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Abstract: This paper presents a novel meta-heuristic approach based on the crow search algorithm
(CSA) for solving the optimal reactive power dispatch (ORPD) problem. The ORPD is formulated as
a nonlinear optimization problem designed to minimize power losses while satisfying the required
constraints. The CSA is a recent efficient approach that depends on the intelligent behavior of
crows. Nowadays, it has been used to solve many complex engineering optimization problems
where it has proven its power and effectiveness. Motivated by the high ability in solving complex
optimization problems and faster convergence of CSA, this paper proposes a novel approach to solve
the ORPD problem. Furthermore, the settings of control variables such as generator terminal voltage,
tap changer positions, and capacitor banks are determined to achieve the minimum total power loss
while satisfying a set of nonlinear constraints. The accuracy and the performance of the proposed
algorithm were performed and compared to other meta-heuristic algorithms reported in the literature.
Several tests are applied on two standard test systems, including IEEE 14-bus and IEEE 30-bus as well
as on the large-scale Tunisian 86-bus system. In addition, a sensitivity analysis has been performed to
valid the performance of the CSA in solving the ORPD problem. We demonstrate that the proposed
CSA provides a supremacy results and statistically significant in solving ORPD problems (for IEEE-14
bus p < 0.0006, for IEEE-30 bus p < 0.006, and for Tunisian 86-bus p < 0.0000001).

Keywords: optimal reactive power dispatch; real power loss; meta-heuristic methods; crow search
algorithm

1. Introduction

Optimal reactive power dispatch (ORPD) is one of the strategic problems in which inappropriate
management can compromise the security and the reliability of the power systems [1,2]. ORPD
represents a specific part of the more general OPF problem. It can be divided into two parts: the real
and reactive power dispatch problems. The real power dispatch problem aims to minimize the
total cost of real power generated by the different production plants [3,4]. On the other hand,
the reactive power dispatch controls the power system stability, power quality and power losses.
The main objectives of ORPD are to minimize real power losses and to increase voltage stability by
enhancing the load bus voltage deviations while simultaneously satisfying a certain set of desired
operating and security constraints [5–7]. Therefore, the ORPD is formulated as a complex optimization
problem involving a nonlinear objective function with continuous and discrete control variables subject
to nonlinear constraints [8–10]. The controlled variables of the ORPD problem are generator bus
voltages, transformer tap-settings, shunt capacitors and output of static reactive power compensators.
These variables must be set simultaneously to minimize power losses and to improve the voltage
profile by satisfying the equality and inequality constraints [11–13].
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Different trends in the literature are presented to solve the ORPD problem, where initial
attempts have resorted to classical optimization methods such as the Newton–Raphson
method [14], quadratic programming [15], interior point method [16] and linear programming [17].
Nevertheless, these methods cannot handle the complexity of the ORPD problem where they have
difficulties dealing with nonlinear functions, discrete variables and converge to the local minima,
and thus were ineffective to resolve the ORPD problem. To overcome these limitations, evolutionary
and meta-heuristic algorithms are applied to solve the ORPD problem. Specifically, Genetic Algorithm
(GA) is applied to solve the reactive power dispatch [18,19]. It is easy to use and has a good variety of
solutions to avoid falling into the local optimum. However, its drawbacks are the slow convergence
rate and there is no guarantee that GA will find a global optimum. In [20], Differential Evolution
(DE) algorithm is employed to minimize power losses, improve the voltage profile, and enhance
the voltage stability. However, this approach addresses the ORPD problem as a single objective
optimization problem. Particle Swarm Optimization (PSO) is a widely used method for solving
ORPD problem [10,11,21]. However, its major weaknesses are the large computational time and
the premature convergence. Seeker Optimization Algorithm (SOA) is implemented to the ORPD
problem to reduce the total power loss and increasing voltage stability [22]. Nevertheless, SOA may
be stuck in local optimum for multimodal functions. Ant Colony Optimization (ACO) algorithm is
used to minimize the losses as a single objective function [23]. This algorithm addresses each objective
function separately as a single objective optimization problem which leads to slower convergence
speed. Artificial Bee Colony (ABC) algorithm is implemented to solve the ORPD problem after
supposing an already established real power system [24]. Simulation results show that ABC has poor
exploitation characteristics, slower convergence speed and may get stuck in local optimum. Firefly
Algorithm (FA) is executed to reduce the real power loss and the voltage deviations [25]. FA is often
stuck into local optima and its parameters are fixed and they do not change with the time. On the
other hand, Whale Optimization Algorithm (WOA) is proposed to solve the ORPD problem on the
Algerian power system [13]. However, the WOA has low convergence precision and convergence
rates in complex optimization problems. Antlion Optimizer (ALO) is used for solving the ORPD
problem [12]. Application of ALO for ORPD demonstrates that ALO gives better results compared to
the differential evolutionary PSO (DEEPSO) and mean variance mapping optimization (MVMO) [12].
Nevertheless, the phenomenon of local optimum and prematurity convergence may arise for ALO,
especially in large-scale problems.

Recently, the Crow Search Algorithm (CSA) has emerged as a new meta-heuristic method for
solving complex optimization problems [26]. CSA algorithm is based on the intelligent behavior
of crows [26]. CSA contains fewer adjustable parameters than other methods such as PSO, GA,
and ICA (Imperialist Competitive Algorithm), which make it superior and effective in solving complex
problems compared to other state-of-the-art methods. Furthermore, this algorithm has demonstrated
its effectiveness and ability to solve many complex engineering optimization problems, such as
environmental dispatch [27], renewable energy [28], distribution networks [29], machine problems [30],
image processing [31], water resources [32] and energy problems (induction motors and distribution
networks) [33].

The easy implementation, simple structure, searching force, high ability to solve complex
optimization problems, and faster convergence motivate the CSA to be proposed in solving one
of the challenging optimization problems in power systems, i.e., the ORPD problem. Therefore,
the main contributions of this paper are to propose and investigate the crow search algorithm (CSA)
for solving the ORPD problem. Hence, two standards IEEE benchmark systems, IEEE 14-bus and
IEEE 30-bus, as well as the real transmission Tunisian power system, 86-bus, were used to substantiate
the effectiveness of CSA algorithm. The achieved results were compared with other optimization
algorithms used in the literature (PSO, WOA, and ALO). We show that adequate control of reactive
power production contributes to the reduction of real power losses, and thus ensure the voltage profile
improvement of all buses in power systems. In addition, a sensitivity analysis was performed to
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confirm the performance of the proposed approach. Consequently, significant technical and economic
merits are satisfied, which prove the robustness and the effectiveness of the proposed CSA approach,
thus providing an alternative solution to the ORPD problem.

The paper is organized as follows: Section 2 presents the ORPD problem formulation. Section 3
introduces the crow search algorithm. Section 4 derives the proposed CSA for the ORPD problem.
Simulation and comparison results are presented in Section 5. In section 6, a sensitivity analysis to test
the differences among CSA, PSO, WOA, and ALO is presented. The main findings and future work
directions are summarized in Section 7.

2. Problem Formulation

The ORPD problem is formulated as a nonlinear and non-convex optimization problem.
The objective function is to minimize the power losses of the transmission system, taking into account
the equality and inequality constraints [12,13]. Mathematically:

Min Ploss = Minimize F(x, u) (1)

=
NTL

∑
k=1

gk(V2
i + V2

j − 2ViVjcos(θij)).

Subject to : =

{
g(x, u) = 0
h(x, u) ≤ 0

(2)

where F(x, u) represents the objective function of power losses, g(x, u) is the equality constraints,
h(x, u) is the inequality constraints, and x and u represent the vectors of control variables and state
variables, respectively.

2.1. Variables

Control Variables

The control variables vector x consists of load bus voltages, transmission line loading and reactive
power output of generators as follows:

x = [VL1 · · ·VLNPQ, QG1 · · · QGNG, SL1 · · · SLNTL]
T (3)

where VL is the load bus voltages, NPQ is the number of load buses, QG is the reactive power of ith
generator bus, NG denotes the number of generators, SL represents the transmission line loadings,
and NTL denotes the number of transmission lines.

State Variables

The state variables vector u includes discrete and continuous variables: voltages of PV bus
(continuous variables), switching shunt capacitor banks (discrete variables), and transformer tap
settings (discrete variables). It is expressed by:

u = [VG1 · · ·VGNG, QC1 · · · QCNC, T1 · · · TNT ]
T (4)

where VG represents the generator voltages, QC is the reactive power of ith load bus, NC denotes the
number of shunt VAR compensators, T is the transformer tap settings, and NT denotes the number of
regulating transformers.

2.2. Constraints

The ORPD problem is subject to satisfy the required equality and inequality constraints [12].
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Equality Constraints

The equality constraints represent the power balance of load flow equations. The difference
between power generated and power demand is equal to power loss as follows:{

Pgi − PLi = Ploss
Qgi − QLi = Qloss

(5)

Inequality Constraints

The inequality constraints are based on the operating limits that satisfy the normal operation of
the system. The inequality constraints of control and state variables are given by:

• Generator voltages limits:
Vmin

gi ≤ Vgi ≤ Vmax
gi , i = 1, · · · , NG (6)

• Tap positions of transformers limits:

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, · · · , NT (7)

• Amount of reactive compensation limits:

Qmin
ci ≤ Qci ≤ Qmax

ci , i = 1, · · · , Nc (8)

• Load bus voltage constraints limits:

Vmin
Li ≤ VLi ≤ Vmax

Li , i = 1, · · · , NPQ (9)

• Reactive power outputs limits of generators:

Qmin
gi ≤ Qgi ≤ Qmax

gi , i = 1, · · · , NG (10)

• The transmission lines loading are limited by upper values:

Si ≤ Smax
i , i = 1, · · · , NTL (11)

3. The Crow Search Algorithm (CSA)

Crow search algorithm (CSA) is a novel meta-heuristic optimization method recently proposed
by Askarzadeh [26] to solve constrained engineering problems. This algorithm is modeled related to
the intelligent behavior of the crows while saving their excess food in hiding places and retrieving it
when the food is needed. Crows can remember the faces of other crows and warn each other when an
unfriendly crow approaches as they have large brains relative to their bodies. In addition, they can use
communication tools in sophisticated ways and remember the places where food is hidden for up to
several months. Therefore, the main principles of crows is that they monitor the food locations of other
birds and steal when there are no birds in that place. Moreover, if the crow has committed thievery,
it will take extra precautions such as moving hiding places to avoid becoming a victim in the future.

Let us assume that d is a dimensional environment and N is the number of crows. The position of
crows i at iteration iter is given by:

xi,iter = [xi,iter
1 , xi,iter

2 , · · · , xi,iter
d ]. (12)

where i = 1, 2, · · · , N and iter = 1, 2, · · · , itermax. itermax is the maximum number of iterations.
Crows move in the environment and search for better sources of food (hiding places). Each

crow has a memory capacity that can memorize the position of its food hiding places. One of the
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main activities of the crow is to follow crow j to get close to the hiding place of the food and hunt it.
Therefore, two major cases may occur in CSA:

1. Case 1: Crow j does not know that crow i is following it. Therefore, crow i will approach the
hiding place of crow j and change its position to a new one as follows:

xi,iter+1 = xi,iter + ri · f li,iter · (mj,iter − xi,iter) (13)

where ri is a random number with uniform distribution (between 0 and 1), f li,iter indicates the
flight length of crow i at iteration iter (see Figure 1), and mj,iter represents the best visited location
by crow j at iteration iter.

2. Case 2: Crow j detects that it is followed by crow i. Thus, to protect its cache from being pilfered,
crow j will change the flight pass to mislead followers by moving to another position in the
search space.

Therefore, the position of crow can be expressed as follows:

xi,iter+1 ={
xi,iter + ri · f li,iter · (mj,iter − xi,iter) rj ≥ APj,iter

a random position otherwise
(14)

where APj,iter indicates the awareness probability of each crow.

(a) If fl < 1 (b) If fl > 1

Origin Origin

𝑚𝑗
𝑘

𝑚𝑗
𝑘

Crow i Crow i

Crow j

Crow j

𝑥𝑖
𝑘 𝑥𝑖

𝑘

𝑥𝑖
𝑘+1

𝑥𝑖
𝑘+1

Figure 1. The characteristics of the crow flight length on search process.

4. ORPD Problem Using Crow Search Algorithm

We propose the CSA approach to solve the ORPD problem. The main objective is to find
the optimal solution of control variables to minimize the objective function while satisfying all the
constraints imposed by the power system. The implementation of the CSA for the ORPD problem is
achieved through by the following steps:

• Step 1: Initialization of algorithm parameters and constraints

Initialize the number of crows N, the maximum number of iterations itermax, flight length f l and
awareness probability AP. Determine the decision variables and constraints.

• Step 2: Initialize position and memory of crows

Generate N crows randomly in the d-dimensional search space. Each crow presents an appropriate
solution to the problem. Initially, crows have no experience; it is supposed that they have hidden
their food in the initial positions.



Energies 2018, 11, 3321 6 of 16

• Step 3: Evaluate fitness function

For each crow, the quality of its position is computed by adjusting the values of the control
variable into the objective function.

• Step 4: Generate new position

The crow i generates a new position as follows: It selects randomly one of the other crows and
follows it to find the position of the hidden food. Thus, the new position of crow i is given by
Equation (14). This procedure is repeated for all crows.

• Step 5: Check the feasibility of new positions

The feasibility of the new position of each crow is examined. For the ORPD problem, all variables
are checked for any violation for certain limits. If the new position of a crow is valid, the crow
updates its position. Otherwise, it stays in its current position and does not move to the new
position that was created.

• Step 6: Evaluate fitness function of new positions

For each crow, the fitness function value of the new position is computed.

• Step 7: Update memory

If the evaluation of the fitness function value of each crow is better than the memorized fitness
function value, the crows update its memory as follows:

mi,iter+1 =


xi,iter+1 f (xi,iter+1)

is better than f (mi,iter),
mi,iter otherwise.

(15)

where f (.) indicates the objective function value.

• Step 8: Check stop criterion

Repeat Steps 4–7 until itermax is reached. The solution of the ORPD problem is the best position of
the memory corresponding to the best objective function value.

Figure 2 illustrates the flowchart of the proposed algorithm in order to solve the ORPD problem.

5. Application and Results

The proposed approach based on CSA for solving the ORPD problem was applied to the standard
IEEE-14 and the IEEE-30 bus benchmark power systems as well as the Tunisian power system. It was
implemented using MATLAB Platform 2016a on a Windows 10 Intel(R) Core(TM) i3-5010U CPU @2.10
GHz 6 GB RAM. For all test systems, the base power was 100 MW. The results obtained with CSA
were compared with three other meta-heuristic algorithms: Particle Swarm Optimization (PSO), Ant
Lion Optimization (ALO), and Whale Optimization Algorithm (WOA).The features of all test systems
and the limits of control variables are given in Tables 1 and 2.
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Figure 2. Flowchart of the proposed CSA algorithm for solving ORPD.
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Table 1. Description of test systems.

Description IEEE 14-Bus IEEE 30-Bus Tunisian 86-Bus

Number of buses 14 30 86
Number of lines 20 41 120

Number of control variables 10 19 58
Number of Generator 5 6 22

Number of Tap transformers 3 4 21
Number of Qshunt 2 9 15

Pgen (MW) 272.39 300.96 2231.82
Qgen (Mvar) 82.44 133.93 1113.53
Pload (MW) 259 283.40 2034.27

Qload (Mvar) 73.50 126.20 1019.96
P0

loss (MW) 13.393 17.557 197.556
Q0

loss (Mvar) 54.54 67.69 946.80

Table 2. Control variables limits for all power systems.

Test System Variables Min (Pu) Max (Pu)

IEEE 14-bus
VPV and VPG 0.9 1.1

T 0.9 1.1
Qshunt 0 0.18

IEEE 30-bus
VPV and VPG 0.9 1.1

T 0.9 1.1
Qshunt 0 0.05

Tunisian 86-bus
VPV and VPG 0.9 1.1

T 0.9 1.1
Qshunt 0 0.288

5.1. IEEE 14-Bus Test Power System

This test system includes five generators at the buses 1, 2, 3, 6 and 8, three tap-changing
transformers located at Lines 4–7, 4–9 and 5–6 and two shunt reactive compensators connected
to buses 9 and 14. All data of this test system are specified in [34]. CSA, PSO, ALO, and WOA were
applied to minimize real power loss as the main objective function. Table 3 presents the results of the
optimal settings using the four implemented algorithms. The optimal result was given by the proposed
CSA where the active power loss is 12.2307 MW (8.68%) compared to PSO 12.5881 MW (6.00%), ALO
12.6266 MW (5.72%), and WOA 12.4245 MW (7.23%). In addition, we noticed that the CSA is the
fastest (946.0803 s) compared to PSO (958.9098 s), ALO (946.4107 s), and WOA (1029.973 s). Obviously,
the computing time of CSA is less than the other algorithms. Figure 3 represents the performance loss
convergence characteristics for the corresponding approaches: CSA is in red, PSO is in blue, WOA is
in green and ALO is in black. Moreover, the CSA algorithm has a great ability to locate the optimal
solutions and effectively deal the constraints of the optimization problem.
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Table 3. Comparison of simulation results for IEEE 14-bus test using various approaches.

Variables Base Case PSO WOA ALO CSA

V1 1.060 1.0882 1.1004 0.9500 1.1013
V2 1.045 1.0731 1.1004 1.1000 1.0880
V3 1.010 1.0381 1.0690 0.9500 1.0591
V6 1.070 1.0603 1.0733 1.0958 1.0856
V8 1.090 1.0807 1.1004 1.0842 1.0940

T4−7 0.9467 0.9781 1.0202 0.9853 0.9786
T4−9 0.9524 0.9745 1.0202 1.0250 0.9983
T5−6 0.9091 1.0148 1.0202 0.9908 1.0235
Qc9 0.18 6.1758 4.5994 1.4146 12.4879
Qc14 0.18 6.2239 10.0269 0.2719 8.2798

Ploss(MW) 13.393 12.5881 12.4245 12.6266 12.2307
Reduction (%) − 6.00 7.23 5.72 8.68

CPU (s) − 958.9098 1029.973 946.4107 946.0803
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Figure 3. Performance loss convergence characteristics for IEEE 14-bus test using PSO (blue), WOA
(green), ALO (black) and CSA(red).

5.2. IEEE 30-Bus Test Power System

In this case study, the IEEE 30-bus test system includes six generators connected to buses 1, 2, 5, 8,
11 and 13. Four tap-changing transformers are located at lines 6–9, 4–12, 9–12 and 27–28. Nine shunt
reactive power sources are connected to buses 10, 12, 15, 17, 20, 21, 23, 24 and 29. The system data are
given in. To evaluate the efficacy and the superiority of the proposed algorithm to minimize the power
losses of this test system, we tested PSO, ALO, WOA, and CSA. Table 4 summarizes the results of
the optimal settings using CSA, PSO, ALO, and WOA. The performance real power loss convergence
characteristics of the all mentioned approaches are shown in Figure 4. We note that the minimum
real power loss obtained by the proposed CSA method is the best optimization values among all the
compared algorithms: CSA 16.0155 MW (8.77%), PSO = 16.6402 MW (5.21%), ALO = 16.6754 MW
(5.021%), and WOA = 16.4621 MW (6.23%). In addition, CSA is the fastest algorithm (1369.754 s)
compared to PSO (1394.056 s), ALO (1374.256 s), and WOA (1553.127 s). It is clear that the obtained
outcomes verify also the accuracy and effectiveness of the proposed algorithm to minimize the real
power losses.
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Figure 4. Performance loss convergence characteristics for IEEE 30-bus test using PSO (blue), WOA
(green), ALO (black) and CSA(red).

Table 4. Comparison of simulation results for IEEE 30-bus using various approaches.

Variables Base Case PSO WOA ALO CSA

V1 1.060 1.0812 1.1001 0.9500 1.1014
V2 1.045 1.0553 1.1004 0.9500 1.0859
V5 1.010 1.0215 1.1002 0.9500 1.0534
V8 1.010 1.0329 1.0834 0.9500 1.0601
V11 1.082 1.0818 1.1004 0.9500 1.1001
V13 0.978 1.0840 1.0587 0.9500 1.1000

T6−9 0.969 1.0098 1.1004 0.9500 0.9854
T6−10 0.932 1.0034 1.0530 0.9500 0.9977
T4−12 0.968 0.9859 1.0637 0.9500 1.0204
T27−28 19 0.9628 1.0456 0.9500 0.9753
Qc10 0 9.9295 2.8524 0.5280 1.9828
Qc12 0 7.0229 3.5201 0.5175 1.2997
Qc15 0 4.0593 3.1522 0.5025 2.3387
Qc17 0 1.0321 3.0843 0.0430 1.9099
Qc20 0 1.8834 5.1261 0.9500 2.2574
Qc21 0 21.6930 12.1816 0.9500 2.4737
Qc23 0 0.6454 2.9233 0.2453 3.0208
Qc24 4.3 4.7556 3.3017 0.3463 −0.2917
Qc29 0 4.3366 3.8629 0.3606 2.9253

Ploss(MW) 17.557 16.6402 16.4621 16.6754 16.0155
Reduction (%) − 5.21 6.23 5.021 8.77

CPU (s) − 1394.056 1553.127 1374.256 1369.754

5.3. A Real Case Study: Tunisian 86-Bus Power System

For the examination of the appropriateness of the proposed algorithm on the large-scale power
system, we considered a large real power system: Tunisian 86−bus power system. It includes
22 generators, 120 lines, 21 tap-changing transformers, and 15 shunt reactive power sources
(see Figure 5). Table 5 introduces the results of the optimal settings using the swarm approaches
for this case. The optimal solution for the ORPD problem in Tunisian power system is given by the
proposed CSA where the obtained minimum active power loss Ploss = 161.9169 MW (18.0399%), PSO
= 168.2004 MW (14.8593%), ALO = 169.2535 MW (14.3263%), and WOA = 164.7492 MW (16.6063%).
The convergence time with CSA is faster than the other methods, where CSA converged in 1827.900 s,
PSO in 2282.026 s, ALO in 2149.004 s and WOA in 3245.048 s.

Figure 6 shows the performance loss convergence characteristics of the swarm approaches.
We observed that the proposed CSA has good convergence characteristics compared to PSO, ALO
and WOA. It is substantial to note that the CSA algorithm can solve the ORPD even for a large-scale
power system.
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Table 5. Comparison of simulation results for Tunisian 86-bus system using various approaches.

Variables Base Case PSO WOA ALO CSA

VRades1 1.06 1.0796 1.1000 1.1000 1.0834
VRades2 1.02 1.0351 1.1000 1.1000 1.0346

Vswingbus 1.04 1.0781 1.1000 1.1000 1.0826
VB.Mcherga 1.03 1.1007 1.1000 1.1000 1.1009
VS.Salem 1.002 1.0301 1.0298 1.1000 1.1013

VTsud 1.056 1.0575 1.1000 1.1000 1.0327
VGoulette 1.04 1.0443 1.1000 1.1000 1.0340

VM.Bourguiba 1.04 0.9662 1.0877 1.1000 1.0927
Vkorba 1.015 1.0626 1.1000 1.1000 1.0145

VNebeur 1.015 1.0296 1.1000 1.1000 1.0679
VFernana 1.015 1.0237 1.1000 1.1000 1.0619
VSousse 1.043 1.1054 1.1000 1.1000 1.1048
VSousse2 1.05 1.0767 1.1000 1.1000 1.0983
VS f ax 1.015 1.0918 1.0546 1.1000 1.0919
VThyna 0.968 1.0515 1.0339 1.1000 1.1015
VK.Nord 0.967 1.0550 1.1000 1.1000 1.0587
VFeriana 0.963 1.0701 1.0979 1.1000 1.0808

VGhanouch 0.984 1.0158 1.1000 1.1000 1.0888
VZarzis 0.98 0.9918 1.1000 1.0250 1.0870

VBouchemma 0.985 1.1017 1.1000 1.0250 1.1021
VBouchemma2 0.985 1.0206 1.1000 1.0250 1.0842

VRobanna 1.005 0.9695 1.0864 1.0250 1.0744
TGoul−Goul 1.05 1.0342 0.9820 1.0250 1.0115
TSous−Sous2 1.05 1.0230 1.0184 1.0250 1.0255

TS.Man−S.Man 1.05 0.9509 1.0250 1.0250 1.0176
TMekn−Mekn 1.05 0.9985 1.0173 1.0250 1.0177
TRad1−Rad2 1.05 1.0142 1.0250 1.0250 1.0197
TBou f−Bou f 1.05 0.9802 1.0191 1.0250 1.0065

THamm−Hamm 1.05 1.0814 1.0250 1.0250 1.0168
TMatr−Matr 1.05 1.0393 1.0250 1.0250 1.0178

TM.Jem−M.Jem 1.05 0.9802 1.0250 1.0250 1.0224
TGromb−Gromb 1.05 1.0117 1.0250 1.0250 0.9956

TNaas−Naas 1.05 1.0169 1.0250 1.0250 0.9881
TMnih−Mnih 1.05 1.0294 1.0293 1.0250 1.0238

TMornag−Mornag 1.05 1.0456 1.0250 1.0250 1.0254
TMsak−Msak 1.05 0.9950 1.0250 1.0250 1.0211
TBouch−Bouch 1.05 1.0520 1.0032 1.0250 1.0047

TTajr−Tajr 1.05 1.0555 1.0250 1.0250 1.0251
TTajr−Tajr1 1.05 0.9833 1.0250 1.0250 1.0214
TSwing−Rad 1.05 1.0503 1.0250 1.0250 1.0216
TJand−Jand 1.05 0.9784 1.0250 1.0250 1.0140
TTajr−Tajr2 1.05 0.9915 1.0250 1.0250 0.9996
TZarz−Zarz 1.05 1.0297 1.0063 1.0250 1.0139

QcTsud 8.4 3.1573 6.0744 2.6206 10.9431
QcM.Bourg 28.8 3.0522 12.2244 3.3301 8.1390

Qckorba 25 1.6742 16.5191 2.6689 7.2466
QcS f ax 19.2 2.8575 12.4099 2.3453 9.8681
Qczarz 15 1.5917 10.3776 3.9464 10.9265

QcT.Ouest 20 2.4700 2.5268 3.3467 7.7878
QcMatr 14.4 1.8864 11.7794 2.8415 11.7623
QcZahr 9.6 2.2918 11.0827 2.8625 11.5591

QcGromb 15 2.4971 6.6959 2.5295 8.9528
QcO.Zerga 9.6 2.9144 20.0000 2.5398 8.3875
QcTbarka 14 2.9056 12.9016 2.5788 13.9591

QcMetlaoui 16.6 2.8400 4.8955 2.8409 9.7218
QcKass 15 2.1647 5.0490 3.8256 6.9531
QcMsak 9.6 2.3546 13.5418 3.6215 12.4925

QcTataouine 30 2.2107 3.5149 2.6531 14.5598
Ploss(MW) 197.556 168.2004 164.7492 169.2535 161.9169

Reduction (%) − 14.8593 16.6063 14.3263 18.0399
CPU (s) − 2282.026 3245.048 2149.004 1827.900
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Figure 6. Performance loss convergence characteristics for Tunisian 86-bus system using PSO (blue),
WOA (green), ALO (black) and CSA (red).

6. Sensitivity Analysis

Sensitivity analysis (SA) is one of the methods that help to make decisions regarding with
more than a solution to a problem. It provides a decent idea about how sensitive is the optimum
solution chosen to any changes in the input values of one or more parameters. ANOVA is a model
independent sensitivity analysis method that evaluates whether there is any statistically significant
association between an output and one or more inputs [35]. Therefore, ANOVA uses the F-statistic
ratio to determine whether a significant difference exists among mean responses for main effects or
interactions between factors. The relative magnitude of F-values can be used to rank the factors in the
sensitivity analysis [36]. The higher is the F-value, the more sensitive the response variable is to the
factor. Therefore, factors with higher F-values are given higher rankings. The p-value indicates that
differences between column means are significant. One-way ANOVA was used to compare the means
between the results obtained by the proposed CSA algorithm and the other developed PSO, WOA,
and ALO techniques.

Tables 6–8 summarize the statistical analysis of the proposed and the conventional methods for
IEEE-14 and IEEE-30 bus benchmark power systems and the real Tunisian power system, respectively.
Note that CSA always provides the competing performance over the other algorithms in terms of
accuracy (Mean) and robustness (standard deviation).

Table 9 depicts the results of the one-way ANOVA test obtained for the different systems.
We observed that the results of p-value are much lower than 0.01 for all tests, which confirm that CSA
is statistically significant from ALO, WOA, and PSO.

Table 6. Results of real power loss Ploss(MW) for IEEE 14-bus test.

Analysis PSO WOA ALO CSA

Min 12.5881 12.4245 12.6519 12.2372
Max 13.2141 13.5012 14.0099 13.3643

Mean 12.6026 12.4471 12.6610 12.3278
Standard deviation 0.0619 0.0750 0.0664 0.1791
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Table 7. Results of real power loss Ploss(MW) for IEEE 30-bus test.

Analysis PSO WOA ALO CSA

Min 16.6414 16.4622 16.6755 16.0155
Max 17.5842 18.6283 18.2966 17.1908

Mean 16.6644 16.4828 16.6780 16.0740
Standard deviation 0.1111 0.0903 0.0517 0.1271

Table 8. Results of real power loss Ploss(MW) for Tunisian 86-bus system.

Analysis PSO WOA ALO CSA

Min 168.2004 164.7492 169.2536 161.9170
Max 191.8390 222.9478 201.5775 196.8827

Mean 169.4114 166.5878 169.3255 165.4131
Standard deviation 2.9697 4.2319 1.1008 3.7711

Table 9. Analysis report of the CSA, PSO, ALO and WOA for the different systems.

Case Study p-Value F-Value

IEEE-14 0.0006 4.73
IEEE-30 0.0006 4.6

Tunisian 386 0.00000017369 12.61

7. Conclusions

We addressed the problem of optimal reactive power dispatch (ORPD) using a recent
meta-heuristic technique, called Crow Search Algorithm (CSA). The ORPD problem is formulated as a
nonlinear constrained optimization problem to minimize power losses and enhance the voltage stability.
The main advantages of the proposed CSA relay on the high ability to solve complex optimization
problems and faster convergence. The proposed CSA has been successfully implemented and tested on
benchmark test bus systems which are IEEE-14 and the IEEE-30 as well as on the real and large-scale
Tunisian 86-bus system to solve the ORPD problem. Based on sensitivity analysis test, the proposed
CSA has a superior performance (for IEEE-14 bus p < 0.0006, for IEEE-30 bus p < 0.006, and for
Tunisian 86-bus p < 0.0000001) compared to ALO, WOA, and PSO. It provides the optimal and faster
solution to minimize the real power loss. In our future work, we will improve the performance of CSA
to minimize the number of iterations which leads to minimizing the convergence time and suggest
this approach as a powerful solution for the Tunisian Company of Electricity and Gas.
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