16]. In 1996, the San Juan Basin was selected as
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the first demonstration site for CO2-ECBM. After CO2 injection, CBM production was increased by
five times, and the recovery of CH4 reached 77–95%, lasting for over six years [17].

The coal seams most suitable for CO2 sequestration are commonly more than 800 m deep, and the
temperature and pressure in coal seams at the most suitable depths are, in many cases, above the
critical point for CO2 (critical temperature and pressure: 31.05 ◦C and 7.39 MPa) [18]. Numerous
studies were undertaken to better understand the interaction between supercritical CO2 (ScCO2) and
intact coal. When coal is exposed to ScCO2, the ScCO2 is incorporated into the coal and it rearranges
the coal’s structure [19]. It is generally agreed that ScCO2 can change the pore morphology of coal
irreversibly, including pore volume, pore size distribution, surface area, and pore connectivity [20,21].
Additionally, ScCO2 is an organic solvent and can mobilize some of the organic matter in the coal.
If some of the CO2 is dissolved in the reservoir water, the pH decreases and the CO2-enriched solution
can dissolve some of the minerals present [22–24]. Studies also showed that CO2 adsorption can cause
the coal’s matrix to swell [25]. However, the above studies were all focused on the effects of ScCO2 on
intact coal, and there was little research on tectonic coal–ScCO2 interactions.

Tectonic coal is deformed, sheared coal. The deformation and shearing was caused by tectonism
that occurred long after coal formation and diagenesis of the coal seams [26]. Tectonic coal is present
all over the world, and there is substantial tectonized coal in China [27,28]. The existence of tectonic
coal in some coalfields complicates safe and efficient CO2 sequestration. This is because the physical
and chemical properties of tectonic coal differ from those of intact coal. Additionally, the permeability
of tectonic coal is much lower than that of intact coal. This leads to the formation of CBM-rich coals;
thus, tectonic coals have huge CBM exploitation potential. However, a CBM extraction well drilled in
an area hosting significant tectonic coal may seriously restrict CBM production because the tectonic
coal’s low permeability restricts gas desorption and migration [29,30]. Therefore, in such an area,
CO2-ECBM is likely to be the technique implemented to solve this problem.

The coal’s pore structure affects gas adsorption, diffusion, and seepage. Previous studies [31,32]
showed that the pore structure in intact coal and tectonic coal are different and affect how gas desorbs
from these coals. These differences are important when the subject of long-term CO2 storage in coal
seams is considered. However, limited research focused on this topic, especially the comprehensive and
systematic analysis of the differences of pore structures and gas desorption properties between intact
coal and tectonic coal during CO2-ECBM. Therefore, a better understanding of the pore morphologies
and desorption in intact and tectonic coals after ScCO2 treatment is of significance for CO2-ECBM in
tectonic coal reservoirs.

In this study, the effects of ScCO2 on the pore structures of intact and tectonic coals was studied
using mercury intrusion porosimetry (MIP) and N2 (77 K) adsorption experiments. Additionally, gas
desorption of intact and tectonic coals after ScCO2 treatment was analyzed using methane desorption
experiments. The main focus of this study was the analysis of the pore structures and gas desorption
properties of intact and tectonic coals before and after ScCO2 treatment, and results were compared to
analyze the influence of tectonic coal on the CO2-ECBM process.

2. Materials and Methods

2.1. Coal Samples

Both the intact coal and tectonic coal samples used in the experiments were collected from the
Shanxi Formation #3 coal seam in the Sihe coal mine. This mine is in the southern Qinshui basin in
Shanxi Province, China (Figure 1). The southern Qinshui basin is not only a major CBM production
area, but also the area in which China first carried out a pilot CO2-ECBM project [33]. The coal samples
for this study were collected from fresh working faces in the mine. The samples were then immediately
sealed, packed, and sent to the laboratory with minimal delay to prevent oxidation. At the laboratory,
standard crushing and screening equipment was used to crush and screen the coal samples to different
particle sizes for the different experiments. For each experiment, the crushed and sieved intact coal and
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the tectonic coal sub-samples were divided into two fractions for comparative analyses: one fraction
was treated with ScCO2, and the other was not treated. Selected properties of the intact coal and
the tectonic coal are listed in Table 1. Compared with intact coal, the mineral content and Langmuir
volume of the tectonic coal is greater, indicating that tectonic coal contains more minerals and can
absorb more methane. The moisture, ash, and Ro, max values of the tectonic coal are slightly higher than
those of the intact coal.
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Figure 1. Map showing the location of the Sihe coal mine, the mine from which the samples
were collected.

Table 1. Maximum vitrinite reflectances, Langmuir volume and pressure, macerals, and partial
proximate analyses for the coal samples used in this study.

Samples Type R0, max
(%)

Langmuir
Volume

Langmuir
Pressure

Proximate Analysis (wt.%) Macerals (vol.%)

Mad (%) Aad (%) Vdaf (%) V (%) I (%) M (%)

Intact coal
Anthracite

3.13 45.83 0.81 1.35 14.26 8.46 79.70 17.22 3.08
Tectonic coal 3.26 48.77 0.89 1.58 17.09 8.24 76.42 16.72 6.86

R0, max, maximum vitrinite reflectance; Mad, moisture content; Aad, ash yield; Vdaf, volatile matter. The subscript “ad”
stands for air-dried basis. V, vitrinite; I, inertinite; M, mineral.

2.2. Experimental Methods

For this study, MIP, N2 (77 K) adsorption, and methane desorption experiments on both intact
and tectonic coal specimens with and without ScCO2 treatment were conducted.

A schematic of the set-up used for the ScCO2 treatment is shown in Figure 2. According to the
pressure gradient and temperature gradient in the southern Qinshui basin, the temperature of the
reservoir is 35 ◦C and the pressure is 8 MPa at the depth of 800 m. Therefore, 35 ◦C and 8 MPa were
chosen as the treatment conditions to replicate the in situ conditions. Before the ScCO2 treatment,
coal samples were first degassed in a vacuum chamber at 50 ◦C and 4 Pa for 24 h. Then, the constant
temperature bath was set to 35 ◦C and the sample tank was filled with CO2 using an ISCO pump.
Subsequently, the pressure was maintained at 8 MPa for 72 h, and the constant temperature bath was
held at 35 ◦C.
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Figure 2. Schematic diagram showing the set-up used for the supercritical CO2 treatments.

The pore structure of both ScCO2-treated and untreated coal samples was analyzed using a
PM33-GT-12 mercury porosimeter. This instrument can measure pore diameters between 0.007 and
1000 µm over a pressure range of 1.5–231,000 kPa. The porosimetry data were modeled using the
Washburn Equation [34]:

r =
2σ cos θ

pc
, (1)

where r is the pore radius of the porous material (nm), σ is the surface tension of mercury (dyn/cm2),
θ is the contact angle between mercury and the porous material’s surface (◦), and pc is the capillary
pressure (MPa).

The pore size distribution (PSD) was determined using the N2 (77 K) adsorption method
employing a Quadrasorb SI instrument. The N2 adsorption–desorption isotherms of ScCO2-treated
and untreated coal samples were obtained at a temperature of −196 ◦C with a relative pressure (p/p0)
range of 0.01–0.99. The Barrett-Joyner-Halenda (BJH) method was used to calculate total pore volume
(TPV), density functional theory (DFT) was used to calculate PSD, and the Brunauer-Emmett-Teller
(BET) method was used to calculate the specific surface area (SSA) [35–37].

Methane desorption data from both treated and untreated intact and tectonic coals were collected
during the gas desorption experiments. The experiments were run according to China National
Standards AQ/T 1065-2008 and GB 474-2008; the experimental set-up is shown in Figure 3. Coal
particles from 1 to 3 mm in diameter were placed in a container and degassed at 50 ◦C and 4 Pa for
24 h. After degassing, the container, in a 30 ◦C water bath, was quickly filled with 99.9% pure methane
to achieve the methane adsorption equilibrium (2 MPa and 4 MPa). When adsorption equilibrium was
reached, valve 4 was opened to vent all the free methane from the container. The container was then
connected to the gas desorption measuring cylinder for the gas desorption experiment. During the
experiment, the volume of methane desorbed was recorded at specific times; the desorption segment
of each experiment lasted two hours.

Energies 2018, 11, x FOR PEER REVIEW  4 of 13 

 

 

Figure 2. Schematic diagram showing the set-up used for the supercritical CO2 treatments. 

The pore structure of both ScCO2-treated and untreated coal samples was analyzed using a 

PM33-GT-12 mercury porosimeter. This instrument can measure pore diameters between 0.007 and 

1000 μm over a pressure range of 1.5–231,000 kPa. The porosimetry data were modeled using the 

Washburn Equation [34]: 

2 cos

c

r
p

 
= , (1) 

where r is the pore radius of the porous material (nm), σ is the surface tension of mercury (dyn/cm2), 

θ is the contact angle between mercury and the porous material’s surface (°), and pc is the capillary 

pressure (MPa). 

The pore size distribution (PSD) was determined using the N2 (77 K) adsorption method 

employing a Quadrasorb SI instrument. The N2 adsorption–desorption isotherms of ScCO2-treated 

and untreated coal samples were obtained at a temperature of −196 °C with a relative pressure (p/p0) 

range of 0.01–0.99. The Barrett-Joyner-Halenda (BJH) method was used to calculate total pore 

volume (TPV), density functional theory (DFT) was used to calculate PSD, and the 

Brunauer-Emmett-Teller (BET) method was used to calculate the specific surface area (SSA) [35–37]. 

Methane desorption data from both treated and untreated intact and tectonic coals were 

collected during the gas desorption experiments. The experiments were run according to China 

National Standards AQ/T 1065-2008 and GB 474-2008; the experimental set-up is shown in Figure 3. 

Coal particles from 1 to 3 mm in diameter were placed in a container and degassed at 50 °C and 4 Pa 

for 24 h. After degassing, the container, in a 30 °C water bath, was quickly filled with 99.9% pure 

methane to achieve the methane adsorption equilibrium (2 MPa and 4 MPa). When adsorption 

equilibrium was reached, valve 4 was opened to vent all the free methane from the container. The 

container was then connected to the gas desorption measuring cylinder for the gas desorption 

experiment. During the experiment, the volume of methane desorbed was recorded at specific times; 

the desorption segment of each experiment lasted two hours. 

 

Figure 3. Schematic diagram showing the set-up used for the gas desorption experiments. 

  

Figure 3. Schematic diagram showing the set-up used for the gas desorption experiments.

The whole experimental process is shown in Figure 4.
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3. Results and Discussion

3.1. Pore Structure Analysis

3.1.1. Pore Size Distribution

To analyze the MIP data from treated and untreated intact and tectonic coal samples quantitatively,
the Hodot classification for coal pore sizes was used. This classification scheme divides the pores
into macropores (>1000 nm), mesopores (100–1000 nm), transition pores (10–100 nm), and micropores
(<10 nm) [38].

Figure 5 shows the PSDs for both ScCO2-treated and untreated coal samples. It is clear from the
figure that the macropores and mesopores in the tectonic coal were more developed. This effect was
reported by a number of previous studies [39,40]. It is interesting to note that the macropores and
mesopores in the tectonic coal were obviously larger after ScCO2 treatment, and the effect of the ScCO2

treatment on the tectonic coal’s pores was greater than its effect on the intact coal’s pores. According
to the data in Table 2, the proportion of macropores and mesopores in the tectonic coal was 33.74%
before ScCO2 treatment, but 36.02% after treatment, greater than the pore percentages in the intact coal
(15.91% before and 21.37% after). It can be deduced that SCCO2 treatment may observably promote
the development of mesopores and macropores of tectonic coal. The data also show that the porosity
of the treated intact and tectonic coal samples increased by 18.90% (from 4.18% to 4.97%) and 23.14%
(from 5.23% to 6.44%), respectively. Previous studies [22,23,41] showed that ScCO2 can mobilize some
of the polycyclic aromatic hydrocarbons and aliphatic hydrocarbons in the coal. Additionally, CO2

will form carbonic acid when it is dissolved in the water in the coal seams, and this acid can dissolve
some of the inorganic minerals in the coal, such as calcites, dolomites, and magnesites [42]. This
may result in increased pore sizes. Additionally, Cao et al. found that the mean extraction yield
of the tectonic coal was 1.45% using organic solvent, whereas that of the intact coal was 0.44% [43].
Apparently, the mobilizing effect in tectonic coal is more pronounced than its effect in intact coal. These
MIP data show that the changes in PSD for the transition pores and micropores were less significant.
To investigate the PSDs of the smaller pores in more detail, additional analyses were performed using
N2 (77 K) adsorption.
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Figure 5. Pore size distributions determined by mercury intrusion porosimetry (MIP) for samples of (a)
intact coal and (b) tectonic coal with and without supercritical CO2 (ScCO2) treatment.

Table 2. Mercury intrusion porosimetry porosities and pore volume distributions for supercritical CO2

(ScCO2)-treated and untreated coal samples.

Sample Porosity (%)
Pore Volume Distribution (%)

V1/V t V2/V t V3/V t V4/V t

Intact coal, untreated 4.18 27.73 56.36 12.27 3.64
Intact coal, treated 4.97 20.23 58.40 16.03 5.34

Tectonic coal, untreated 5.23 19.63 46.63 24.85 8.90
Tectonic coal, treated 6.44 19.43 44.55 24.88 11.14

V1 = pore volume of micropores; V2 = pore volume of transition pores; V3 = pore volume of mesopores; V4 = pore
volume of macropores; Vt = total pore volume.

Using the N2 (77 K) manometric adsorption technique can avoid the destruction of pores under
high pressure; thus, it is commonly used for PSD measurements of smaller pores [26]. As shown in
Figure 6, after ScCO2 treatment, the PSDs for small pores were not significantly affected, although a
slight tendency for pore sizes to increase could be discerned. This is consistent with the MIP results.
The PSDs of both the treated and the untreated intact and tectonic coals had two peaks in the portion
of the isotherm, representing pores with diameters smaller than 10 nm, indicating that the micropore
structure of these coal samples was relatively developed.
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density functional theory (DFT) analyses of N2 (77 K) adsorption isotherms for (a) intact coal and (b)
tectonic coal.
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3.1.2. Pore Volume and Surface Area

Table 3 summarizes the changes in the TPVs and SSAs for untreated and ScCO2-treated intact and
tectonic coal samples. Overall, the BJH-TPVs and the BET-SSAs (the values determined by N2 (77 K)
adsorption) showed a slight increase after ScCO2 treatment; the TPVs and SSAs determined by MIP
showed a more significant increase. These increases are consistent with the PSD results. Additionally,
the TPVs and SSAs of both the treated and untreated tectonic coal samples were higher than those for
the intact coal samples. A study by Qu et al. [44] explained this point very well, and suggested that
the tectonism that the coal underwent greatly promoted the fracture of macromolecular chains and
aromatic layers, which was conducive to the development of molecular structural disorder in the coal.
This led to increased pore volume and, hence, increased surface area.

Table 3. Total pore volumes and specific surface areas for untreated and ScCO2-treated intact and
tectonic coal samples.

Sample BJH-TPV (mL/g) BET-SSA (m2/g) MIP-TPV (mL/g) MIP-SSA (m2/g)

Intact coal, untreated 0.015 3.421 0.0220 0.165
Intact coal, treated 0.016 3.862 0.0262 0.190

Tectonic coal, untreated 0.019 3.964 0.0326 0.214
Tectonic coal, treated 0.021 4.402 0.0422 0.256

BET, Brunauer-Emmett-Teller; BJH, Barrett-Joyner-Halenda; SSA, specific surface area; TPV, total pore volume.
The BJH-TPV and BET-SSA values are from N2 (77 K) adsorption determinations.

3.1.3. Pore Connectivity

The pores in coal can be divided into four types according to their shapes: cross-linked, passing,
dead end, and closed pores. The first three types are called open pores [45]. Some useful information
about the pores can be extracted from the MIP injection/ejection curves and the hysteresis loops.
As shown in Figure 7, after ScCO2 treatment, the mercury injection volumes for the intact coal
and the tectonic coal increased by 19.09% (from 0.0220 to 0.0262 mL/g) and 29.45% (from 0.0326 to
0.0422 mL/g), respectively. The mercury withdrawal volume for these two coals showed the same
trend, increasing by 9.14% (from 0.0197 to 0.0215 mL/g) and 17.42% (from 0.0264 to 0.0310 mL/g),
indicating that the open pore volume increased after ScCO2 treatment [46]. Moreover, the hysteresis
loops of all treated coals increased, indicating that the pore network was more complex with more
bottleneck pores, and there was an increase in the number of open pores [47]. Thus, the connectivity of
the treated tectonic coal sample was excellent, which may affect the methane desorption, diffusion,
and seepage.
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3.2. Desorption Analysis

Carbon dioxide sequestration in coal seams enhances CBM production. Simplistically, CO2

sequestration can be thought of as just gas in/gas out: carbon dioxide seepage, diffusion,
and adsorption in, coupled with methane desorption, diffusion, and seepage out. The preceding
pore structure analysis showed that ScCO2 can change the pore structure in intact and tectonic coals,
and this will undoubtedly affect the desorption, diffusion, and seepage of the methane. Previous
studies showed that the diffusion of methane through the coal’s matrix has an important influence
on CBM production [48,49]. However, research on how ScCO2 affects methane diffusion in tectonic
coal is still limited. Therefore, the methane desorption from ScCO2-treated intact and tectonic coals
was analyzed.

3.2.1. Gas Desorption Curves

Methane desorption curves for untreated and treated coal samples are shown in Figure 8.
The cumulative desorption volume increased as the desorption time increased. The slopes of the
desorption curves were steepest in the early stages of the desorption experiments, and the slopes
gradually decreased with time. Compared with intact coal, the slopes of the desorption curves of
tectonic coal were greater. This is because the mesopores and macropores of tectonic coal were more
developed. When the adsorption equilibrium pressure was 4 MPa, the volumes of gas desorbed from
the coal samples were higher than the volumes of gas desorbed when the absorption equilibrium
pressure was 2 MPa. This is because, during adsorption, the coal matrix could absorb more methane at
higher equilibrium pressures [50].
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(b) 4 MPa.

In general, ScCO2 treatment has a considerable effect on the coal sample’s gas desorption.
As shown in Figure 7, when the equilibrium pressure was 4 MPa and 2 MPa, the final desorption
volume of treated tectonic coal increased by 2.8118 mL/g and 3.8073 mL/g, respectively. However,
under the same conditions, the final volume of gas desorbed from treated intact coal was slightly
greater than volume of gas desorbed from untreated tectonic coal (2.1950 mL/g and 3.1542 mL/g).
The final desorption volume for treated tectonic coal was 1.33 to 1.40 times that of the desorption
volume for intact coal. These results indicate that more CBM can be extracted from a tectonic coal
CBM reservoir after the coal in the reservoir is injected with ScCO2.

To further analyze the changes in gas desorption from ScCO2-treated intact and tectonic coal,
their gas diffusion coefficients were compared in the subsequent section.
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3.2.2. Gas Desorption Diffusion Coefficients

Based on Fick’s diffusion laws, an analytic solution for a diffusion equation was presented by
Crank [51] under Dirichlet boundary conditions (Equation (2)). However, this analytical solution
is difficult to apply to practical engineering problems because it is in the form of an infinite series.
Yang [52] simplified Equation (1) to a more practical form (Equation (3)), and this equation is widely
used in engineering and can represent coal’s gas desorption very well. The two equations are as follows:

Qt

Q∞
= 1 − 6

π2

∞

∑
n=1

1
n2 e

− Dn2π2t
rc2 , (2)

Qt

Q∞
=
√

1 − e−B1t, (3)

where D is a diffusion coefficient, t is the desorption time, rc is the average particle diameter, Qt is the
cumulative desorption amount at time t, Q∞ is the ultimate desorption amount, and B1 is a fitting
parameter related to the diffusion coefficient D and the average diameter rc, which can be calculated
from B1 = K((4π2D)/rc

2). K is a correction parameter commonly taken to be equal to 1.
The variable Q∞ is, in most cases, calculated using Equation (4) [53].

Q∞ =

(
VLPeq

PL + Peq
− VLPa

PL + Pa

)
(1 − Mad − Aad), (4)

where Peq is the definite equilibrium pressure, Pa is the atmospheric pressure, Mad is the moisture
content, and Aad is the ash content of the coal samples.

Equations (3) and (4) can be used to calculate the diffusion coefficients for the coals used in this
study using the data from the methane desorption curves in Figure 7 as input parameters. The results
are shown in Table 4.

Table 4. Gas diffusion coefficients for supercritical CO2-treated and untreated tectonic and intact coals.

Samples
Intact Coal Tectonic Coal

Pressure
Untreated Treated Change Untreated Treated Change

D (×10−12

m2/s)
2.6360 3.8480 45.98% 3.9991 7.5020 87.59% 2 MPa
4.2155 6.0091 42.55% 5.2912 9.8848 86.82% 4 MPa

According to the results listed in Table 4, it is clear that ScCO2 treatment considerably increased the
tectonic coal’s diffusion coefficient, and the treatment increased the tectonic coal’s diffusion coefficient
more than it increased the coefficient for intact coal. For example, when the equilibrium pressure was
2 MPa, ScCO2 treatment increased the diffusion coefficient for treated tectonic coal by 87.59%, but the
treatment only increased intact coal’s diffusion coefficient by 45.98%. It can also be seen in Table 4 that,
under the same conditions, tectonic coal’s diffusion coefficients were higher than those for intact coal.
This is because desorption largely depends on the properties of the pores and the pore structure in
the coal. As indicated by the MIP test results, the proportion of macropores and mesopores increased
after ScCO2 treatment, especially for tectonic coal, and larger pores can provide better channels for gas
migration. In short, tectonic coal has stronger diffusivity capacity.

3.2.3. Implication for CO2-ECBM in Tectonic Coal Reservoirs

Liu et al. surveyed the distribution of tectonic coal reservoirs in China and indicated that the
CBM resource in these reservoirs was as much as 5.60 trillion cubic meters. This amounts to 39.20%
of China’s CBM resources [54]. Although the tectonic coal reservoirs have great potential for CBM
development, the permeability of this type of gas reservoir is very low. This means that developing
the resources in these CMB reservoirs would be very difficult.
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A simplified illustration of the migration of methane in a coal seam is show in Figure 9. In Figure 9,
methane migration is divided into three stages: desorption, diffusion, and seepage. Red circles
represent adsorbed methane in the coal matrix, green circles represent free methane, yellow squares
represent the coal skeleton, and purple squares represent pores in the matrix. In tectonic coal reservoirs,
gas migration to the fractures is slow because of the tectonic coal’s low permeability. Therefore, only a
small amount of methane can flow to CBM wells and the production of CBM is low (Figure 9, untreated).
The results of the methane desorption experiments described in previous sections show that both the
desorption capacities and diffusion coefficients of treated coals were higher than in untreated coals.
Therefore, more adsorbed methane was desorbed from the coal’s matrix and diffused to the fractures
after CO2 was injected into the tectonic coal reservoir (Figure 9, treated). The pressure gradient must
increase when more free methane is present in the fractures, as shown in Figure 9, treated (more green
circles exist in the fracture). According to Darcy’s law, an increasing pressure gradient must lead
to an increase in gas flow per unit time; thus, more methane will flow to CBM wells. Additionally,
the pore structure analysis described in Section 3.1 indicated that the number of the macropores and
mesopores of the coal increased after ScCO2 treatment, which provides more space for gas migration
and improves the absolute permeability of coal seams to some extent. Furthermore, Liu et al. (2018)
demonstrated that CBM production was mainly controlled by diffusion after six days of extraction
when the diffusion coefficient was 1 × 10–12 m2/s [49]. Therefore, a higher diffusion coefficient has a
positive effect on CBM production. In short, CO2-ECBM could overcome the negative effects of low
permeability in tectonic coal reservoirs to some extent, thereby promoting CBM development.
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4. Conclusions

This study investigated changes in the pore structures of intact coal and tectonic coal after ScCO2

treatment using mercury intrusion porosimetry and N2 (77 K) adsorption, and determined the effects
of these changes on the coal’s gas desorption and diffusion properties. The changes in desorption
and diffusion were used to study the implications for enhanced coalbed methane recovery with CO2

sequestration in tectonic coal reservoirs. The experimental results suggest the following conclusions:

(1) Compared with intact coal, the macropores and mesopores in tectonic coal were obviously larger
after ScCO2 treatment. Additional, the TPV, SSA, and pore connectivity of treated tectonic coal
were significantly improved. Pore structure analysis showed that tectonic coal was significantly
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affected by ScCO2 treatment. This was because tectonic coal contained more minerals and the
mobilizing effect in tectonic coal was more pronounced.

(2) The results of the methane desorption experiment showed that the desorption capacity of intact
coal and tectonic coal was improved to a certain extent by ScCO2 treatment; however, the diffusion
coefficient of the treated tectonic coal increased twice as much as that of intact coal. This change
was consistent with the pore structure experimental results. The enhancement of the tectonic
coal’s diffusion capacity after ScCO2 treatment can partially overcome the limitation imposed on
tectonic coal reservoir CBM development by the coal’s inherent low permeability. The results of
this study may provide new insights into CO2-ECBM in tectonic coal reservoirs.
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