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Abstract: The integration of the smart grid with the cloud computing environment promises to
develop an improved energy-management system for utility and consumers. New applications
and services are being developed which generate huge requests to be processed in the cloud.
As smart grids can dynamically be operated according to consumer requests (data), so, they can
be called Data-Driven Smart Grids. Fog computing as an extension of cloud computing helps to
mitigate the load on cloud data centers. This paper presents a cloud–fog-based system model to
reduce Response Time (RT) and Processing Time (PT). The load of requests from end devices is
processed in fog data centers. The selection of potential data centers and efficient allocation of
requests on Virtual Machines (VMs) optimize the RT and PT. A New Service Broker Policy (NSBP) is
proposed for the selection of a potential data center. The load-balancing algorithm, a hybrid of Particle
Swarm Optimization and Simulated Annealing (PSO-SA), is proposed for the efficient allocation of
requests on VMs in the potential data center. In the proposed system model, Micro-Grids (MGs) are
placed near the fogs for uninterrupted and cheap power supply to clusters of residential buildings.
The simulation results show the supremacy of NSBP and PSO-SA over their counterparts.

Keywords: response time; processing time; microgrid; recurring cost; data-driven smart grid; resource
allocation; residential buildings; energy management; demand side; cloud-fog based smart grid

1. Introduction

With the increasing population, the introduction of new electrical and electronic gadgets in daily
lives has increased the demand for electricity. Global warming and the emission of carbon dioxide
are challenges for power production. Unfortunately, more than 65% of electricity is wasted during
production, transmission, and distribution [1]. The power wastage is controlled by bidirectional
communication between the supply or production side and consumer or demand side. The Smart Grid
(SG) is a modernized electric grid that uses advanced Information and Communication Technologies
(ICTs) on demand and supply sides. The consumers are educated to optimize their energy demands
according to electricity tariff. Moreover, the load demand is reduced on the supply side by introducing
Micro-Grids (MGs) with cheap electricity production and storage. Many new concepts which include
Electric Vehicle (EV) charging and discharging, Advanced Metering Infrastructure (AMI), elastic load
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management and smart appliances [2] have been proposed by the researchers for efficient use of
electricity. The home with smart appliances is called Smart Home (SH).

Variety of load optimization techniques are used on the demand side to minimize
energy-consumption cost. Electricity prices are high during peak hours due to high production
cost. The load of appliances is shifted from peak to off-peak hours to shave the peak load on the
supply side and reduce the cost on the demand side. However, load-shifting compromises consumer
satisfaction. Cheap, uninterrupted, and self-sufficient power-producing MGs are introduced on the
demand side to resolve the user-satisfaction issue. However, MGs with Renewable Energy Sources
(RESs) have an intermittent nature and are complex to maintain. Energy storage companies have been
developing scenario-based flexible, reliable, and cheap energy demand solutions [3].

When a SH is connected with the utility then it has to optimize its load demand according to
utility tariff. Demand response is a program in which the consumer changes the behavior of power
consumption according to the utility tariff [4]. These programs play an important role in maintaining the
sustainability of the SG. The consumers are also informed when and how to use electricity. For efficient
and on-time energy management on the demand side, the utility provides predicted electricity market
pricing [5]. Similarly, varying the demand of electricity causes fluctuation in pricing. Therefore,
behavioral- and time-varying electricity prices are calculated and informed to consumers [6]. A huge
number of requests from the demand side is received on supply side. The development of the Internet
of Things (IoT) technology has enabled consumers to share information of energy consumption with
the supply side autonomously. Similarly, the supply side also shares the tariff details with the demand
side. The home energy-management program optimizes the load of appliances to reduce the load
on supply side. The huge requests from the demand side need to be processed, which requires a
huge computing system. The huge requests from the demand side are processed on a cloud-based
system [7]. The energy supply and consumption is optimized with IoT-based devices and cloud-based
energy management.

Autonomous and intelligent energy management, with distributed energy sources for the demand
side to mitigate the load on the supply side, is the requirement of modern SG. The reliable and efficient
communication network with computing infrastructure for efficient and robust power management
in SG is necessary. A huge number of requests from the demand side is generated every day and
computing needs for these requests can be met with cloud computing [8]. However, cloud computing
suffers from delay, load request congestion, huge data computation and communication cost.
The physical distance of the cloud platform from the end devices is the main cause of latency.

Fog computing extends the computing services on the edge to mitigate cloud load. The challenges
of cloud computing are resolved with fog computing. Fogs are placed near the end devices which
provide near-real-time response. Fog computing has characteristics of low latency, locality, geographic
distribution, the mobility of end devices, high processing, wired and wireless connectivity, and
heterogeneity [9]. The SG requests from the demand side are executed and responded back on the fog
in near real time. However, in this paper, the cloud-fog-based system model is proposed for distributed
clusters of residential buildings in different regions to process their requests. The performances of the
fogs are enhanced with a proposed New Service Broker Policy (NSBP) and a load request balancer.
MGs are placed near each fog, which controls maintenance or recurring cost. The sum of Virtual
Machines (VMs) cost, Data Transfer (DT) cost and recurring cost of MG comprise the system cost,
which is added in the consumer bill.

1.1. Motivation

The MGs with RESs and storage systems on the demand side provide cheap and uninterrupted
power supply. Multiple small MGs are joined, or a large-size MG is developed to meet the multiple
SHs and communal energy demands. The cost of energy consumption is also optimized to use
the cheap energy of MGs during peak hours [10–13]. In the proposed system model, RES and
energy storage-based MGs are placed for each cluster of residential buildings. Similarly, the
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huge requests generated from residential buildings need to be processed. The cloud provides
ideal computing resources for such a huge number of requests. However, network latency, data
computation, and communication cost is challenging [8]. Fog computing provides cost-efficient and
near-real-time services. It offloads the cloud computing services; however, it does not replace the
cloud. Fog computing has limited resources as compared to cloud computing [14]. This is suitable for
real-time applications with low traffic congestion, minimum bandwidth, and low energy consumption.
The characteristics of cloud and fog encourage the proposed cloud-fog-based system model. Moreover,
efficient resource use enhances computational performance. The load of requests on the VMs is
balanced with Particle Swarm Optimization (PSO) in [15] for efficient resource use to enhance the
performance of the fog. In PSO, in local solution, the particles are not fully connected; rather, each
particle is connected to their neighboring particles. In a global solution, the particles are fully connected,
and the swarm is controlled by the best particle. This makes the PSO inefficient for a global solution;
however, local search time is reduced by increasing the inertia weight [16]. On the other hand,
Simulated Annealing (SA) is inspired from the natural process of annealing in metallurgy in which
after a long cooling period the system always converges to global optima [17]. Hence, PSO suffers
from the instability of particles during global convergence and SA jumps to the convergence of global
optima. The challenge is to join the local optima of PSO and global optima of SA for efficient load
balancing on VMs of fog data centers.

1.2. Problem Statement

In SG, Demand-Side Management (DSM) reduces the consumption cost on the demand side
and reduces production loads on the supply side. Researchers have proposed many DSM models,
infrastructures, and platforms to optimize power demands. In distributed demand response, the
supply side broadcasts the information e.g., current load, tariff. Individual consumers optimize
energy consumption [18]. However, error messages on the communication network and locally
solving the optimization are challenges for efficient power management. The authors of [19] propose
a cloud-based centralized DSM. To overcome the delay issues of the cloud, the authors introduced
a two-tier cloud-based model: edge cloud, near the end users, and centralized cloud, for all edge
clouds. Inefficient resource use of cloud computing exacerbates the delay issue. The authors in [20]
propose he efficient resource allocation algorithms to enhance the performance of cloud computing for
DSM. Load traffic on cloud-based DSM and network delay are the challenge for DSM in SG [19,21,22].
To overcome the delay issues, the authors of [23] propose a fog-based architecture for DSM. The fog
has limited resources compared to the cloud; however, the fog is close to the end devices. A bottleneck
is created for fog computing due to a huge load of requests that compromise the performance of fog
computing. Routing of the demand-side request traffic at the appropriate data center and allocation of
requests on fog-computing resources for enhanced performance are challenging.

1.3. Contributions

In this paper, cloud-fog-based SG is proposed for enhancing services. Six regions with six clusters
of residential buildings are considered. The clusters share the requests with the fogs to process and
respond back in near real time. The fogs are connected to the cloud to permanently store their data.
The cloud is connected to the utility and it also broadcasts the utility tariff to the fogs. The MGs are
placed near the fogs to provide cheap and undisrupted power supply to the buildings. The MGs
have fixed capital and maintenance or recurring cost [24]. The cost depends on the size and types of
energy sources. In this paper, RESs and energy storage system-based MGs are proposed. The sizes
of MGs are defined according to demands from the clusters. The maintenance cost of an MG is also
called a recurring cost, which is proportional to the size of it. This paper is an extension of [25] and the
contributions of this research are as follows:

• A three-layered model—core or cloud, fog or middle-ware, and end-user layers—is proposed.
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• Hybrid of PSO and SA: PSO-SA is proposed for efficient load request allocation to VMs in the fog
data center.

• A service broker policy, hybrid of Optimized Response Time (ORT) and Service Proximity (SP) is
proposed for the selection of potential data center. The requests traffic is routed on the selected
data center.

• Fog layer is introduced between cloud and end users for near-real-time processing and respond
back to the end user.

• The recurring cost of MGs and computational cost on fog form the system cost. The system cost is
a recurring cost which is added to the consumer bill.

• The proposed PSO-SA and the new service broker policy outperforms the state-of-the-art service
broker policies and load-balancing algorithms.

1.4. Organization

The rest of this paper is organized as follows: Section 2 presents the literature review. In Section 3,
the proposed system model, load-balancing algorithms, and NSBP are presented. Section 4
demonstrates the simulation results, and in Section 5 the conclusion is discussed.

2. Literature Review

The end users in SG are educated to optimize their load consumption; however, for the last few
years, insightful researchers have proposed autonomous DSM programs [26]. The purpose of the DSM
is to autonomously optimize the load consumption on the demand side. In [27], authors propose a
cloud-based EV charging and discharging system for SG. A priority assignment algorithm optimizes
and reduces the waiting time for EVs on public supply stations. The proposed system manages SG
operations and maintains the communication between the cloud and the SG. The simulation results
validate the usefulness of the proposed approach for the charging of EV even during peak hours,
which improves the SG stability.

Moghaddam et al. [28] propose the stochastic model for consumers to schedule the energy load
of appliances using the cloud-based DSM for SG. The model creates small energy hubs for users and
shifts the load from peak to off-peak hours using the Monte Carlo method. The proposed model
reduces the peak to average ratio and the cost. However, authors of [19] analyze the Distributed
Demand Response (DDR) and Cloud-based Demand Response (CDR). The comparative analysis of
simulation results shows that CDR performs better than DDR with scalability, reliability of power and
a stable communication network. Unlike CDR, the DDR has unreliable channels which are prone to
lose messages. Hence, CDR has improved performance with cost efficiency. The simulation results
show that proposed CDR reduces more cost and PAR compare to DDR.

Home appliances are categorized to form subsystems by connecting with the controllers. The
controllers and remaining appliances are connected to the Smart Meter (SM). The SM communicates
with the fog for controlling and scheduling the load of appliances. The authors of [23] propose hardware
and software architectures for fog computing. The fog provides services for energy management for
SHs. The fog-based energy-management service reduces the cost, RT and PT compared to the cloud.
Similarly, in [29], cloud-based Cyber-Physical System (CPS) for energy efficiency in smartphones is
proposed. An energy-aware dynamic task scheduling algorithm is proposed to aggressively reduce
the energy consumption in smart phones. However, latency issues of the cloud compromise the
performance, which is difficult to resolve.

A cloud-based cost-oriented model for Direct Current (DC) nano-grid for next-generation smart
cities is proposed in [30]. Low-voltage smart appliances are controlled for energy and cost efficiency
using cloud-based energy management. The model is proposed with the uninterrupted power supply
to reduce maximum cost. For experimental analysis, a group of buildings from the smart city is taken,
which are controlled by generating alerts from the data centers on high power consumption. These data
centers are connected with a centralized cloud infrastructure to control the energy consumption of
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smart city buildings. The simulation results show that the proposed scheme has high satisfaction ratio,
cured delay and reduced demand supply gap.

Energy management on the fog for SHs is a novel approach to optimize energy consumption with
direct or indirect autonomous control. In [31], energy management as a service over a fog-computing
platform is proposed. Home appliances are categorized into subgroups. Software and hardware
architecture for SH energy control and fog-computing resources are proposed. Fog computing provides
flexibility, data privacy, interoperability, and real-time energy management. Two prototypes are
implemented to validate the reduction of implementation cost and time to market.

The authors in [20] propose the analysis for new trends in next-generation cloud computing.
The cloud infrastructure is modified into multi-tier architecture and applications are also modified
accordingly. Multiple infrastructure providers and distributed computing have resulted in new cloud
infrastructure. The authors analyze that emerging cloud architecture will improve the connection
between people and devices. It will provide a self-learned cloud-based system.

The authors in [32], propose a model of bi-level optimization to schedule power consumption
of local appliances and amount of power production. Adequate constraints on optimization vectors
reduce the cost of power generation in the local grid. Using cloud computing, it is possible to design
and implement an optimized DSM program for utilities and consumers. In [33], authors propose an
efficient energy-management scheme for SG based on CPS. Smart devices are located on the physical
plane and the controller on the cyber plane. The Nash equilibrium approach is used to analyze
the performance of the proposed coalition. The proposed scheme provides cost-efficient energy
management solutions during peak hours.

The authors in [34] propose energy-aware fog-based load balancing on equipment in a smart
factory. An improved PSO algorithm is proposed for an efficient energy-consumption model.
The distributed scheduling of manufacturing clusters is resolved with a proposed multi-agent
system. Similarly, to improve the performance of cloud and fog computing, a variety of heuristic
and meta-heuristic techniques are implemented and have been proposed. In [35–37], heuristic-based
load-balancing schemes are proposed for fog-computing resources. Fogs are preferred for real-time
applications and their efficient performances are important to consider. Hence, maximum use of
resources improves the performance as well as reduces the computing cost.

The aforementioned literature advocates the importance and benefits of cloud- and fog-based SG.
However, issues such as latency of the cloud-based system are incurable. However, fog computing
offers a wide horizon to ensure scalability, security, and low latency in energy-management strategies.
In this paper, three scenarios for efficient fog computing with proposed PSO-SA for load balancing of
requests on VMs and hybrid service broker policy are implemented.

3. System Model

In this paper, a three-layer system model is proposed as shown in Figure 1. The clusters of
residential buildings exist at the end-user layer. The cluster generates several requests for their energy
consumption. Each cluster is attached with a fog in the middle-ware layer. The fog receives the requests
from the cluster for processing. MG with RESs and storage system is placed near each fog. The service
broker policy routes the traffic of requests in the potential fog server or data center. The load-balancing
algorithm efficiently allocates the requests on VMs in the data center. The recurring cost of MGs and
computational cost of the fogs form the system cost and is added in consumer energy-consumption
bills. The fogs are connected with the core or cloud layer, where necessary data from the fogs are sent
for permanent storage. The cloud also broadcasts the utility tariff to the fogs.

In the system model, each region has a N number of clusters of residential buildings. Each cluster
has n buildings, B = {b1, b2, ..., bn} and each building has m SHs, H = {h1, h2, ..., hm}. It is assumed
that the production and current status of MGs are shared with the fog. The fogs have utility tariff and
information of MGs to process energy demand requests. In this paper, Photovoltaic (PV), Wind Turbine
(WT) and Fuel Cell (FC) are assumed for energy-producing sources and battery storage systems are
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used to store the energy in MGs. It is assumed that fog servers or data centers are placed near end
users to reduce the end-to-end latency. Moreover, when huge request congestion is created on fogs
then the requests are routed on the cloud for processing. The communication between end devices
and the fogs take place using wireless communication media such as Wi-Fi, Z-Wave or ZigBee.

Figure 1. Pictorial View of Proposed System Model.

The end devices (for instance SMs) generate requests and send to the fogs for processing.
Each request contains information of previous load consumption, current load demand, the source of
energy (utility or MG), cost and time (for request generation which is sent to the fog and receive back).
The request can have other information such as number of appliances, power ratings of appliances, the
current cost for consumed energy, etc. depending on the consumer services and facilities from the fogs.
Every cluster generates a huge number of requests and sends to the fog for processing. Optimization
of resource use is performed on the fog. Two necessary and effective steps are: (i) selection of efficient
server or data center where traffic of requests is routed for processing; and (ii) balanced load request
allocation of routed requests on the VMs in the server. The necessary information of these requests is
sent to the cloud and for usage in permanent storage for future statistics and projects. The fogs also
contain the information of MGs (production, capacity, the rate of energy flow out, etc.). When a MG
has insufficient power to fulfill the demand then fog requests the cloud to facilitate energy consumer.

In the end user layer, the SMs of SHs in residential buildings have information of smart appliances.
The set of smart appliances, Sap= {ap1, ap2, ..., app} in a SH are connected with the SM. The SMs share
the request with the fog and the request carries the information of Sap and ownership of SH. Hence,
information of each appliance and biodata of the consumer are sensitive and called private data of the
SH. However, it is assumed that the total power consumption of a SH is shareable and called public
data. The SMs categorize the energy data of each SH into private and public.

• Private data is usually never shared; however, the companies use this information for their
statistics and analysis for future or for upgrading the existing system. Such sensitive data can be
compromised in the cloud-based system. In the fog-based system, the information is local, and it
is less likely to be compromised.

• Public data refers to total energy consumption from a building, power generation of each MG and
utility tariff. This information does not contain sensitive data and there is no harm in sharing.
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The fog in the fog layer receives requests for energy demand from the cluster of residential
buildings and the current status of the MG. On the basis of this information, the fog decides whether
energy is supplied from the MG or the utility. The cluster does not directly communicate with the
MG and utility. Similarly, in the case of utility, the fog requests the cloud which facilitates the energy
demand request from the utility.

3.1. Problem Formulation

Effective task scheduling can be done in such a way that the upcoming requests from end users
get minimum execution time. Let ‘x’ be the number of requests received by task handler with task
length TL. The set of independent tasks is represented by Ttask ={t1, t2, ..., tx}. Every independent task
is assigned to a VM with processor speed Ps, bandwidth bw, memory Mem and the number of CPU
Cpu. Let, VM = {vm1, vm2, ..., vmy} is the set of y VMs in the fog. The VMs execute the x tasks in
parallel. Each VM runs on its own resources and processes the tasks independently.

The maximum completion time required for a task is the makespan of the task. The objective of
load requests balancing is to mitigate the makespan and RT. The makespan of r task on VMi is denoted
by CTr,i. The makespan for r on VMi is elaborated using the following Equation (1):

MakeSpanr = Max(CTr,i). (1)

where rεTtask, Ttask = {1, 2, 3, ..., r, ..., x} and sεVM, VM = {1, 2, 3, ..., s, ..., y}. Mapping of the task
Ttask to y VMs affects performance parameters. Now, the total tasks assigned to each VM are dependent
on the set of end user requests and in the performance of the load-balancing algorithm. The PT and RT
of tasks are formulated using linear programming. The PT of the allocated task Tr to s VM is PTr,s and
status of the task is αr,s. Total PTx,y of x tasks allocate to y VMs and statuses αx,y:

α =

{
I f task x is assigned, 1,
otherwise, 0.

(2)

The objective is to minimize PT,

PT = Σx
i=1Σy

j=1(PTx,y ∗ αx,y), (3)

where,

PTx,y =
TL(x)
Ps(y)

. (4)

Now, RT is the total time taken from sender to data center, PT on data center (by VMs) and time
to receive back from data center. It is computed with the help of an Equation (5),

RTx,y =
ΣyεVMs(CTx)

makesspan ∗ Number o f VMs
, (5)

where RTx,y is used to represent the total RT of the VMs in the system and CTx is the completion time
of the tasks.

VM is installed on a physical machine in a data center, acquiring resources to process the tasks.
There are two costs, fixed and recurring cost. The cost of the physical machine, maintenance, and
installation is fixed cost. Recurring cost is associated with the use of resources of physical machine to
meet user requirements. Optimized use of resources reduces the recurring cost. The concept of VM
is madde to use physical resources with optimization. The fixed cost of a VM can be calculated with
Equation (6) when y number of VMs are installed on a physical machine,

VMc
f ixed =

Pc + Mc

VMy
(6)
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where Pc and Mc are physical machine cost and maintenance cost. The recurring cost in this paper
is calculated on the basis of number of requests arriving at the VM and the number of instruction
executions per second by the VM. Length of a task TL elaborates the number of instructions IN ,

IN ∝ TL. (7)

Cost of a VM is calculated by the number of instructions executed in a given time. Cost for a VM
is defined by execution of a Million of Instructions Per Second (MIPS). Cost of VM for given task of
length TL is,

VMc
TL

= (IN × CostMIPS). (8)

where, VMc
TL

is a cost c of VM for a task T of length L, CostMIPS is the cost of MIPS. The total cost of
VM for all x tasks,

CostVM = Σx
TL=iVMc

TL
. (9)

MG available next to fog in middle layer having power generations; from WT, GWT , from PV,
GPV and from FC, GFC with the costs of CostWT , CostPV and CostFC, respectively. Price PrMG per
unit energy is defined according to all power generations and their respective costs. WT and PV are
dependent upon the weather hence their power production is used with predictive nature of production.
FC is used for backup to keep MG alive. The capacity of power generation of MG CapMG is,

CapMG = GWT + GPV + GFC. (10)

Total cost of energy produced by MG is,

CostMG = CapMG × PrMG. (11)

Cost of DT is the composite of interconnection and transit costs. Interconnection is a fixed cost
used for connectivity with Internet Service Provider (ISP) cross-linking. Transit cost is a variable
depending upon bits per second or bytes per second sent. Cost of DT CostDT is computed by transit
rates or bandwidth.

The total cost of the system is calculated by accumulating VM cost, MG cost and DT cost. Therefore,
the total cost of the system is given by Equation (12) :

Costsys = CostVM + CostMG + CostDT . (12)

where Costsys, CostVM, CostMG and CostDT represents the total system cost, VM cost, MG cost and DT
cost. The objective is to minimize Costsys, PTx,y and RTx,y.

3.2. Load-Balancing Algorithms

Efficient resource use enhances the performance of computing resource. The cloud and fog
have huge resources to execute a huge number of requests. The resources are shared to enhance the
performance. In this paper, resources of fog are shared by creating VMs. The requests are executed
according to the performance of VMs; however, execution of the overall load of requests is optimized
by the efficient allocation of the requests to the VMs. The performance of a data center is compromised
when some VMs have overloaded requests and some have very few or sitting idle. To resolve this issue,
load-balancing algorithms are used to allocate balanced load of requests on the VMs. The mechanism
of load balancing is illustrated in Figure 2. From top to bottom, the end users generate requests which
are sent to the fog data centers. The data center controller routes the requests on the potential server
where the load balancer (load-balancing algorithm) efficiently allocates the load of requests on VMs.
The VM manager furnishes the VMs for the load of requests to execute. The VMs are created on
physical resources which are maintained by the VM monitor. However, collective performance of
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these VMs depends on the load of requests assigned to them. The PT, RT and the execution cost with
proposed load-balancing algorithm PSO-SA are analyzed by comparing them to Round Robin (RR),
throttled and PSO algorithms.

Figure 2. Load-Balancing Mechanism in Data Centers.

3.2.1. RR Algorithm

RR algorithm is based on equal time slicing. In this paper, the RR algorithm is used to allocate
resources to each host by equal time slicing for utilization of resources. This algorithm is used to
balance the load of requests on the VMs by assigning equal time slice. The basic steps are described in
Algorithm 1.

Algorithm 1 RR-based resource allocation.

1: Input: List of tasks, List of the VMs
2: Output: VmId where tasks will be assigned
3: Initialize VmId=1, maxIter=maxValue
4: for vm=1; vm ≤ length (VmList); vm++ do
5: Find N_tasks allocated to vm
6: if VmId=1 then
7: cur_count=0;
8: else
9: cur_count=vm.getCurAssign()

10: end if
11: find (cur_VmState)
12: State=VmState
13: if (cur_count ≤MaxCount &&
14: State.equals (available)) then
15: MaxCount=cur_count;
16: VmId=vm;
17: end if
18: end for
19: Return VmId
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3.2.2. Throttled Algorithm

In the throttled algorithm, “throttledVMLoad” balancer maintains the table by indexing the all
VMs which are available at the beginning and the load of requests. Data center controller receives new
requests from end users. The requests query the controller where to be assigned. The algorithm assigns
the requests to the VMs by identifying the tags assigned by the data center controller. If identical tags
are found, then requests are considered for the next allocation after amending the tag information.
The table is also updated according to the amendments. If there is no next request then balancing
function returns “−1”. The basic steps of the Algorithm are explained in Algorithm 2.

Algorithm 2 Throttled-based resource allocation.

1: Input: List of tasks, List of the VMs
2: Output: VmId where tasks will be assigned
3: Throttled Load Balancer initialize an index
4: VmList checking ();
5: VmState ();
6: DC controller receives request
7: NextAllocation ();
8: CheckAvailability ();
9: if (VmId=1) then

10: Return VmId;
11: waitforNextAllocation ();
12: ModifyIndex ();
13: else
14: Return VmId=-1;
15: end if
16: if (more requests are in queue) then
17: Repeat step 8 to 15
18: end if
19: Return VM with load

3.2.3. PSO Algorithm

PSO is inspired from the motion behavior of birds or fish to improve the candidate solution.
The individual particle (animal) is not intelligent enough to solve a complex problem. The swarm
intelligence (all the animals in search space) provides the efficient solution. Each particle is influenced
by its neighbors and each particle updates itself with respect to its neighbor which make the whole
swarm update. This leads the whole swarm to the best solution. The PSO algorithm uses the following
steps to find the best solution.

• The particles (swarm) move in the search space according to some calculations or formulae.
• The movement is made with two constraints: locally best position and best position in whole

swarm.
• Any update in a position will update the whole particle swarm, which makes the PSO inefficient

for its global search.

The basic steps of the algorithm are given in Algorithm 3.
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Algorithm 3 PSO-based resource allocation.

1: Input: List of tasks/requests, List of Population Pop VMs
2: Output: Pgbest

3: Pgbest=0
4: for c=1 to Pop do
5: Particle velocity Pvel= Rand(0− 1)
6: Particle position Ppsn= Rand(Popsize)

7: Pp_best =Ppsn

8: if Cost(Pp_best)<=Pg_best then
9: Pg_best=Pp_best

10: end if
11: Stopping-condition
12: for ( dod=1 to Popsize)
13: Pvel=Update(Pvel , Pg_best, Pp_best)
14: Ppsn=Update(Ppsn, Pvel)
15: if Cost(Cost(Ppsn)<=Cost(Pg_best) then
16: Pg_best= Ppsn

17: if Cost(Cost(Pg_best))<=Cost(Ppsn) then
18: Ppsn=Pg_best

19: end if
20: end if
21: end for
22: end for
23: Return Pg_best VM

3.2.4. PSO-SA Algorithm

In the proposed algorithm, PSO is used to find local best position (Lbest) and global best position
(Gbest) is found with SA. In PSO, the best solution Gbest is found by a sequential flow of information.
The best solution sends information to nearby particles. In local search, partials are compared to their
neighbors and provide efficient Lbest solution. However, in global search, all particles are compared
with a single best solution which compromises the Gbest performance of PSO. On the other hand,
the SA algorithm is inspired by the natural process of metallurgy. SA converges to global best search
after a long cooling process. Hence, during heating and a long cooling process, the performance of
Lbest suffers. The hybridization of Lbest of PSO and Gbest of SA provides efficient solutions. The basic
steps of the proposed hybrid PSO-SA are illustrated in Algorithm 4.

3.3. Proposed Service Broker Policy

The service broker policy selects the data center where requests are routed for processing.
The requests from the end-user layer are sent to the fog where service broker policy selects efficient
data center (according to the policy algorithm) [38]. The requests query the service broker for the
destination. In this paper, a hybrid of ORT and SP is proposed for selection of an efficient data center.
In both service broker policies index tables are maintained for available data centers. In the table of SP,
the table is indexed according to the nearest data centers. The regions are ordered in the list by the
sender region and region queried. The remaining are order in lowest latency first. The earliest data
center (lowest latency) is picked from the list. If there are more than one data centers, then a random
data center is selected. However, the table of ORT is indexed according to RT from the data centers
using the Internet characteristics. The requests query the closest destination (according to latency) and
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at selected using the service broker algorithm. The best RT is found by iterating through each data
center due to:

• Last performed task using Internet characteristics.
• If time is recorded before the threshold time, then PT is appended ‘0′. It defines the idle state of

the data center.
• If closest data center does not have estimated smallest RT then on 50:50 chance either of them is

selected.

In proposed hybrid service broker policy, following points followed:

• A table is maintained with index of all available data centers.
• The requests query the data center controller about the destination.
• The sender region and queries for the regions are enlisted using SP broker.
• The network delay from the regions are enlisted from the Internet characteristics and by querying

the last recorded PT (using ORT step).
• The network delay for other regions from the given region also enlisted (using SP step).
• The CDC with minimum RT is selected; otherwise, data center with least RT is selected (using

ORT and SP steps).

Algorithm 4 PSO-SA-based resource allocation.

1: Input: Load of requests, list of VMs
2: Initialize Population (all VMs)
3: Initialize the Best known VM Bk for the requests
4: for Number of all VMs do
5: Input Load of Requests LR
6: if (Number of Bk==0 && LR) > 1 then
7: Select random VM
8: end if
9: if LR < VM (capacity) then

10: Update the the population according to Bk

11: end if
12: for x=1 to Population do
13: T=x/Bk

14: NewVM=Pick random neighbor of Bk

15: if Acceptance-Probability P(NewVM,Current VM )CVM), T)>=rand(0,1) then
16: CVM =NewVM

17: end if
18: end for
19: end for Return best VM

4. Simulation Results and Discussion

In this paper, extensive simulations are performed for the NSBP and load-balancing algorithm.
Three scenarios are implemented to analyze the performance of proposed techniques. The RT, PT and
cost are analyzed using CDC, ORT and proposed NSBP to route the requests on the potential data
center. The requests in data centers are allocated on VMs using RR, PSO and proposed PSO-SA.
The simulations are performed for 24 h (a day) using the CloudAnalyst tool. The load and size of
requests from the consumers, number, and size of VMs, hardware and virtual specifications of fog
computing are initialized according to [39,40].
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4.1. Scenario 1: 25 VMs and Residential Buildings

In this scenario, three residential buildings from three clusters in three regions are considered.
Each building has 100 SHs which generate requests every hour to process on the fog in the region.
Each cluster is also connected with MGs for uninterrupted and cheap power supply. The requests are
routed on potential data center using ORT. The balanced load of requests is allocated to VMs using
RR, throttled, PSO and proposed PSO-SA. Simulations are performed with each algorithm separately
to analyze the performances of RT, PT, and the cost. Each fog data center in the region has 25 VMs.
The data for users for peak and off-peak hours is taken from [41]. The simulation results for RT are
discussed in the following subsection.

4.1.1. RT for Residential Buildings

The buildings generate different number of requests which are sent to the fog. The request traffic
is routed on the data centers using ORT. ORT reduces the RT and increases the system performance
for end users (SHs in the buildings). Four scheduling algorithms; RR, throttled, PSO and PSO-SA
are used to allocate load of requests on the VMs in the data centers. Efficient allocation enhances the
performance for PT. Therefore, SBP and load-balancing algorithm enhance the system performance
and reduce the computational cost. The fog has limited resources and its performance is compromised
due to traffic congestion and load of requests. The RT is compromised during peak hours when end
users generate huge numbers of requests for the fogs to process. The Figure 3 illustrates the RT for
three buildings in three regions for a day. Every building belongs to a different region and residents of
each region have different power consumption behavior. Hence, each building generates a different
number of requests which are processed on the fog. The least number of requests are generated by
Building-2 and the most requests are generated by Building-1. In Building-1 and Building-3, the RR
has the highest RT. The proposed PSO-SA has the least RT. Meanwhile, throttled has higher RT than
PSO. In Building-3 during hours 2, 12, 14, 15, 16, 17 and 21, the RT using RR and throttled are almost
same and the number of requests during this time are few. Similarly, in Building-2, the number of
requests is less than Building-1 and Building-3. RT using RR is smaller or equivalent to throttled.
Similarly, PSO-SA also performs better with fewer number of requests. The simulations validate the
inefficiency of RR, throttled and PSO with high load of requests while proposed PSO-SA is the efficient.
The PSO-SA has the least average RT and RR has the highest RT. The PSO has 64.04 ms, throttled has
75.11 ms, RR has 83.00 ms and PSO-SA has 60.77 ms average RT as given in Table 1.
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Figure 3. RT of Buildings During 24 h in Scenario 1.

Table 1. RT in Scenario 1.

Algorithm Average RT (ms) Minimum RT (ms) Maximum RT (ms)

RR 83.00 42.78 99.74
Throttled 75.11 40.26 96.53
PSO 64.04 39.53 90.28
PSO-SA 60.77 37.98 290.86
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4.1.2. PT of Requests

The RT is affected by network latency and the PT. If the average PT of PSO-SA is efficient then
RR, PSO are throttled; however, PSO-SA is the most efficient as given in Table 2. The requests from all
(three) buildings in respective regions are sent to the fogs for processing. As discussed earlier, the most
requests are generated by Building-1 and Building-3 and sent to Fog-1 and Fog-3, respectively. In the
Figure 4, the PT efficiency on the fogs with RR, throttled and PSO are compromised; however, PSO and
PSO-SA have lesser PT. In Fog-2 there is a lesser number of requests as compared to Fog-1 and Fog-2
to process. The PT of PSO is more compromising than PSO-SA in Fog-2. These hourly performances
for PT in Fog-2 show that proposed PSO-SA is most efficient. The performance of RR is compromised
when sizes and number of requests are big. Because, partially executed requests sit in wait for their
next turn. However, PSO-SA performs efficiently for any number of requests due to efficient local and
global solutions.

Table 2. PT in Scenario 1.

Algorithm Average PT (ms) Minimum PT (ms) Maximum PT (ms)

RR 2.37 0.21 3.99
Throttled 2.49 0.25 4.47
PSO 2.91 0.26 4.96
PSO-SA 1.14 0.17 2.30
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Figure 4. PT of Buildings During 24 h in Scenario 1.

4.1.3. The Cost Analysis

The cost of DT, VM and recurring of MG make the system cost. The recurring cost of MG
depends on the load of demand requests which are generated from the clusters of residential buildings.
The efficient RT and PT also affect the MG cost. The system or total cost using ORT as SBP with
load-balancing algorithms; RR, throttled, PSO and PSO-SA are shown in Figure 5. The total DT cost
with PSO and RR is the highest due to waiting of most of the partially executed requests in VM where
the probabilistic behavior of PSO is. The DT cost for throttled is more efficient than PSO and RR;
however, it is less efficient than PSO-SA. Throttled depends on fixed hardware and VMs specification.
It follows fixed rules without performing too much evaluation. This increases the throttled-based
DT cost. The PSO-SA has the efficient cost for DT due to the efficiency of local and global solution.
The MGs cost has very small variations among the load-balancing algorithms. The recurring cost
of MGs depends on number of requests generated from the residential buildings; however, delayed
responses from the fog affect the cost. In the Figure 5, PSO-SA has the least MG cost. The load requests
are balanced on VMs in the data center. The PSO-SA balances the load requests most efficiently and
has the most optimized VM cost.
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4.2. Scenario 2: 50 VMs and Cluster of Buildings

In this scenario, five regions with clusters of residential buildings are considered. Each cluster is
connected with the regional fog. There are five buildings in each cluster and each building has 100 SHs.
The requests are generated from the clusters and are sent to the fog for processing. Each fog data center
has 50 VMs. Three SBP; CDC, ORT, and proposed hybrid NSBP are implemented with RR, throttled,
PSO and PSO-SA load-balancing algorithms.

4.2.1. Average RT of Requests

The clusters of residential buildings generate requests which are sent to the fogs every hour.
The huge number of requests are processed efficiently and respond back to the clusters. The RT is the
sum of network delay and PT. The RT is affected by the efficiency of PT. The selection of potential data
center and balanced load allocation on VMs enhance the PT efficiency. In this scenario, three SBPs;
CDC, ORT and NSBP are used to route the requests traffic on the potential data center. The routed
requests in the data center are allocated to VMs for efficient processing. The load requests are balanced
on available VMs such that no VM is overloaded or under-loaded. Four load-balancing algorithms
are implemented along each SBP. In Table 3, the SBP is the column for SBPs. The column Algorithm
shows the load-balancing techniques used in this scenario and rest of the columns illustrate the RT
(in millisecond (ms)) for five clusters (C1, C2, C3, C4, C5).

In CDC, the closest data center is selected to route the requests traffic on it. In this policy,
data centers are enlisted in ascending order. The network delays (from the Internet characteristics) of
all data centers are compared with the closest one and enlisted. The requests are routed by selecting
the data center from the top (with least network delay) in the list. However, ORT maintains the list
according to RT by sending ping messages from user-layer to data center. The Internet characteristics
are used for the list. The NSBP use the ORT and SP for efficient and potential data center selection.
The SP uses network latency, bandwidth, request size and starts enlisting the CDC first. The ORT and
SP select the potential data center for optimized processing and the response.
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Table 3. Average RT (ms) of Scenario 2.

SBP Algorithm C1 C2 C3 C4 C5

CDC RR 51.15 51.12 51.14 51.19 51.16
CDC throttled 50.70 50.67 50.66 50.78 50.74
CDC PSO 55.27 55.66 55.76 54.83 55.70
CDC PSO-SA 48.90 49.38 49.27 48.80 49.51

ORT RR 51.15 51.12 51.08 51.16 51.14
ORT throttled 50.73 50.69 50.63 50.79 50.73
ORT PSO 55.22 56.76 54.47 54.52 54.13
ORT PSO-SA 50.12 51.02 49.99 50.88 51.00

NSBP RR 51.12 51.07 51.02 51.14 51.24
NSBP throttled 50.26 50.45 50.55 50.71 50.73
NSBP PSO 54.85 55.10 54.09 55.01 55.11
NSBP PSO-SA 50.10 50.44 49.13 50.62 50.30

In the Table 3, the average RT using ORT with RR is efficient as compared to CDC for all residential
clusters of buildings. However, CDC with throttled is more efficient than ORT. Hence, this advocate
the efficiency of load-balancing algorithm along with the SBP. The average RT with PSO has the
highest value using CDC, ORT and proposed NSBP. The evaluation complexity of PSO is higher
than mentioned algorithms. The efficiency of average RT using ORT with PSO is better than CDC.
The selection of efficient data center and efficient load requests allocation on VMs optimize the RT.
The performance of RR is compromised when incomplete processed requests sit to wait for next
execution. The throttled is efficient as compared to RR due to fixed number of VMs. However,
the performance of throttled is compromised if load balancer finds no VMs and requests are kept in
queue for waiting. The performance of PSO is compromised due to the time complexity of global
problem solution. The space and time complexity of PSO is higher than RR and throttled. However,
the global searching part of PSO is altered with the global solution portion of SA. The efficiency of
PSO with SA is enhanced and it optimizes the average RT.

4.2.2. Average PT of Requests

The processing efficiency of a computing machine depends on factors such as load of requests,
hardware and software specifications, communication among the components and optimized resource
use. In the fog, the load of requests on data centers are routed by the SBP. The high load of requests on
the system compromise the performance.

Hence, the potential data center selection for the appropriate load requests along with efficient
resource use enhance the PT. In the Table 4, CDC, ORT and NDSP route the requests on data centers
where RR, throttled, PSO and PSO-SA allocate the requests to VMs for efficient processing. Each
load-balancing algorithm is implemented with each SBP independently. The PT with RR using CDC
and ORT is almost same due to same number of VMs on the hardware with similar specifications
and similar load of requests. The throttled also has similar processing behavior; however, average PT
with throttled using CDC for Fog2 is more efficient than using ORT. The ORT routes more requests on
the data center than CDC which compromise the PT using throttled on Fog2. The PT for PSO is the
highest among mentioned algorithms; however, PT with PSO using ORT is efficient as compared to
using CDC. The performances of PT for RR, throttled, PSO and proposed PSO-SA are more efficient
using proposed NSBP than CDC and ORT. However, PSO-SA has optimized PT as compared to RR,
throttled and PSO when they are implemented using CDC, ORT and NSBP, individually.
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Table 4. Average PT (ms) of Scenario 2.

SBP Algorithm Fog1 Fog2 Fog3 Fog4 Fog5

CDC RR 1.04 1.07 1.40 1.09 1.88
CDC throttled 1.04 0.96 1.12 1.22 1.40
CDC PSO 2.02 2.76 2.53 2.08 2.55
CDC PSO-SA 1.00 1.21 1.01 0.99 1.18

ORT RR 1.04 1.07 1.40 1.51 1.88
ORT throttled 1.04 1.97 1.12 1.22 1.02
ORT PSO 1.47 1.87 1.59 2.01 1.62
ORT PSO-SA 1.00 1.06 1.23 1.10 0.99

NSBP RR 1.04 1.07 1.40 1.51 1.86
NSBP throttled 1.04 1.97 1.12 1.22 1.99
NSBP PSO 1.63 1.37 1.21 1.12 1.97
NSBP PSO-SA 1.0 1.12 1.18 1.127 1.31

4.2.3. The Cost Analysis

The performance of the load-balancing algorithm and SBP affects the cost. The cost of a VM
depends on load requests, size of requests, size of VM and time to engage the resources. Longer
occupancy of a resource compromises the system performance and increase the computational cost.
Similarly, huge load requests compromise the performance and cost. The load-balancing algorithms
optimize the resource allocation to enhance the performance and to reduce the cost. In Figure 6, cost
for VMs, MGs and DT is shown. The recurring cost of a MG depends on the load of requests. In this
paper, the number of SHs in cluster of residential buildings are same; hence, generate same load of
requests. This makes the MG recurring cost almost same for the given regions. Similarly, DT cost is
also almost same due to equal number of requests are generated. However, VMs cost for each fog is
different from other due to the efficiency of load-balancing algorithms. In Figure 6a, the MG and DT
cost are similar for all the fogs; however, VM cost is different. The VM cost for fog-1, fog-3 and fog-5
are close. The physical resources for the fogs are same; however, there are eight processors in fog-1 as
compared to six, in fog-3 and fog-5. In the fog-3 data center, second physical unit has ten times more
bandwidth compared to fog-1; however, there are half number of processors in first physical unit as
compared to fog-1. These trade-offs of the resources make the VMs cost equivalent in fog-1 and fog-2.
In fog-5 the second physical unit has hundred times lesser bandwidth as compared to fog-1 and fog-3.
The lesser bandwidth creates bottleneck for load of requests. Hence, resources are occupied longer, and
load requests sit in wait for longer. Hence, the VMs cost for fog-5 is higher as compared to fog-1 and
fog-3. The cost for fog-2 and fog-4 are close due to same number of physical (three) units. However,
third unit has double the storage and memory capacity as compared to rest of the units in both fogs.
This increases the VM cost for fog-4. The more load requests on fog-4 can drastically increase the cost.

In fog-4, the throttled and PSO using CDC and ORT, respectively allocate more load of requests
on VMs of third physical unit which aggressively increase the VM cost as shown in Figure 6b,c,f,g.
The load requests are more uniformly routed on the potential data centers. The requests are allocated
to VMs using CDC with RR and PSO-SA as well as using ORT with PSO-SA which keep the cost
of fog-4 more optimized. The NSBP with RR, throttled, PSO and PSO-SA route the requests to the
potential data center as well as efficiently allocate the load requests to the VMs. The cost of VMs
are more optimized with NSBP than CDC and ORT. The VMs cost with PSO using CDC, ORT and
NSBP are higher than RR, throttled and PSO-SA algorithm due to high time and space complexities.
The performance of PSO is also more compromising then RR, throttled and PSO-SA as given in
Tables 3 and 4. The overall performance of a proposed load-balancing algorithm with NSBP is most
efficient as shown in Tables 3 and 4. This performance efficiency is also observed in the cost.
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Figure 6. Cost for Scenario-2.

The VM cost in the sub-figures of Figure 6 show that fog-1, fog-3 and fog-5 have close cost using
CDC, ORT and NSBP using RR, throttled, PSO and PSO-SA. The physical units for these fogs are same.
However, VM cost for fog-5 is higher than fog-1 and fog-3 due to the hundred-fold lesser bandwidth in
second hardware unit compared to first hardware unit of its own. The first hardware unit of fog-3 and
both units of fog-1 have a thousand-fold lesser bandwidth than second unit of fog-3 which increase
the VM cost for fog-3. The fog-4 in all the sub-figures has the highest cost due to large memory and
storage size in third physical unit. The proposed NSBP with PSO-SA has the optimized VM cost for all
fogs as shown in Figure 6l.

In a nutshell, the results show that RT depends on the PT. The PT depends on the efficiency of the
load balancer, hardware, and virtual resources. The SBP also effects both RT and PT. The computing
cost depends on the load of requests (or tasks), hardware and virtual resources. The optimized
resources use is performed with SBPs and load balancers which optimize (reduce) the computing cost.
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5. Conclusions

In this paper, a cloud-fog-based system model is proposed. Residential buildings form the clusters
and each cluster has a fog to compute the energy requests generated from the buildings. MGs are
placed with each fog for uninterrupted and cheap power supply to the clusters. MGs have RESs with
storage systems. A MG has maintenance or recurring cost which depends on the size, types of sources
and number of demand requests from the clusters. When a MG has insufficient energy to meet the
demand then it requests the cloud to entertain the demand by requesting the utility. In this paper,
requests from the clusters are sent to the fogs for processing. The RT and PT are optimized by SBP
and request load balancing. A hybrid of SP and ORT SBP is proposed for selection of potential data
center in the fog. A hybrid of PSO and SA is proposed for balancing load requests on VMs in the data
center. Two scenarios are implemented to evaluate the performance of NSBP and the load-balancing
algorithm. In Scenario-1 the requests from three residential buildings from three regions are sent to the
respective fogs to evaluate the performance of PSO-SA. ORT is used to route the request traffic on the
potential data center. The simulation results show that the PSO-SA has 26.68%, 19.45% and 5.21% more
efficient RT than RR, throttled and PSO, respectively. The PT using PSO-SA is enhanced by 51.9%,
54.32% and 60.9% as compared to RR, throttled and PSO, respectively. The VMs cost also optimized by
7.38%, 5.91% and 4.95% as compared to RR, throttled and PSO, respectively. The simulation results
of Scenario-2, for PT and RT of five fogs and respective clusters of residential buildings are given in
Tables 3 and 4. The results validate the performance of PSO-SA and proposed NSBP. The Figure 6,
validate the VM cost efficiency with PSO-SA using CDC, ORT and NSBP as well as using NSBP with
RR, throttled, PSO and PSO-SA. The simulations show the trade-off between VM cost and performance
with respect to hardware specifications. In the future, a multi-objective tasks-based resource allocation
mechanism shall be proposed. The implementation of the realistic environment is important to validate
the feasibility of proposed model in consideration of optimized power consumption and computation
cost. However, this will be the scope of our future work.
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