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Abstract: To ensure reliable and efficient operation of gas turbines, multiple model (MM) approaches
have been extensively studied for online fault detection and isolation (FDI). However, current
MM-FDI approaches are difficult to directly apply to gas path FDI, which is one of the common
faults in gas turbines and is understood to mainly be due to the high complexity and computation
in updating hypothetical gas path faults for online applications. In this paper, a fault contribution
matrix (FCM) based MM-FDI approach is proposed to implement gas path FDI over a wide operating
range. As the FCM is realized via an additive term of the healthy model set, the hypothetical models
for various gas path faults can be easily established and updated online. In addition, a gap metric
analysis method for operating points selection is also proposed, which yields the healthy model set
from the equal intervals linearized models to approximate the nonlinearity of the gas turbine over a
wide range of operating conditions with specified accuracy and computational efficiency. Simulation
case studies conducted on a two-shaft marine gas turbine demonstrated the proposed approach is
capable of adaptively updating hypothetical model sets to accurately differentiate both single and
multiple faults of various gas path faults.

Keywords: gas turbine; gas path fault; fault detection and isolation; multiple model; gap
metric analysis

1. Introduction

With increasing gas turbine complexity, requirements for ensuring reliability and security are
growing significantly, and diagnosis of gas path component faults is becoming a major issue [1].
The main causes of gas path faults include fouling, erosion, corrosion, and foreign object damage
(FOD), which degrade the performance of the gas turbine, further reduce its safety and stability, and
lead to decreased fuel economy and increases in operation and maintenance costs [2]. Gas path fault
diagnosis approaches aim to detect and locate a fault in time to prevent a catastrophic consequence,
and therefore contribute to the development of a maintenance schedule. A large number of gas path
fault diagnosis approaches have been proposed and achieved good results in practical applications,
such as neural networks [3–6], gas path analysis derivatives [7], genetic algorithms [8], and adaptive
estimation [9–11]. Fault detection and isolation (FDI), as the core of the gas turbine fault diagnosis, has
received extensive attention from researchers [12–15].

The multiple model (MM) approach is highly regarded due to its ability to simultaneously ensure
high levels of diagnosis accuracy whilst maintain acceptable computational costs. It is based on
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hypothesis testing and conditional probability, which transforms a complex problem into several
simple problems to detect and isolate the fault [16]. The MM approach was pioneered by Magill [17].
Up to now, three generations of the MM approach have been designed, including autonomous MM,
interacting MM, and variable structure MM. A detailed description of these approaches can be found
in References [16,18]. Maybeck applied the MM approach to a gas turbine to detect and isolate sensor
and actuator faults [19–22], and Khorasani applied the MM approach to gas path fault detection
and isolation for jet engines [23–25]. In Reference [23], a nonlinear MM-FDI approach based on the
extended Kalman filter (EKF) and the unscented Kalman filter (UKF) was proposed for a jet engine.
Then, the MM-FDI approach was used to detect and isolate the gas path fault, and a hierarchical
architecture was developed that enabled the detection and isolation of both single and multiple faults
in the jet engine [24].

Gas path fault, actuator fault, and sensor fault are three types fault of a gas turbine. Application
of the MM-FDI approach in gas path fault identification is still under development. One of the main
problems is the design of hypothetical fault models [26], which have a significant impact on the
performance of the MM-FDI approach. The gas turbine healthy model set can be described by a set of
linear models in Equation (1):

xk+1 = Aixk + Biuk + wk
yk = Cixk + vk

(1)

where i is an operating point, i = 1, 2, . . . , M; x ∈ n× 1, y ∈ l × 1, and u ∈ t× 1 denote the state
vector, measurement vector, and control vector, respectively; and n, l, and t denote the dimension
of the state vector, measurement vector, and control vector, respectively. wk ∈ n× 1 ∼ (0, Q) and
vk ∈ l× 1 ∼ (0, R) are independent discrete-time process noises and measurement noises, respectively;
and Ai ∈ n× n, Bi ∈ n× t, and Ci ∈ l × n denote the state matrix, control matrix, and output matrix
of the healthy condition at the operating point i, respectively.

Faults in the sensors cause changes in the measurement vector y, and faults in the actuators
cause changes in the control vector u. Therefore, hypothetical models for sensor and actuator faults
can be established by directly changing the corresponding measurement vector and control vector
of the healthy model in Equation (1) [18,22,24]. However, the consequences of gas path faults due to
component defects cause changes in the system matrices A, B, and C, hence the traditional gas path
fault model can be described in the form of Equation (2):

xk+1 = A′ixk + B′iuk + wk
yk = C′i xk + vk

(2)

where A′i ∈ n× n, B′i ∈ n× t, and C′i ∈ l × n are the system matrices of a gas path fault condition at
the operating point i.

According to Equation (2), each gas path fault at the operating point i is matched to a hypothetical
fault model, which means that the system matrices corresponding to each gas path fault need to
be established separately in advance for applying the MM-FDI approach. Therefore, establishing
the hypothetical fault models is a very time-consuming task, and they are also not easy to update
automatically online. Although the proposed hierarchical architecture can reduce the number of
models of each level [24], due to the stochasticity and diversity of fault occurrences, the establishment
of the most possible hypothetical fault models will face combinatorial explosion problems, which
make the MM-FDI approach difficult to implement practically.

In this paper, a gas path fault contribution matrix (FCM) was introduced to improve the
performance of the MM-FDI approach to address the above problem, and a systemic method to
select the operating points that form the healthy model set was carried out based on gap metric
analysis to achieve MM-FDI over a wide range of operating conditions. To evaluate the effectiveness of
the FCM based MM-FDI approach, several simulation case studies on a two-shaft marine gas turbine
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were conducted. Performance of the proposed approach for FDI and the influence of the number of
available measurements and measurement outliers was analyzed for single and multiple fault cases.

The remainder of this paper is organized as follows: Details pertaining to the FCM based MM-FDI
approach are introduced in Section 2. In Section 3, a gap metric analysis method is introduced to yield
the healthy model set. Section 4 shows the application of the proposed approach to a two-shaft marine
gas turbine, and the results of the simulation case studies are analyzed and discussed. Finally, the main
conclusions are presented in Section 5.

2. The FCM Based MM-FDI Approach

2.1. Model Set Design Based on FCM

Inspired by the estimation algorithm used in adaptive performance optimization of turbofan
engines [27], this paper introduces the gas path fault contribution matrices E and D into Equation (1) as
additive terms of the healthy model, so that they can be adjusted easily to balance the deviations caused
by gas path faults. This gas turbine model set design based FCM can be represented in Equation (3):

xk+1 = Axk +
[

B E
][ uk

fk

]

yk = Cxk +
[

0 D
][ uk

fk

] (3)

where the matrices E ∈ n× q and D ∈ l × q denote FCMs which represent the effect of gas a path fault
on the healthy model, q represents the number of gas path faults in the gas turbine, fk = ∑

q
i=1 bizi is

the gas path fault vector, bi is the fault amplitude, and zi is the location of i−th fault. In particular, fk is
a q× 1 zero-valued vector for the healthy condition, and it becomes a nonzero value when a gas path
fault has occurred.

In Equation (3), the j-th hypothetical model at the operating point i can be represented by
xj

k+1 = Aix
j
k +

[
Bi Ei

][ uj
k

f j
k

]
+ wk

yj
k = Cix

j
k +

[
0 Di

][ uj
k

f j
k

]
+ vk

(4)

As shown in Equation (4), different gas path hypothetical fault models can be established by
directly quantifying the value of the corresponding gas path fault matrix fk, which is similar to the
effect of the control vector uk on the actuator fault model.

2.2. Model Conditional Filtering

The Kalman filter algorithm for the j−th hypothetical model at the i−th operating point is shown
in Equation (5).

Time− update :

x̂(j)
k+1|k = Ai x̂

(j)
k|k +

[
Bi Ei

][
u(j)

k f (j)
k

]T

P̂(j)
k+1|k = AiP

(j)
k|k AT

i + Q

Measurment− update :

K(j)
k = P(j)

k+1|kCT
i [CiP

(j)
k+1|kCT

i + R]−1

x̂(j)
k+1|k+1 = x̂(j)

k+1|k + K(j)
k [yk − (Ci x̂

(j)
k+1|k +

[
0 Di

][
u(j)

k f (j)
k

]T
)]

P(j)
k+1|k+1 = P̂(j)

k+1|k − K(j)
k Ci P̂

(j)
k+1|k

(5)
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where the Kalman filter algorithm contains two steps, time update and measurement update; therein,
x̂k|k and x̂k+1|k+1 are the system state estimate at time k and k + 1, respectively; x̂k+1|k is the system
state predict at time k + 1; Pk|k and Pk+1|k+1 are the state estimate error covariance at time k and k + 1,

respectively; P̂k+1|k is the state predict error covariance at time k + 1; and Kk is the Kalman gain at
time k.

2.3. Model Probability Update

The conditional probability µi(k) is used to represent the approximation of each hypothetical
model to the gas turbine actual condition. The gas turbine actual conditions AC match Hmi when a
given measurement vector yk is at a discrete time k; that is

µi(k) = Pr[AC = Hmi|y(tk) = yk ] (6)

The conditional probability at a given time k of the hypothetical model set can be recursively
calculated by the Bayesian Law according to the conditional probability value of the previous
moment and the Gaussian probability density corresponding to the current filter residual, as shown in
Equation (7).

µi(k) =
f (yk|Hmi, yk−1 )µi(k− 1)

W
∑

j=1
f (yk

∣∣Hmj, yk−1 )µj(k− 1)
(7)

where f (yk|Hmi, yk−1) denotes the conditional probability density of the i−th hypothetical model
when the measurements are yk, and µi(k− 1) denotes the conditional probability of the i-th
hypothetical model at the time k− 1. The Gaussian conditional probability density function is shown
in Equation (8).

f (yk
∣∣Hmj , yk−1) =

1

(2π)l/2
∣∣∣Sj

k

∣∣∣1/2 exp[−1
2
(γ

j
k)

T
Sj

kγ
j
k] (8)

where l is the dimension of the measurement parameters, and Sj
k and γ

j
k are the innovation covariance

and the innovation of the filter corresponding to the j−th hypothetical model, respectively, which can
be obtained in the filtering process.

2.4. Fault Detection and Isolation

The conditional probability of the hypothetical model set can be used as an indication of a fault,
as it provides a meaningful measure of how likely each fault is at a given time [28]. Therefore, the
actual fault can be detected and isolated by using the maximum probability criteria, as shown in
Equation (9):

j = arg max
i=1...W

µi(k) > µTH (9)

where j represents that the j−th model is closest to the actual condition, and µTH is a preset detect and
isolate threshold. To ensure a fast response to changes due to fault effects, a minimum µi = 0.001 was
used for each model [27]. Additionally, the preset detection and isolation threshold µT was set to 0.98
to reduce the amount of warnings [22].

2.5. Hypothetical Model Update

In practice, multiple faults exist in which a second fault occurs after the first fault. In this
scenario, no hypothetical model in the initial hypothetical model set matches the actual fault condition.
In addition, a gas path abrupt fault with large amplitude may also result in incorrect detection.
Therefore, to maintain the performance of the proposed approach, it is a key issue to update the
hypothetical model set to detect multiple faults after detecting the first fault, or to detect faults with
larger amplitude.
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Assuming the initial hypothetical model set is constant and has W hypothetical models, the
demonstration of the hypothetical model set update process is shown in Figure 1; the initial
hypothetical model set is shown in the left of the figure, where the subscript j − 1 denotes the
(j− 1)−th element of fk. The initial fault amplitude is assumed to have a deviation of −1% (−3% is
considered to be severe in practice [29,30]) for each hypothetical fault model. If the hypothetical model
j has the largest conditional probability, and it is in excess of the preset threshold µTH , then the first
fault is detected and isolated as the hypothetical model j. Subsequently, the initial hypothetical model
set will be updated to detect whether or not the current condition is multiple faults or a single fault
that is more serious. In the hypothetical model set update process, each hypothetical model should
contain the first detected fault; the j−th hypothetical model represents a more serious fault (−2%),
as shown in the right of Figure 1. In the case of more faults, the update process of the hypothetical
model set is in the same manner.

Figure 1. Demonstration of the hypothetical model set update.

The detailed hypothetical model set update algorithm is shown in Table 1. First, the detected
hypothetical model is determined to obtain the current fault type and the number of faults, and
determine the matrix Fupdata corresponding to the updated hypothetical model set. Then, each column
of Fupdata is substituted into Equation (4) to obtain the updated hypothetical model set. After the
hypothetical model set is updated, the conditional probability of each model and the filter will
be reinitialized.

Table 1. The hypothetical mode set update algorithm.

Step 1: Determine the type and number of the detected faults

mi = f ind(µ > 0.98)
zi = f ind(F(:, mi) < 0)
n = numel(zi)

Step 2: Determine the matrix Fupdate corresponding to the updated hypothetical model set

Fupdate = F;
f or k =1 : n

Fupdate(zi(k), :) = F(zi(k), mi);
Fupdate(zi(k), zi(k) + 1) = F(zi(k), mi)− si;

end

Step 3: Substituting each column of Fupdate into Equation (4) to obtain the updated mode set
xk+1 = Axk +

[
B E

][ uk
fk

]
yk = Cxk +

[
0 D

][ uk
fk

]
Notation

µ denotes the conditional probability of the W hypothetical models, a 1 ×W vector;
F denotes a matrix which is composed of fk corresponding to each hypothetical model in the current hypothetical model set,
F =

[
f 1#
k f 2#

k · · · f W#
k

]
, a q×W matrix;

Fupdata denotes a matrix which is composed of fk corresponding to each hypothetical model in the updated model set,
a q × W matrix;
s denotes the fault amplitude changes during model set updating, s = −1.
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2.6. Implementation of FCM Based MM-FDI

The overall flow diagram of FCM based MM-FDI is shown in Figure 2, which consists of following
steps: Establishing a gas turbine model set based on FCM that can represent system structure at the
healthy condition, and where all parameters use the percentage change in the model set. Then, based on
a hypothetical model set update algorithm, a bank of Kalman filters corresponding to the hypothetical
model set which represents hypothetical conditions of the gas turbine is designed. The conditional
probability of each hypothetical model is recursively calculated according to the filter residuals and
Bayesian law. Finally, the model that most closely aligns with the actual condition of the gas turbine
can be detected and isolated using the maximum probability criteria. Compared with the MM-FDI
algorithm in References [23,24], the FCM based MM-FDI approach proposed in this paper solves the
problem of gas path fault model set establishment and automatic update of the hypothetical model set.

Figure 2. Diagram of the fault contribution matrix (FCM) based multiple model fault detection and
isolation (MM-FDI) approach.

3. Selecting Operating Points Based on Gap Metric Analysis

Selecting the few operating points to form the healthy model set over a wide operating condition
is another issue of the MM approach. It usually uses equal intervals or control command [24], which
may lead to the redundant or incomplete selection of the linear model. To enhance the computational
efficiency, the trajectory piecewise-linear method [31] and range reduction techniques [32] have been
proposed for the optimal selecting of operating points.

In this paper, a systemic approach for selecting the operating points of the gas turbine linearized
models was carried out based on gap metric analysis. EI-Sakkary [33] pioneered a gap metric that can
be used as an indication of the approximation of two linear systems. For two linear models L1 and L2

with the same input and output, the gap between two linear models is [34]

δ(L1, L2) = max
(
⇀
δ (L1, L2),

⇀
δ (L2, L1)

)
(10)
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where
⇀
δ
(

Li, Lj
)

is
⇀
δ
(

Li, Lj
)
= inf

Q∈H∞
‖
(

Mi
Ni

)
−
(

Mj
Nj

)
Q‖

∞

(11)

where i, j = {1, 2}, i 6= j. Q ∈ H∞, and Mi and Ni, are normalized right coprime factorizations of Li,
and defined as

Li = Ni M−1
i , i = 1, 2 (12)

According to the gap metric, the range of the gap metric for two linear models is [0, 1], and the
smaller the gap metric, the closer the dynamic response between the two linear models. Therefore,
when the gap metric of the two linear models is less than the preset threshold δTH , it means that just
one of the models is sufficient, as the other one has become redundant. Otherwise, the two models are
not redundant and need to be selected simultaneously.

In this paper, a set of operating points with equal intervals and number of z are selected in the
range of the control variable u, and the interval ϕ between any two adjacent operating points up and
up+1 (p = 1, 2, . . . , z− 1) satisfies Equation (13):

ϕ =
∣∣up − up+1

∣∣ ≤ δu (13)

where δu is a sufficiently small value such that the gap metric of the linearization models corresponding
to any two adjacent points is less than the preset threshold δTH .

Correspondingly, a set of linearized models Li (i = 1, . . . , z) corresponding to z operating points
was established. Moreover, the gap metric between any two linearized models can be calculated.
Finally, the gap metric matrix G of all linearized models is obtained in Equation (14):

G =


δ(L1, Lz) δ(L2, Lz) · · · δ(Lz, Lz)

...
...

...
δ(L1, L2) δ(L2, L2) · · · δ(Lz, L2)

δ(L1, L1) δ(L2, L1) · · · δ(Lz, L1)

 (14)

where for the matrix G ∈ z× z, δ(Li, Lj) = δ(Lj, Li), i, j = 1, 2, . . . , z, and δ(Li, Lj) = 0, when i = j.
i = 1 defines the first operating point.

According to the preset threshold δT and the obtained gap metric matrix G, a set of operating
points, from which corresponding linearized models form the healthy model set, can be selected from
the z operating points. It can be seen from Equation (14) that the i−th column in matrix G is the
gap metric between the i−th linearized model and z linearized models. We keep i unchanged and j
increases sequentially, then compare δ(Li, Lj) with the preset threshold δTH . If δ(Li, Lj) ≤ δTH , then
the linearized model at an operating point j can be replaced by the linearized model at the operating
point i. Repeating the above process until δ(Li, Lj) > δTH or Lj = Lz, then the j− 1− i linearized
models from the operating point i to j− 1 can be represented by the linearized model at the operating
point i. Meanwhile, the linearized model at the operating point j is the next selected operating point.

4. Simulation Results and Discussion

In this section, the proposed FCM based MM-FDI approach is applied to a two-shaft marine gas
turbine. Several case studies were conducted to evaluate the performance of the proposed approach,
which include single fault detection and isolation, multiple fault detection and isolation, and the
influence of the number of available measurements and the measurements’ outliers.

The general layout of the two-shaft marine gas turbine is shown in Figure 3 [35]. The gas path
components include a compressor, a combustion chamber, a compressor turbine, and a power turbine,
wherein the power turbine drives the propeller through the reduction gearbox, which is simplified as
a load, as shown in Figure 3.
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Figure 3. The layout of a two-shaft marine gas turbine. T0 is the inlet temperature of the compressor
and P0 is the ambient pressure; T2 and P2 are the compressor outlet temperature and outlet pressure,
respectively, and N1 is the compressor speed; w f is the fuel mass flow which sprays into the combustion
chamber to produce outlet temperature T3 and outlet pressure P3; T4 and P4 are the exhaust gas
temperature and pressure of the compressor turbine, respectively; T5 and P5 are the outlet temperature
and outlet pressure of the power turbine, respectively, and N2 is the power turbine speed.

The nonlinear dynamic model of the two-shaft marine gas turbine was taken as a real engine,
which was established according to the available literature [36], as shown in Equation (15); for detailed
information refer to authors’ previous work [35].

.
N1 =

( 30
π

)2 1
J1 N1

[
mCTηmcpg(T3 − T4)−mCcp(T2 − T1)

]
.

N2 =
( 30
π

)2 1
J2 N2

[
mPTcpg(T4 − T5)−ΦN3

2
]

.
T3 =

RgT3
P3V1cvg

[
k
(

cpgT2mC + LHVηCCw f − cpgT3mCT

)
− cpgT3

(
mC + w f −mCT

)]
.
P3 = P3

T3

.
T3 +

RgT3(mC+w f−mCT)
V1

.
P4 =

(mCT−mPT)RgT4
V2

.
P5 =

(mPT−Γ
√

P5)RgT5
V3

(15)

where J1 and J2 are the inertia of the compressor shaft and power turbine shaft, respectively; Φ is
the relationship coefficient between N1 and the load; LHV is the fuel low heating value; and V1, V2,
and V3 are the component volumes. mC, mCT , and mPT represent the mass inside the compressor,
compressor turbine, and power turbine, respectively. cp and cpg represent the heat capacity of air
and gas at constant pressure, respectively; cvg represents the volumetric heat capacity of gas; and Rg

denotes the gas constant. ηm denotes the mechanical efficiency, and Γ is the relationship coefficient
between mPT and P5.

Next, the performance of the FCM based FDI approach was tested in a simulation environment,
as shown in Figure 4. According to Equation (15), there are six component performance parameters
in a two-shaft marine gas turbine: compressor mass flow mC, compressor efficiency ηC, compressor
turbine mass flow mCT , compressor turbine efficiency ηCT , power turbine mass flow mPT , and power
turbine efficiency ηPT . When the gas turbine is in a healthy condition, the compressor mass flow and
efficiency are denoted mC,H and ηC,H , respectively; compressor turbine mass flow and efficiency are
denoted mCT,H and ηCT,H , respectively; and power turbine mass flow and efficiency are denoted mPT,H
and ηPT,H , respectively.
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In this paper, gas path faults were simulated via changing component performance parameters.
Typical single gas path faults used in this paper are shown in Table 2. When two or more single faults
occurred simultaneously they were considered multiple faults. The sensor noise used in this paper
was Gaussian noise, where the mean value was zero, and the relative standard deviation of each
measurement variable is shown in Table 3.

Figure 4. FCM based FDI approach simulation testing.

Table 2. Typical single gas path faults.

Fault Description Symbol Fault Vector

Healthy condition H fk = [0 0 0 0 0 0]T

Decrease in mC Fmc(b1%) fk = [b1 0 0 0 0 0]T, b1 = (mC/mC,H − 1)× 100%

Decrease in ηC Fηc(b2%) fk = [0 b2 0 0 0 0]T, b2 = (ηC/ηC,H − 1)× 100%

Decrease in mCT Fmct(b3%) fk = [0 0 b3 0 0 0]T, b3 = (mCT/mCT,H − 1)× 100%

Decrease in ηCT Fηct(b4%) fk = [0 0 0 b4 0 0]T, b4 = (ηCT/ηCT,H − 1)× 100%

Decrease in mPT Fmpt(b5%) fk = [0 0 0 0 b5 0]T, b5 = (mPT/mPT,H − 1)× 100%

Decrease in ηPT Fηpt(b6%) fk = [0 0 0 0 0 b6]
T, b6 = (ηPT/ηPT,H − 1)× 100%

Table 3. Sensor noise.

Measurement Parameters N1 N2 T2 P2 T4 P4 T5

Standard deviation (%) 0.051 0.051 0.23 0.164 0.097 0.164 0.097

4.1. FCM Based Model Set Testing

In the two-shaft marine gas turbine model set, as shown in Equation (3), the state vector was
x = [N1, N2, T3, P3, P4]

T, the measurement vector y = [N1, N2, T2, P2, T4, P4, T5]
T, and the control vector

u = w f . Sample time was 0.02 s.

4.1.1. Mode Set Accuracy Testing

When fk = 0, the FCM based model set is a set of healthy linearized models. In this paper,
the fitting approach based on perturbation [37] was used to establish the gas turbine linearized model,
as shown in Equation (4), and gap metric analysis was used to select the operating point.

The range of the control vector w f was [0.3, 1]. With an equal interval of 0.01 for setting the
operating points, the operating range was divided into 70 subranges, and a total of 71 gas turbine
linearization models were established. According to Equation (14), the matrix of the gap metrics
between the gas turbine linearization models was calculated and is shown in Figure 5.
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Figure 5. The matrix of the gap metric between the gas turbine linearized models.

The gap metric matrix is a symmetric matrix, and the diagonal elements are the gap metrics of
each model with itself, hence the value is zero. The gas turbine operating range was segmented by
comparing the pre-set threshold δTH = 0.25 starting at the design operating point w f = 1 (namely L1),
and six operating points were selected, as shown in Table 4, to yield the FCM based model set.

Table 4. The result of operating points selection based on the gap metric analysis.

Models 1# 2# 3# 4# 5# 6#

i 1 2 17 42 63 71
wf 1 0.99 0.84 0.59 0.38 0.3

The dynamic response of each measurement parameter was compared between the gas turbine
nonlinear model [35] and FCM based model set. Figure 6 presents the corresponding differences
between two models at a given fuel flow schedule. In this case, the fuel flow w f decreases gradually
from 1.0 to 0.3 in the period from 0 to 40 s. It can be seen that errors at each selected operating point
appear to be the largest for each subrange, which agrees with the operating point selection using the
gap metric method. However, the absolute value of the maximum error for each measured parameter
is less than 4%; that is, it is in an acceptable error range. At the expense of certain model simulation
accuracy, the model set covering the wide operating condition only uses 8.5% of the operating points of
gas turbine linearization models, which greatly reduces the storage space and calculation requirements
of the model set.
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Figure 6. Comparison of the response of each measurement parameter between the nonlinear model
and the FCM based model set at a given fuel flow schedule, and the corresponding error.

4.1.2. Hypothetical Fault Simulation

To verify whether the FCM based model set can be used to establish the hypothetical models,
a comparative study was conducted with a nonlinear model in Equation (15), the traditional gas path
fault model shown in Equation (2), and the hypothetical fault model auto-generated from the FCM
based mode set, as shown in Equation (4). In this section, the traditional gas path model Fmc at the
operating point w f = 1.0 is selected. Figure 7 shows the comparison dynamic tracking response in
artificial simulation scenarios. The gas turbine was abruptly changed from operating point w f = 1.0 to
operating point w f = 0.99 at t = 15 s; a Fmc decrease of 1% occurs at t = 15 s and recovery to the healthy
condition at t = 25 s; after 10 s, a Fmct decrease of 1% occurs until the end.

It can be seen from Figure 7 that the hypothetical fault model auto-generated from the FCM based
mode set has the same fault dynamic tracking response with a nonlinear model under a steady state
condition and transient condition. The traditional gas fault model can only simulate the specified fault
(here is Fmc). The hypothetical fault model auto-generated from FCM based mode set has adaptive
fault tracking capability through adjusting fk, which makes computation simpler than the traditional
gas path fault model.
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Figure 7. Performance comparison between the traditional Fmc fault linear model at design operating
points and the FCM based model set.

4.2. Single Fault Scenarios

4.2.1. FDI Results of a Single Fault under Different Operating Conditions

In this section, the gas turbine was worked under the steady condition at the operating point
w f = 1.0 until t = 360 s, and then the transient condition while the operating point dropped gradually
to w f = 0.3 at t = 720 s. Six gas path faults occurred separately in sequence under the steady condition
and transient condition with an amplitude of −1%, and the diagnosis results are shown in Figure 8.

It can be seen that the FCM based MM-FDI approach can accurately detect and isolate single gas
path faults under both the steady and transient conditions at expected detection times and isolation
periods, respectively.
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Figure 8. FDI result of a single gas path fault under the steady state condition and transient condition.

4.2.2. Performance under Different Single Fault Amplitudes

In this section, 100 simulations of single gas path faults were performed each time at the operating
point, and repeated 10 times for a total of 1000 simulations based on the gas turbine nonlinear model.
For each simulation, the type of fault was randomly generated, and the range of the fault amplitude bi
was [−2.7%, −0.7%]. Keeping the hypothetical model set in an initial model sequence (fault amplitude
bi is −1%), the correct detections (CD), the incorrect detections (ID), and the missed detections (MD) of
the FCM based MM-FDI approach under a single fault were obtained from this Monte Carlo test, and
are listed in Table 5.

Table 5. The fault detection and isolation (FDI) results of the 1000 stochastic simulations.

Confusion Matrix of the FDI Result Final Result

H Fmc Fηc Fmct Fηct Fmpt Fηpt CD ID MD

H 135 0 0 0 0 0 0
Fmc 0 123 0 0 0 0 0

95.5% 0.45% 0

Fηc 0 0 152 0 0 0 0
Fmct 0 0 0 121 0 0 0
Fηct 0 0 0 0 153 0 0
Fmpt 0 0 0 0 0 171 0
Fηpt 0 45 0 0 0 0 145
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It can be seen that the proposed approach allows 95.5% faults to be detected and isolated under
the initial hypothetical mode set, which demonstrates that the proposed approach produces high
diagnostic accuracy under different single fault scenarios.

All the incorrect detections are on Fηpt, which incorrectly detected as Fmc, as shown in Table 5.
For an in-depth understanding, all the fault amplitudes of Fηpt faults that were simulated in the case
study and the corresponding FDI results are presented in Figure 9. It can be seen that all incorrect
detection occurs when the fault amplitude is too large. Therefore, the cause of the incorrect detection
is that the amplitude of the initial hypothetical Fηpt model is small, and it does not match the actual
fault condition. Fortunately, the large amplitude fault can be accurately detected and isolated when
the hypothetical model set is updated, as advocated in this method.

Figure 9. The fault amplitude of the Fηpt fault and the corresponding FDI results of 145 simulations.

4.2.3. Performance under Different Numbers of Available Sensors

In practice, sensors often fail to provide effective measurement information, which results in the
number of available sensors decreasing. Therefore, the influence of the number of available sensors
on the performance of the proposed approach was studied at the operating point w f = 1.0. Three
cases were considered, seven sensors (N1, N2, T2, P2, T4, P4, and T5), four sensors (N1, N2, P2, and T4),
and two sensors (N1 and N2), and each fault had a 1% decrease in its output. The detection time and
isolation time of each fault are shown in Table 6.

As shown in Table 6, the proposed approach can detect and isolate the fault with four sensors.
However, several faults were not able to be differentiated, which are denoted as either MD or ID in the
scenario of two available sensors. In addition, the fault detection time and the isolation time increases
as the number of sensors decreases, which is mainly due to the reduction in the available information
to distinguish different faults that the sensors can provide.

Table 6. The detection time and the isolation time for different numbers of measurements available.

Fault Type
Seven Sensors Four Sensors Two Sensors

td (s) ti (s) td (s) ti (s) td (s) ti (s)

Fmc 1.46 5.02 4.8 17.65 223 1009
Fηc 0.9 3.68 4.78 51.4 MD/ID MD/ID
Fmct 0.28 0.9 0.7 5.02 912 3739
Fηct 4.32 17.9 2.92 62.8 MD/ID MD/ID
Fmpt 0.34 1.2 5.12 25.7 MD/ID MD/ID
Fηpt 0.54 1.8 2.08 8.5 22.5 116.2
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4.2.4. Performance under Measurement Outliers

It is inevitable to have outliers in measurements due to various interferences, such as failed
communication, hardware malfunction, or environment change, which can result in a false alarm.
Therefore, some gas path diagnosis methods have been proposed for pre-processing the measurement
signals to remove these outliers and noise before FDI. In this case, the outliers were artificially added
to the measurement signals and the outliers were selected at the 2% level of the nominal value of these
measurements. Suppose a Fmc decrease of 1% occurs at t = 20 s, the variation of each measurement
parameter and the probability of each hypothetical model are shown in Figure 10. It can be seen that
the proposed approach can accurately detect and isolate faults when there are outliers, and the outliers
only slightly disturb the conditional probability of the model. Therefore, the FCM-based FDI approach
proposed in this paper is robust in the measurement of outliers.

Figure 10. Performance of the FCM based MM-FDI approach under outliers. (a) The measurement
parameters in the scenarios of Fmc decreasing by 1% at t = 20 s; (b) The conditional probability µi of
each hypothetical model in the scenarios of Fmc decreasing by 1% at t = 20 s along with outliers.

4.3. Multiple Fault Scenarios

4.3.1. FDI Results of Multiple Faults in the Gas Path

Figure 11 shows the FDI results for the scenarios of a −2% change in Fηpt at t = 25 s and a 1%
change in Fηc at t = 35 s under operating point w f = 1.0. In this case, the hypothetical model set update
approach was used for detecting and isolating these faults. It can be seen that when a Fηpt decreasing
by 2% fault occurs, the conditional probability of the 7# hypothetical model in Figure 11a is the largest
and exceeds µTH , which means this hypothetical model is closest to the actual fault condition. Then,
the hypothetical model set is updated and the conditional probability is reinitialized correspondingly.
With the updated hypothetical model set, the 7# hypothetical model, as shown in Figure 11b, is closest
to the actual fault condition, so the conditional probability of the model is largest and over µTH . Then,
the hypothetical model set will be updated again and the conditional probability will be reinitialized
again. Finally, as shown in Figure 11c, the Fηpt and the Fηc faults are accurately detected and isolated.
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Figure 11. The multiple fault detection and isolation results for the scenarios of a 2% decrease in
Fηpt at t = 15 s and 1% decrease in Fηc at t = 35 s. (a) The conditional probability of the initial model
set; (b) The conditional probability of the updated model set 1; (c) The conditional probability of the
updated model set 2.

4.3.2. Performance under Multiple Faults

A simulation was also conducted for the scenario of multiple faults at the operating point w f = 1.0,
and the detection and isolation results are shown in Figure 12 and Table 7. In this scenario, the type of
fault was random and the range of the fault amplitude bi was [−2.7%, −0.7%]. In addition, the fault
amplitude of the gas path fault caused by fouling, corrosion, and erosion may be gradual, so both
abrupt and gradual changes in fault amplitude were considered. In the case of an abrupt fault, the first
fault occurs at t = 20 s and the second fault occurs at t = 70 s. In the case of a gradual fault, the fault
amplitude of both faults changes from t = 0 s, with the first fault changing to a given amplitude at
t = 20 s, and the second fault changing to a given amplitude at t = 70 s.

It can be seen that, regardless of whether the fault amplitude changes abruptly or gradually,
the first fault was 100% accurately detected and isolated using the proposed approach. In the case
of an abrupt fault, the second fault shows five faults were incorrectly identified as three or more
faults, and one fault was missed due to its very small amplitude. In the case of a gradual fault,
the second fault shows that five faults were incorrectly identified to be three faults. Therefore, the
proposed approach can effectively improve the FDI performance of large amplitude single faults, and
has high FDI performance with 94% and 95% accuracy in the multiple abrupt faults and gradual faults
scenarios, respectively.
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Figure 12. The type and amplitude of multiple faults and the corresponding FDI results of 100 stochastic
simulations. (a) The type and amplitude of the first abrupt fault and corresponding FDI results;
(b) The type and amplitude of the first gradual fault and corresponding FDI results; (c) The type and
amplitude of the second abrupt fault and corresponding FDI results; (d) The type and amplitude of the
second gradual fault and corresponding FDI results.

Table 7. The FDI results of 100 stochastic simulations in the scenarios of multiple faults.

Fault Change Faults Simulation Times
FDI Result

CD ID MD

Abrupt
First fault 100 100 0 0

Second
fault 100 94 5 1

Total 100 94 5 1

Gradual
First fault 100 100 0 0

Second
fault 100 95 5 0

Total 100 95 5 0

4.3.3. FDI Results of Multiple Faults in both the Actuator and Gas Path

In Equation (3), gas path faults are converted into a type of fault in the model set that is similar to
the actuator fault. Due to the good scalability of the FCM based FDI approach, it is easy to apply the
proposed approach to gas path and actuator multiple faults.

In this section, the actuator fault corresponds to the fuel flow (Fw f ). The fuel actuator gets stuck at

some value [38] a0 =
(

w f /w f ,H − 1
)
× 100%, which is the fuel actuator fault Fw f (a0%); uk = mk + a0,

where mk is controller fuel mass output. Considering the healthy condition and six gas path faults,
as shown in Table 2, there will be eight hypothetical models in the model set. Although the number of
hypothetical models has increased, the process of the FDI of multiple faults in both the gas path and
actuator is consistent with the process of the FDI of gas path faults.

Figure 13 shows the FDI results in the scenarios of the actuator fault, where the Fwf decreases
by 5% fault occurs at t = 15 s, the Fmc decreases by 1% fault occurs at t = 35 s, and the Fηpt decreases
by 1% fault occurs at t = 45 s. In these scenarios, the gas turbine engine works at the operating point
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w f = 1.0. Assume that the initial fault amplitude of Fwf is −5% and the gas path fault amplitude is
−1%. The FDI results show that both the gas path fault and actuator fault are accurately detected
and isolated, which indicates that the occurrence of an actuator fault will not affect the detection and
isolation of a gas path fault.

Figure 13. The multiple faults detection and isolation results in the scenarios of Fw f decreases by 5%
fault occurs at t = 15 s, Fmc decreases by 2% fault occurs at t = 35 s, and Fηpt decreases by 1% fault
occurs at t = 45 s. (a) The conditional probability of the initial model set; (b) The conditional probability
of the updated model set 1; (c) The conditional probability of the updated model set 2.

5. Conclusions

In this paper, an FCM based MM-FDI approach was developed to detect and isolate the gas path
faults of gas turbines over a wide operating condition. It shows that the FCM can be realized via an
additive term of the healthy model set, allowing hypothetical models for various gas path faults to be
easily established and updated online. A gap metric analysis for operating points selection converts
the nonlinearity of the gas turbine into multiple linearized models over a wide range of operating
conditions with specified accuracy and computational efficiency. Several simulation case studies on
a two-shaft marine gas turbine were conducted, and the performance of the proposed approach for
the FDI of a single fault and multiple faults, and the influence of measurement outliers, was analyzed.
The simulation results show that the proposed FCM based MM-FDI approach realizes the adaptive
generation of the fault model set by taking the gas path fault as an additive term and extending the gas
path fault matrix into the control vector, which makes MM-FDI approaches achievable and efficient
for online gas path fault detection and isolation application. The gap metric analysis for selecting
operating points of the healthy model set greatly reduces the storage space and calculation requirement
of the model set.
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Nomenclature

Symbols
Ai state matrix of the healthy condition at the operating point i
A′i state matrix of a gas path fault condition at the operating point i
Bi control matrix of the healthy condition at the operating point i
B′i control matrix of a gas path fault condition at the operating point i
Ci output matrix of the healthy condition at the operating point i
C′i output matrix of a gas path fault condition at the operating point i
D gas path fault contribution matrix for the output vector
E gas path fault contribution matrix for the state vector
G the gap metric matrix of all linearized models
Hmi the i-th hypothetical model
J inertia of shaft
K Kalman gain
Li the i-th linear model
Mi, Ni the normalized right coprime factorizations of linear model Li
N rotational speed
P pressure
Q process noise covariance
R measurement noise covariance for FDI
Rg gas constant
S innovation covariance
T temperature
V component volume
W the number of hypothetical models
b fault amplitude
cp air constant pressure specific heat
cpg gas constant pressure specific heat
cvg gas constant volume specific heat
f gas path fault vector
k adiabatic index
l the dimension of the measurement vector
m gas/air mass flow of component
n the dimension of the state vector
q number of gas path faults
s fault amplitude changes during model set updating
t the dimension of the control vector
u control vector
vk measurement noise
wk process noise
w f fuel mass flow
x state vector
y measurements vector
z fault location vector
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Greek
Γ coefficient between mass flow and pressure
Φ coefficient between N2 and load
γ filter innovation

δ
(

Li, Lj

)
gap metric between linear models Li and Lj

δTH the preset threshold of the gap metric
η isentropic efficiency
µTH the preset threshold of the conditional probability
µi the conditional probability of the i-th hypothetical model
ϕ the interval between any two adjacent operating points
Subscript
C compressor
CC combustion chamber
CT compressor turbine
H health condition
PT power turbine
k discrete time k
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