
energies

Article

Optimal Design of a High-Speed Single-Phase Flux
Reversal Motor for Vacuum Cleaners

Vladimir Dmitrievskii 1,2, Vladimir Prakht 1,2, Vadim Kazakbaev 1,2,* and Sergey Sarapulov 1

1 Department of Electrical Engineering and Electric Technology Systems, Ural Federal University,
Yekaterinburg 620002, Russia; vladimir.dmitrievsky@urfu.ru (V.D.); va.prakht@urfu.ru (V.P.);
s.f.sarapulov@urfu.ru (S.S.)

2 EMACH LLC, Yekaterinburg 620002, Russia
* Correspondence: vadim.kazakbaev@urfu.ru; Tel.: +7-343-375-4507

Received: 3 October 2018; Accepted: 26 November 2018; Published: 29 November 2018
����������
�������

Abstract: This paper describes the design of a single-phase high-speed flux reversal motor (FRM) for
use in a domestic application (vacuum cleaner). This machine has a simple and reliable rotor structure,
which is a significant advantage for high-speed applications. An FRM design in which the inner stator
surface is entirely used allows it to decrease its volume and increase its efficiency. The mathematical
modeling, based on the finite element method, and the optimal design of the high-speed single-phase
FRM are described. The criterion of optimization and the selection of a proper optimization algorithm
are discussed. Since the finite element method introduces a small but quasi-random error due to
round-off accumulation and choosing the mesh, etc., the Nelder-Mead method, not requiring the
derivatives calculation, was chosen for the optimization. The target parameter of the optimization is
built for the motor efficiency when operating at different loads. Calculations show that the presented
approach provides increasing motor efficiency during the optimization, particularly at underload.

Keywords: electrical machine modeling and optimal design; flux reversal motor; high-speed motor;
permanent magnet machines; permanent magnet machine drives; special machines; vacuum cleaner

1. Introduction

An important characteristic of vacuum cleaners (Figure 1a) and air blowers (Figure 1b) is the
suction power, which directly depends on the power of the applied electric motor [1]. One prospective
of such devices is the increase in suction power without increasing the size and mass of devices.
In addition, to improve reliability and durability, it is necessary to eliminate the collector-and-brush
motor assembly unit. However, these requirements cannot be satisfied with the use of an AC
commutator (brushed, universal) motor (Figure 2a), traditionally used in vacuum cleaners and air
blowers [2,3]. Therefore, for the application under consideration, the use of brushless electric motors is
promising [2–6].

A high-speed three-phase brushless synchronous motor for vacuum cleaners and air blowers [2]
is shown in Figure 2b and a two-phase switched reluctance motor [3] is demonstrated in Figure 2c.

In high-speed vacuum cleaners and air blowers the use a type of motor with magnets on the stator
is expected, which is known as a flux reversal motor [7,8]. Two possible designs of the high-speed flux
reversal motor are shown in Figure 3.
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Figure 1. Considered motor applications: (a) vacuum cleaner [9]; (b) air blower [10]. 

   
(a) (b) (c) 

Figure 2. Design of high-speed motors: (a) single-phase AC commutator motor [11]; (b) three-phase 

motor having permanent magnets on the rotor [2]; (c) two-phase switched reluctance motor [3]. 
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When compared to AC commutator motors [11], the main advantages of an FRM are the 

following: 

• The FRM is more reliable and its lifetime is longer, as it has no collector assembly and no brushes; 

• The heat removal from the rotor is not required because the rotor does not contain any heating 

elements such as coils or a collector. This also increases the reliability of the rotor bearings; 

• The toothed rotor production is very simple and not necessarily required. Its only active part is 

a magnetic core made of laminated steel; 

• The FRM mass is much less than that of the AC commutator motor with brushes; 

• The efficiency of the FRM is higher than that of the AC commutator motor with brushes. 

The main advantages of the FRM over three-phase and single-phase synchronous motors having 

permanent magnets (PM) on the rotor [2,12,13] are the following: 

• The toothed rotor of the FRM is simpler and more reliable, without permanent magnets; 

• High-speed synchronous motors with magnets on the rotor often have an additional retaining 

ring on the rotor to fix the magnets; 

• The FRM rotor is simpler, more reliable, and does not require balancing. 

In addition to this, the FRM single-phase inverter is simpler and cheaper than a three-phase 

synchronous motor with PMs on the rotor. 

The FRM has similar advantages at high-speed applications to the Switched Reluctance Motor 

(SRM), since both have a simple and reliable rotor. 

When compared to the two-phase SRM [14], the additional advantages of the FRM are the 

following: 

• Only half a period is used to generate torque in the SRM, while the FRM can do it for almost an 

entire period, which increases the efficiency as well as the specific torque and power; 

Figure 1. Considered motor applications: (a) vacuum cleaner [9]; (b) air blower [10].
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Figure 2. Design of high-speed motors: (a) single-phase AC commutator motor [11]; (b) three-phase
motor having permanent magnets on the rotor [2]; (c) two-phase switched reluctance motor [3].

A flux reversal machine (FRM) has many advantages in comparison with other types of high-speed
machines [7].

When compared to AC commutator motors [11], the main advantages of an FRM are the following:

• The FRM is more reliable and its lifetime is longer, as it has no collector assembly and no brushes;
• The heat removal from the rotor is not required because the rotor does not contain any heating

elements such as coils or a collector. This also increases the reliability of the rotor bearings;
• The toothed rotor production is very simple and not necessarily required. Its only active part is

a magnetic core made of laminated steel;
• The FRM mass is much less than that of the AC commutator motor with brushes;
• The efficiency of the FRM is higher than that of the AC commutator motor with brushes.

The main advantages of the FRM over three-phase and single-phase synchronous motors having
permanent magnets (PM) on the rotor [2,12,13] are the following:

• The toothed rotor of the FRM is simpler and more reliable, without permanent magnets;
• High-speed synchronous motors with magnets on the rotor often have an additional retaining

ring on the rotor to fix the magnets;
• The FRM rotor is simpler, more reliable, and does not require balancing.

In addition to this, the FRM single-phase inverter is simpler and cheaper than a three-phase
synchronous motor with PMs on the rotor.

The FRM has similar advantages at high-speed applications to the Switched Reluctance Motor
(SRM), since both have a simple and reliable rotor.

When compared to the two-phase SRM [14], the additional advantages of the FRM are
the following:

• Only half a period is used to generate torque in the SRM, while the FRM can do it for almost an
entire period, which increases the efficiency as well as the specific torque and power;
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• The SRM has open stator slots [14] and only about half the stator surface is used, which decreases
the efficiency as well as the specific torque and power;

• Almost half of the electrical energy received by the SRM returns to its inverter and does not
transform to mechanical energy, which increases the winding current as well as increasing the
inverter cost and size;

• The single-phase inverter (control circuit of the motor) for the FRM is simpler and cheaper
compared to the inverter for the two-phase SRM.

Given the advantages noted above in high-speed applications where a large starting torque is
not required (vacuum cleaners, hand dryers, blowers, etc.), the use of a single-phase FRM is a good
alternative to the SRM and synchronous motors with PMs on the rotor.

Recently, a large number of three-phase configurations of the FRM were described in the
literature [15–17]. However, the three-phase FRMs require both a more expensive power converter
and a complicated control system. Therefore, in the considered application, the use of a single-phase
FRM that has a simple converter design [7] is more preferable.

The design of a single-phase FRM is not so often discussed in the literature. At present,
only several various configurations of a single-phase FRM are known. Ref. [18] describes the first
known configuration of the single-phase FRM. This machine has two stator teeth with two magnetic
poles on each, and three rotor teeth (Figure 3a). A similar high-speed FRM for vacuum cleaners is
described in Reference [19].
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Single-phase FRMs, in which the inner stator surface is entirely used, are described in
Reference [7,20]. This FRM operates at a very high speed (≈28,000 rpm). This machine was considered
for driving an angular grinder (electric power hand tool). Figure 3b shows the design of that FRM.
Its stator consists of a stator core with four teeth and a four-pole single-phase winding. On the internal
surface of each stator tooth there are two fixed PMs. The direction of the magnetization of the nearest
PMs fixed on the adjacent teeth is the same. In addition to this, the new FRM’s design has a rotor with
four teeth.

When compared to the well-known modifications of FRMs [18,19], the advantages of the
considered design (Figure 3b) are the following: (1) increasing mechanical power density and efficiency
of the motor, due to better utilization of the stator internal surface; (2) no inherent uncompensated
radial forces; and (3) an increase in the lifetime of the bearings as a result of the symmetry of the motor
with an even number of rotor teeth.

Various approaches to the modeling of the FRM were presented in References [7,18,19].
The optimization of the geometry of the FRM with three rotor teeth (Figure 3a) was discussed in
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Reference [18]. However, the criterion of optimization was not presented. The calculation of the
performances of the FRM was carried out using parameters such as the “fringing coefficient”, obtained
from an FEM (finite element method) model. Furthermore, it was not mentioned in the paper how the
steel saturation was accounted for in the model.

Another approach was presented in Reference [19]. The Simulink implemented model of an FRM
is based on data on inductance, and back EMF (electromotive force) obtained from an FEM model.
The model does not take into consideration losses in the magnetic cores and magnets, which may be
essential at high frequencies.

When designing the FRM for a variable-speed application, it is necessary to take into account
the lack of FRM inherent in all motors with magnets. Their magnetic field cannot be switched off or
weakened at low loads. Therefore, with a suboptimal motor design for the rated mode, the losses at
underload will be significant, and the efficiency will be low. This necessitates the minimization of FRM
losses over a wide range of load modes.

In this paper, the optimal design technique of a high-speed FRM for a vacuum cleaner, choosing the
optimization criterion, and the selection of the optimization algorithm are described. The characteristics
of single-phase FRMs designed without the optimization and those of single-phase FRMs designed
with the optimization are compared.

An FEM-based mathematical model was developed for this optimization. The case of feeding the
FRM with the voltage of a rectangular waveform is considered. To reduce the number of boundary
problems required, the motor symmetry is studied. The iterating procedure followed to converge the
model with the mode at a given power is described.

2. Brief Description of the New FRM Mathematical Model

A new mathematical model was developed for an optimal FRM design. The rectangular voltage
form is assumed in the model. The winding, magnets, and core losses are neglected in solving the
boundary problems and are estimated in the post-processing.

The flux waveform is trapezoidal and can be obtain by integrating the voltage waveform.
The rotor speed is assumed to be a constant during the machine’s electrical cycle (rotating the
rotor by 90 mechanical degrees). The integration constant is chosen so that the average current
is equal to zero. Thus, only a few combinations of the flux and the rotor position are realized in
the machine cycle, and only the boundary problems corresponding to these combinations should
be solved. Therefore, considering all possible combinations is not required. A 2D magnetic vector
potential approach was applied to solve these boundary problems. This approach involved dividing
the calculated area into two subareas corresponding to the rotor and the stator by boundary III
(Figure 4), using a joining boundary condition depending on whether the rotor position allowed,
using one and the same geometry for all the boundary problems, and considering the rotor and the
stator in their own reference frames. Such an approach simplifies the calculation of the total time
derivative of the magnetic flux density necessary for the calculation of the core and magnet losses.

The geometry of the FRM is symmetrical with respect to its rotation by 90 mechanical degrees
and changing the current and magnetization directions. Therefore, it is sufficient to consider only
a 1

4 section of the geometry. The boundaries I and II are linked by an antiperiodic boundary condition
where the vector magnetic potential changes its sign.

Usually, for the boundary problem to be solved, the current density should be given. However,
when the flux Φ is given, the current density J is assumed to be proportional to the unknown winding
current I:

J = ΞI, (1)

where Ξ is the current density at the winding current of 1A. The winding current I should be considered
an additional degree of freedom. The corresponding equation is:

Φ = 4L
x

AΞdxdy, (2)
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where A is the z-component of magnetic potential, L is the stack length, and 4 is the multiplier, taking
into account the reduction of the calculating area.
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As a result of solving the set of boundary problems, the current waveform can be found. Then the
torque and the winding losses can be estimated in postprocessing. In particular, the torque T can be
found as follows:

T = 4L
x

air gap
subdomain

xy(B2
y − B2

x) + (x2 − y2)BxBy

δairµ0

√
x2 + y2

dxdy, (3)

where δair is the air gap thickness.
It is supposed that the middles of the impulses of the rectangular supply voltage correspond

to the moments of time when the rotor teeth are exactly over the magnetic poles of the stator teeth.
Therefore, the only way to affect the operating mode is to choose the duty-cycle that is the part of
time when the applied voltage is not zero. The duty cycle through the applied voltage determines the
flux waveform involved in Equation (2). To calculate the motor mode with the given torque Tref and
speed, an algorithm was developed and its flowchart is shown in Figure 5. When the torque is equal to
Tref with the required accuracy, the calculations stop.
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3. The FRM Optimization Criteria and Procedure

Since the vacuum cleaner works in a wide range of speeds and torques depending on the operating
mode, the rated efficiency cannot serve as a correct indicator of the energy efficiency of the vacuum
cleaner. As a quantitative measure of energy efficiency for a variable-load motor, the average efficiency
can be used:

ηav =
∑ Pmechiti

∑ Paiti
, (4)

where Pmechi is the mechanical power in different modes; Pai denotes the value of active electrical
power in various modes; and ti is the proportion of the operating time of a certain mode.

The modes of the operation of the variable-speed motor are chosen by analogy with the
recommendations from Reference [21] for fan load (quadratic dependence of torque and speed)
and are given in Table 1.

Table 1. Load modes included in the optimization criterion.

Mode
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Rotational speed, % of the rated value 50 75 100

Torque, % of the rated value 25 50 100

Weight coefficient 1 1 1

Typically, fan units are operated with a substantial underload for a longer time.
Therefore, in Reference [21] it was proposed to use the arithmetic average efficiency in the modes i = 1,
2, 3 as a measure of the energy efficiency of the pump motor, which corresponds to ti ~ 1/Pai.

The vacuum cleaner is designed for cleaning dust from different surfaces with a hard-to-predict
aerodynamic resistance. Therefore, it was accepted that all modes are implemented at the same time.
Therefore, Equation (4) transforms into Equation (5):

ηav =
∑ Pmechi

∑ Pai
(5)

This value was chosen as the optimization criterion. When the optimization criterion has many
local extrema, the heuristic Monte Carlo methods such as genetic algorithms and simulated annealing
algorithms [22] are usually applied.

The optimization criteria used in the optimal design of electric motors have fewer extrema.
However, using gradient descent optimization algorithms such as the Newton algorithm or trust
region methods [23,24] together with FEM-based models is almost impossible, because the calculations
using FEM are accompanied by the unpredictable pseudorandom computational error [25] and the
derivatives calculations of the optimization criterion become complicated.

To overcome these difficulties, the type of gradient-free method known as the Nelder–Mead
method [25] is used in this work. This method is based upon the comparison of the criterion values for
various cases, but not upon their numerical values. Therefore, it can be used for noisy or non-smooth
functions. Moreover, it can be more effective than some other gradient-free methods, in particular,
the Powell method [26].

The proposed criterion (5) requires the calculations of three motor modes per one calculation step.
However, as a result, higher efficiency at a wide range of operating modes and not only at the rated
conditions can be achieved. It also provides a longer running time for a vacuum cleaner battery with
the FRM assuming the same capacity as the battery.

The fixed parameters of the designed FRM for the vacuum cleaner are as follows: the rated speed
is 28,000 rpm; the rated power is 1.5 kW; the outer diameter of the stator is 54 mm; the length of
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the stator lamination is 40 mm; the air gap is 0.4 mm. The FRM requires magnets with a residual
flux density of 1.3 T. Each magnet is divided into eight electrically insulated pieces in the azimuthal
direction to reduce the eddy current losses. The magnet thickness is assumed to be 1.7 mm because
thinner magnets have a higher price per kg and thus would not reduce the motor cost. M330-50A steel
grade was chosen.

Figure 6 shows the optimization parameters:

1. Outer rotor radius Rr;
2. Slot bottom radius Rb;
3. Slot width W;
4. Rotor tooth width Zr;
5. Rotor bottom radius rb;
6. Stator winding coil number N.
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4. The Results of the Optimization

To obtain the maximum value of Equation (5), the human-made design (shown in Figure 7a) was
used as a starting point. Figure 7b shows the optimized design. The optimization parameters before
and after the optimization are shown in Table 2.

Table 2. FRM parameters (before and after the optimization).

Parameter Before After

Outer rotor radius Rr, mm 12.9 11.7

Slot bottom radius Rb, mm 23.5 23

Slot width W, degrees 45 54.8

Rotor tooth width Zr 7 6

Rotor bottom radius rb, mm 8.7 7.2

Stator winding coil number N 50 64

Figures 8–10 show the transient values of the current, the voltage, and the torque depending on
the rotor position for the rated mode (mode
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This value was chosen as the optimization criterion. When the optimization criterion has many 

local extrema, the heuristic Monte Carlo methods such as genetic algorithms and simulated annealing 
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Like other single-phase motors, both considered FRMs before and after the optimization have
a high torque ripple. However, the torque ripple of the optimized FRM is a little lower, although it was
not included in the optimization criterion.
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Figures 11–13 illustrate the change in the efficiencies and losses for the three modes considered in
Table 1, as well as motor losses during the optimization procedure. The change in the average efficiency
(Equation (5)) is also shown. From these data, it can be concluded that, most of all, the efficiency in the
least loaded mode η1 (more than 4%) was increased. The efficiency in two other modes (η2 and η3)
was increased by 1.7% and 0.3%, respectively. The magnetic losses Pmagn (the sum of losses in steel
and magnets, Figure 12) remain approximately constant (Pmangn1 is the loss in the least loaded mode;
Pmangn3 is the loss in the most loaded mode). The increase in efficiency is mainly due to a decrease in
loss in the stator winding Pcu (Figure 13, Pcu1 is the loss in the least loaded mode; Pcu3 is the loss in the
most loaded mode). The whole optimization process requires about 110 iterations. Table 3 specifies
the FRM characteristics before and after the optimization. Although the magnets’ thickness was not
varied, their mass was reduced during the optimization due to the reduction of the outer rotor radius.Energies 2018, 11, x FOR PEER REVIEW  9 of 14 
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Table 3. FRM performances (before and after the optimization).

Parameter Before After

Mechanical power at the rated mode, W 1500 1500

Rated rotational speed, rpm 28,000 28,000

Outer diameter of the rotor, mm 25.8 23.4

Stator slot area, cm2 0.94 1.3

η1, % 79.5 83.6

η2, % 86.9 88.6

η3, % 89.3 89.6

ηav, % 87.8 88.8

Torque ripple, % 358 335

Thickness of permanent magnets (PMs), mm 1.7 1.7

Thickness of sheets of the steel lamination (stator and rotor), mm 0.5 0.5

Steel grade M330-50A M330-50A

Weight of permanent magnets, g 39 35.3

Weight of stator steel, g 371 360

Weight of rotor steel, g 91 65.3

Weight of copper, g 126 175

Weight of active materials, kg 0.627 0.636

In Figure 14, the total motor losses before and after the optimization are shown. In Figures 15–17,
the electric losses in various parts of the motor are shown for the various load modes. In Figures 15–17,
the following designations of certain types of motor losses are accepted: Pcu is the loss in the stator
winding; Pse is the loss in the stator steel from eddy currents; Psh is the loss in the stator steel due to
hysteresis; Pre is the loss in the rotor steel from eddy currents; Prh is the loss in the rotor steel due to
hysteresis; Ppm is the loss in permanent magnets.Energies 2018, 11, x FOR PEER REVIEW  11 of 14 
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The reduction of the total losses due to optimization was most significant at underload.
Thus, the total losses were decreased by 11.8 W (24%) at mode 1, by 12.7 W (15%) at mode 2, and by
5.1 W (3%) at mode 3. The main contribution to the reduction of the total losses is provided by the
reduction of the winding losses, which is obtained by increasing the copper mass and stator slot area.

The core losses exhibited insignificant changes. However, they also should be taken into account
when calculating the efficiency. Hence, the only way to decrease further core losses and to increase the
efficiency is by using thinner steel sheets with lower specific losses, and, in particular, eddy current
losses. The core losses are significant in the rated mode and they are very small at underload while the
winding losses prevail in underload. Therefore, a further increase in the rated efficiency is possible
with the use of thinner steel in the manufacture of magnetic cores. The losses in magnets are very small.
So, the number of parts in which magnets are divided can be slightly increased without significantly
decreasing the efficiency if it reduces the FRM production cost.

Although the windage losses constitute a significant part in the total losses, especially when
a high-speed motor has a toothed rotor, they were not taken into account. However, during the
optimization, the rotor slot became smaller. Therefore, the reduction of the windage losses is expected.
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5. Conclusions

This paper describes the design of a high-speed single-phase flux reversal motor for vacuum
cleaners. This machine has a simple and reliable rotor, which is a significant advantage for high-speed
applications. In addition, it requires a simple and cheap inverter. An FRM design in which the inner
stator surface is entirely used, and which allows it to decrease in volume and increase in efficiency,
is described.

The optimization of the single-phase FRM by the Nelder–Mead method using the FEM model is
provided. The optimization criterion was selected so as to maximize the efficiency in a wide range of
powers at the fan load (quadric dependence of torque on speed). Various modes of that load profile
were supposed to be equally used.

The reduction of the total losses due to optimization was most significant at underload. Thus, the
total losses were decreased by 11.8 W (24%) at mode 1 (the least loaded mode), by 12.7 W (15%) at
mode 2, and by 5.1 W (3%) at mode 3 (the rated mode). The main contribution to the reduction of the
total losses is provided by the reduction of the winding losses, which is obtained by increasing the
copper mass and stator slot area.

Losses in steel in the rated mode are significant. Therefore, a further increase in the rated efficiency
is possible with the use of thinner steel in the manufacture of magnetic cores.

In future works, a theoretical and experimental comparison of the single-phase FRM to other
types of high-speed single-phase motors [4–6] will be conducted. It is also planned to test the prototype
of the single-phase FRM as a part of a vacuum cleaner or air blower.
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