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Abstract: Contemporary research has shown impetus in the diagnostics of permanent magnet (PM) 

type machines. The manufacturers are now more interested in building diagnostics features in the 

control algorithms of machines to make them more salable and reliable. A compact structure, 

exclusive high-power density, high torque density, and efficiency make the PM machine an 

attractive option to use in industrial applications. The impact of a harsh operational environment 

most often leads to faults in PM machines. The diagnosis and nipping of such faults at an early stage 

have appeared as the prime concern of manufacturers and end users. This paper reviews the recent 

advances in fault diagnosis techniques of the two most frequently occurring faults, namely inter-

turn short fault (ITSF) and irreversible demagnetization fault (IDF). ITSF is associated with a short 

circuit in stator winding turns in the same phase of the machine, while IDF is associated with the 

weakening strength of the PM in the rotor. A detailed literature review of different categories of 

fault indexes and their strengths and weaknesses is presented. The research trends in the fault 

diagnosis and the shortcomings of available literature are discussed. Moreover, potential research 

directions and techniques applicable for possible solutions are also extensively suggested. 

Keywords: winding short fault; inter-turn-short fault; irreversible demagnetization fault; PMSM; 

fault diagnosis; review on fault diagnosis 

 

1. Introduction 

Over the past couple of decades, concerns about the safety and reliability of applications like 

home appliances, electric vehicles (EVs), and aircraft have increased a lot. Electric motors are 

commonly used as the major motive power source for mechanical moment and therefore consume a 

major portion of energy. Mostly, the electrical machine driving system operates in laborious and 

harsh environments and is therefore sensitive to the influence of different types of faults. These faults 

in the motor drive system are commonly caused by contamination, humidity, mechanical tensions 

caused by overloading, high temperature, vibration, and the partial discharge of high-frequency 

inverter voltages [1]. The detection and identification of a fault at its earliest stage is a critical step in 

applications where safety is the primary concern of the system. Modern industries have already 

adopted intelligent technology, which leads to automatic and more precise electrical machines and 

intelligent control drives. Therefore, early automatic detection, identification, and tolerant/isolation 

of these faults are possible [2,3]. 

Due to the ongoing trends towards electric scooters, hybrid electric vehicles (HEVs), EVs, and 

electric train development, the market is dominated by permanent magnet synchronous machines 

(PMSMs) for traction motor applications. The permanent magnet (PM) in electrical motors provides 
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several advantages, such as a high torque and power density, simple and compact rotor structure, 

more precise control, lower losses, better dynamic performance, easy maintenance, and relatively 

high power factor in the constant-torque region [4]. Despite the aforementioned advantages, the 

development of PMSMs faces some hurdles, for instance, sensitivity to the operating temperature, 

possible PM demagnetization, a higher price due to the use of expensive PMs, and necessary positon-

sensors for their control [5]. Moreover, uncontrolled PM excitation in PM type machines raises some 

reliability-related concerns. Furthermore, to maintain a high torque/power density, the PMSMs have 

to operate in higher mechanical, electrical, and thermal stressful environments, which raises the risk 

of winding insulation failures. Several attempts have been made to address these issues; for example, 

to eliminate the position sensors, several sensorless control techniques have been proposed which 

can help in reducing the system volume and enhancing the reliability of the motor control drive 

system [6]. In addition, in the motor design process, preventive measures are taken to avert PM 

demagnetization. These consist of the multiclass design of rotor poles [7], increasing the thickness of 

PM [8], and using supporter cylinders [9] to reduce the rotor eddy currents and temperature. The 

winding failure can be reduced by decreasing the current density or introducing a cooling system to 

the machine [10]. Despite addressing the aforementioned issues, these protective approaches increase 

the final cost, complexity, and dynamic response/performance of the system. However, in industry 

economic aspects, a good dynamic performance and structure simplicity are more crucial points to 

focus on during system design. Therefore, the standard optimal procedure is being followed to 

design the PM machines and as a result, the machines are on the verge of demagnetization and 

winding failure [11]. Hence, these faults are inevitable and considering the safety-critical applications 

of PM machines, such as those in transportation and medical equipment, the early detection of a fault 

is vital, and reliability is the primary concern in the operation of these motors. Therefore, rather than 

modifying the machine standard design, the diagnostic technique can be embedded in the control 

drive and monitor the health of the machine to detect and report these faults before they cause 

damage or create a safety risk. Diagnosis of inter-turn short circuit fault (ITSF) and irreversible 

demagnetization fault (IDF) in PM machines is gaining more attention as the thermal stress of the 

windings and pulse width modulation (PWM) inverter switching frequency keep increasing [12]. 

These two faults are the most catastrophic and frequently occurring faults and can easily account for 

a safety risk or repair cost of millions of dollars.  

A substantial amount of research has been conducted for the early diagnosis and separation of 

the aforementioned faults. In [13,14] and [15,16], the techniques for ITSF and IDF detection are 

reviewed for PMSM. However, the combined study and the comparison in terms of the diagnosis 

techniques of these two faults is yet to be conducted. Some of the indicators caused by these two 

types of faults are similar or the indicator used for fault detection might be caused by some other 

type of fault, such as a static or dynamic eccentricity fault or bearing fault. In addition, in the case of 

a hybrid fault (both faults at a time) or fluctuating load and speed, the conventional fault indicators 

change. Therefore, after detection, distinguishing the fault type and reliability of the algorithm at 

every operating condition is also of extreme importance. This paper reviewed the current trends of 

the detection and identification of these two types of faults. Most of the recent trends for the diagnosis 

of ITSF and IDF are analyzed in detail. The strengths and weaknesses of each technique are pointed 

out. Finally, suggestions and future research directions are suggested.  

This paper is organized as follows. In Section 2, the modeling and characteristics of ITSF and 

IDF are discussed. Section 3 summarizes the detailed literature review of the proposed techniques 

for ITSF and IDF diagnosis. A detailed summary of the comparison and discussion is presented in 

Section 4 and finally, Section 5 presents the future direction followed by the conclusion. 

2. Modeling and Characteristics of ITSF and IDF in PMSM 

Numerous modeling techniques are used to study the PMSM under ITSF and IDF. Each 

technique tries to simplify the analysis by making some assumptions. This section briefly explains 

the most common and recent fault models used in the analysis of fault diagnosis. The merits and 

demerits of each model and the characteristic of PMSM under ITSF and IDF are also explained briefly.  
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2.1. Inter-Turn-Short Fault (ITSF) 

The winding insulation failure due to a short-circuit in the same phase of the machine is known 

as ITSF and it is one of the most frequently occurring electrical faults in the PMSM. The shorted-turns 

have serious implications on the motor operation and performance. Modeling and parameter 

identification of PMSM under ITSF is the first major step in the machine health monitoring and fault 

diagnosis process. Several techniques regarding ITSF modeling and analysis have been proposed [19–

23]. Finite-Element method (FEM) based modeling is the most accurate technique to realize the 

shorted turns and the inverse magnetic field induced by a short-circuit fault current [17,18]. However, 

its simulation time is longer due to the high computational burden of FEM. Moreover, the reduced-

order FEM-based machine models, such as linear PMSM, equivalent circuit, and field reconstruction 

method [19–21] based models are extremely effective to analyze the ITSF response and require 

relatively less time. However, all these methods require accurate implementation. Analytical models 

such as winding functions theory-based models, magnetic reluctance network-based models, and 

models based on an equivalent circuit in a stationary and rotating reference frame [22–24] are some 

of the fastest methods, which are extremely feasible to develop a generalized fault compared to 

considering a specific design for each individual analysis.  

Equivalent circuit-based fault models are more appropriate to study the machine dynamic 

response under ITSF. Relaying on some assumptions, several authors have proposed different 

mathematical models considering various operating conditions and different fault setups 

[19,22,23,25–28]. In these methods, the motor parameters are measured analytically or by using the 

FEM-based simulation. Figure 1a shows the simple equivalent circuit of an IPMSM with ITSF in 

Phase-A. Here, ah represents the healthy winding turns; af represents the shorted winding turns; and 

Rf, and if represent the shorted turns resistance and the fault current, respectively. The values of Rf 

and if vary with the number of shorted turns. The mathematical model of PMSM under the ITSF 

condition is given in Equation (1) [22]. As can be seen, the shorted windings turn acts as an extra 

circuit loop coupled to flux linkages of its surrounding windings and represented as an additional 

phase in Equation (1). This additional faulty phase generates a reverse magnetic field and has induced 

back electromotive force (BEMF) eaf, self-inductance Laf, and mutual inductances with phase-B and 

phase-C Mah-af, Mb-af, and Mc-af. Figure 1b shows the FEM model of the motor with the shorted turns in 

the A1 tooth of phase-A and Figure 1c shows the case-study IPMSM. The winding tabs for shorting 

have a different number of turns. Due to short turns, a high current called circulating/fault current 

passes through the af. Figure 2a compares the input phase current and the fault current for the PMSM 

at full load and speed with three out of 72 turns shorted, and the fault current and input phase current 

are opposite in phase; thus, it generates reverse magnetic flux in the faulty slot, which opposes the 

main flux. Under ITSF, the healthy turns in the faulty tooth decrease, so the magnetic flux density 

also decreases while the magnetic flux density of healthy teeth in the same phase increases compared 

to a healthy condition. As can be seen in Figure 2b, the magnetic flux density of the faulty tooth (A1) 

has decreased, while the magnetic flux density of healthy teeth (A2 and A3) increased more than the 

healthy machine and saturated the slot.  
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2.2. Irreversible Demagnetization Fault 

Permanent magnets are generally made of a hard magnetic material, i.e., they have high 

coercivity and high remanence. The coercivity is a measure of how high an external magnetic field is 

needed to reduce the magnetic flux density inside the material to zero. However, this value does not 

necessarily mean that the magnetization of the material is reduced to zero. A good magnet grade will 

not lose any magnetization when the magnetic flux density is reduced to zero. The necessary field 
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strength to reduce the magnetization to zero is denoted by Hic and called the intrinsic coercivity 

[29,30]. 

   
(a) (b) (c) 

Figure 1. IPMSM with ITSF in Phase-A. (a) Equivalent circuit of three-phase IPMSM with ITSF in 

Phase-A; (b) FEM model of a 400-watt IPMSM with shorted turns in the A1 tooth of phase-A; (c) 400-

watt IPMSM with ITSF tabs. 
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Figure 2. (a) Stator input current and the circulating/fault current under ITSF; (b) Magnetic flux 

density in teeth of Phase-A under healthy and ITSF conditions. 

The properties of magnetic material change with temperature. The characteristic of PM material 

can be determined using its magnetization curve or the so-called B-H curve. Demagnetization is the 

most important characteristic in the B-H plane and it tells us how the magnetic field density changes 

with the demagnetization field. NdFeB and SmCo are nowadays the most popular magnets, and their 

demagnetization curve remains linear till knee point and soon after the knee point, it drops sharply. 

In the PMSMs, the intersection of the magnetization curve and the load line gives us the operating 

point. In the linear region, the B-H curve can slightly move up and down and this phenomenon is 

called “reversible demagnetization”. However, if the operating point goes beyond the linear region 

and crosses the knee point, then it never recovers to its original magnetizing curve and hence the 

residual flux density of the PM decreases. This phenomenon is called “irreversible demagnetization 

(IDF)”. 

In Figure 3a at normal load, the machine’s operating point is a’, and it moves below the knee-

point (a’’) of the curve due to the large stator current that generates the demagnetizing 

magnetomotive force (MMF). When the operating point reaches a’’, rather than following the original 

track, it follows the dotted line a’’-b’-b-Br’ (relative recoil permeability line) in Figure 1a, and the 

machine recovers to a new operating point b’ in normal conditions [31]. In [17], it has been shown 

that the ITSF and open phase/switch fault significantly increase the demagnetizing MMF and lead to 

IDF. Furthermore, the operating point can also move below the knee point during normal operation 

due to the increase in temperature. The residual flux density Br normally decreases when the 

temperature increases and the coercivity Hc increases for the ceramic PM and decreases for NdFeB 

and SmCo PMs. Figure 3b shows the shift in demagnetization curve for NdFeB at an increased 

temperature. At a higher temperature (T2), the operating point falls from a’ to c’ with a decreased flux 
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density Br’’ under a normal load. If the temperature decreases from T2 to T1, the operating point will 

shift to a’’ and the curve will follow the dashed line (a’’-Br’) rather than the original demagnetizing 

curve and hence will result in IDF [31]. Figure 3c shows the rotor of the case-study IPMSM with 

reduced sized magnets. The different sizes of magnets can be replaced in the rotor to realize the 

different severities of IDF. 

   

(a) (b) (c) 

Figure 3. Operating point and demagnetization curve of PM due to: (a) External demagnetizing MMF; 

(b) Operation at high temperature (NdFeb or SmCo magnets); (c) IPMSM rotor with replaceable 

reduced size PMs. 

Demagnetization usually occurs due to a high operating temperature, severe flux-weakening, a 

reverse magnetic field due to ITSF, some physical damage, an open circuit fault, and aging. IDF 

intensively affects the performance of a machine. It can considerably decrease the back electromotive 

force (BEMF) of the motor. Furthermore, IDF not only disturbs the symmetry of the air-gap flux 

density, stator phase current and voltage, and the generated electromagnetic torque, but also 

increases the acoustic noise and vibrations in the machine. In addition, the motor draws a higher 

current for the constant load and speed compared to a healthy machine, which further raises the 

temperature of the stator winding, and as a result, more flux drops under IDF in the PMSM. 

Modeling of a fault is the first major step in machine health monitoring. FEM-based numerical 

simulation is very accurate in IDF analysis; it takes in to account the geometry of the magnetic circuit, 

the stator winding distribution, and the nonlinear behavior of the core. Although FEM is the most 

accurate among the existing modeling methods, it is computationally complex and might not be 

suitable for real-time analysis in many applications. Since the analytical methods based on electrical 

machine theory use several assumptions and need fewer elements, these methods are relatively fast. 

However, assumptions like neglecting core saturation, the skin effect, and the slotting effect 

compromise the accuracy level [32]. To overcome the shortcomings of these two methods, FEM-

assisted and hybrid techniques are introduced. These methods include the field reconstruction 

method (FRM), lumped parameter models such as the dq-axis of the machine with detailed 

parameters obtained by FEM, the FEM-based phase variable model, and reluctance networks-based 

models. All these techniques have a reasonable simulation time with a sufficient accuracy and are 

possible to apply to real-time commercial applications.  

FRM and reluctance network-based techniques model and analyze the single slot of the machine 

and therefore, takes less time compared to FEM. However, compared to other data-based methods, 

these techniques are still computationally complex [28]. In [33], a novel method for the surface type 

PM machine with a skewed rotor based on 2D-FEM is presented. Normally, for skewed rotor PM 

machines, 3D-FEM is used, which is extremely complex and time-consuming. The effect of IDF on a 

PM synchronous generator with series and parallel windings is presented in [34]. No fractional 

harmonic components are observed in series winding, while in the case of parallel winding, the 

fractional harmonics are evident.  

Various types of equivalent circuit-based models are proposed in [35–37]. A reluctance network-

based model for the PM machine is presented in [35]. In this model, all the major nonlinearities, such 

as the slotting effect, core saturation, and partial demagnetization, are taken into account. An 
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analytical model using a direct solution of Maxwell equations-based method is proposed in [38]. In 

this method, PM is divided into different sections and the air-gap potential equation for each section 

is solved individually and at the end, and the summation of all sections is obtained to calculate the 

potential for the whole magnet. In order to consider the partial demagnetization in this method, some 

parts of PM are replaced by air. A system identification technique based on symbolic data for PMSM 

is proposed in [39]. The time series data of the motor, such as stator voltages and currents, obtained 

from priori tests, are used to train the algorithm for fault modeling. In [40], the dq-axis dynamic model 

of PMSM assisted by estimated parameters using FEM is presented. In short, different kinds of 

simplified models of the machine with various kinds of assumptions are possible. 

3. Fault Detection and Identification in PMSM 

Machine health monitoring and fault diagnosis have a long history. With the dramatic increase 

in the utilization of PM type machines in various applications, fault diagnosis has gained more 

attention. Generally, various inputs, outputs, and other types of signals in machines and/or control 

drive are used as sensors to monitor and diagnose the faults. Such signals are analyzed using different 

signal processing approaches and extract specific information (fault signatures) that can be used to 

detect and identify the faults in the machine. In most of the fault diagnosis processes, initially, the 

data of the healthy machine is obtained and stored in a lookup table (LUT) or based on the healthy 

machine data, some threshold is defined for certain parameters and during the operation, the 

parameter is monitored and if there is some variation, the fault alarm is raised. Figure 4 summarizes 

different types of faults, sensor signals, signal processing techniques, and fault detection methods. It 

is desirable that the algorithm used for fault diagnosis should be simple, robust, accurate, and cost-

effective. In addition, it should be capable of calculating the fault severity and identifying the fault 

location with a low computational burden. Condition monitoring of PMSMs is necessary for 

guaranteeing a high efficiency and reliability of the machine. In this section, the recent trends of the 

fault detection and identification of ITSF and the IDF are explained and compared in detail. 

 

Figure 4. Block diagram of the various faults in the motor, signal used as the sensor, signal processing 

techniques, and the fault detection methods. 

3.1. Detection Techniques of Inter-Turn-Short Fault 

Various approaches and fault indicators are proposed for fault diagnosis in the motor drive 

system [23–115]. In these approaches, reference and actual values of different motor/drive 

parameters, instantaneous power, torque ripple, induced voltage, estimated electric parameters, 

vibration, and the acoustic noise spectrum, are used as fault indexes. Furthermore, several 

researchers have tried to combine different fault indexes to further increase the accuracy. In addition 

to fault detection and identification, the assessment of fault severity is the next crucial step in the 

machine health analysis. The change in amplitudes of various machine variables/fault indexes under 

any fault condition can be utilized to obtain the fault severity using advanced processing techniques. 

The fault severity analysis has not been studied in detailed and there is good potential for research 

on this topic. A detailed literature review on the ITSF detection methods is presented in this 
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subsection. The detection methods are categorized into five groups based on the fault indexes shown 

in Figure 5. 

 

Figure 5. Summary of different fault index categories and their subcategories for ITSF. 

3.1.1. Stator Current Analysis Based Detection Techniques 

Machine current signature analysis (MCSA) has gained much popularity in the fault diagnosis 

field and is widely used by several researchers to monitor the motor condition during operation. The 

impacts of ITSF on stator-current-sequences components are investigated in various studies, such as 

[23,41,42]. These components are used to detect the ITSF by using different fault patterns in transient 

and steady state conditions. In MCSA analysis, numerous signal processing techniques, for instance, 

Hilber-Huang (HHT) [43], wavelet transform (WT) [44], and most commonly, fast Fourier transform 

(FFT) [45], are used to study the impact of the ITSF on the motor phase currents. Nowadays, FFT has 

become a commercial tool for fault detection in electrical motors, especially in a stationary operating 

condition. The main limitation of FFT is its restriction towards the applications in a non-stationary 

condition, i.e., time invariant signals. In [46], an algorithm is proposed to extract the faulty features 

out of the stator current waveform under a transient condition. In this method, the stator current 

waveform is divided into two parts as the first harmonic or fundamental component and the 

remaining harmonics caused by the fault and other disturbance. Unique features are extracted from 

these two parts of stator components and used for the detection of different types of faults. In [47], 

the effect of ITSF on the stator current and the developed torque is discussed. The harmonics pattern 

in the stator current due to ITSF is presented in the following form: 

sITSF f
p

k
nf )

12
(


  (2) 

where n = 1, 3, 5..., k is an integer and p is the rotor pole pair. In addition, the WT is used to analyze 

the characteristic of stator current under ITSF. Zhang et al. investigated stator current harmonics 

under ITSF and showed that the ninth harmonic which appears in the spectrum due to ITSF does not 

vary with the increase in load under a short circuit in winding turns, while it increases with the 

propagation of a fault [48]. Therefore, this harmonic can be used for the detection of ITSF. Seung-Tae 

et al. and Urresty et al. tracked the third harmonic in the stator current and the variation in the 

amplitude of the third harmonic is used as the indicator for fault detection [49,50]. It has been 

concluded that ITSF causes the third harmonic in the stator current and its amplitude increases with 

the severity of the fault. Due to the induction of PMs, the amplitude of the third harmonic depends 

on the speed of the motor. However, the fundamental component has no such dependency on the 

speed of the machine. Consequently, the ratio of fundamental and the third harmonic under ITSF on 

a given load keep changing with the speed of the machine. This phenomenon reduces the sensitivity 

of this technique. In [41] and [51], the second order harmonic in the q-axis current of a PMSM in the 

DQ-axis frame is used as ITSF and an inverter open switch fault as the fault index; because PMSMs 



Energies 2018, 11, 3309 8 of 27 

 

with a vector control inverter are synchronous with a DQ-axis frame and are normally used to control 

a PMSM, the second order harmonic in the q-axis current can be easily monitored in this way. Other 

simple frequency analysis-based detection techniques, such as that presented by Stavrou et al. [52], 

and Ebrahimi et al.’s high-frequency harmonic (HF) comparison, have been used by [53]. Although 

MCSA- and HF-based detection techniques are non-invasive, relatively simple, and can be easily 

applied to the motor; however, these methods need an accurate predefined fault threshold level 

under all operating conditions, which can only be obtained if all the relevant data with the machine 

is available. To date, in MCSA, no fault model with a satisfying accuracy level has been proposed for 

PMSM; if an accurate fault threshold is defined, then the aforementioned methods will be extremely 

useful.  

Moreover, the overshoot and undershoot in stator current are used for fault diagnosis in [54] 

and [55]. In the case of ITSF, the stator phase currents and the current demanded by the inverter drive 

system are different due to overshoots and undershoots in speed and current regulators. This 

transient phenomenon has been suggested as the indicator of ITSF detection. This technique has been 

tested by a six-pole PM motor with fault-tolerant isolated phases. The aforementioned method can 

be extended to three phase PMSM and motors having bigger mutual inductances. This method can 

be easily implemented and does not require any extra hardware, but the inverter nonlinearities and 

the speed and current regulators may affect its accuracy. In addition, the impact of core saturation, 

and fluctuating load and speed has not been considered. 

Normally, the amplitudes of the stator phase currents are equal in the normal operation of the 

machine. In the case of ITSF, the amplitude of the faulty phase increases, which disturbs the balance 

of three-phase stator currents and this produce negative-sequence components in the current. Several 

techniques have compared the negative-sequence components with a preset threshold value to detect 

the ITSF. Arkan et al. [56] and Briz et al. [57] used negative-sequence impedance and currents through 

high-frequency injection. The amplitude of the negative-sequence current varies with the severity of 

the ITSF. This variation can be used as the indicator of the ITSF [58]. Despite its merit, this technique 

is highly sensitive to the variations in speed and load and also the faulty phase and the location of 

the fault cannot be identified. In addition, the capability of this technique in the fault separation of 

ITSF from other types of electrical faults, such as demagnetization and an eccentricity fault, and the 

robustness towards speed and load variations, should be examined. 

In order to consider the time-varying signature of ITSF in a nonstationary and dynamic 

condition, the frequency-time analysis is proposed for the diagnosis of ITSF. In this method, the stator 

current signal is decomposed into a frequency-time slot and generates signatures of the fault using 

different transformation approaches. Short-time Fourier transform (STFT), WT, Hilbert Huang 

transform (HT), Gabor spectrogram, and Cohen-class quadratic distributions are the most commonly 

used methods for faulty machine analysis in industry applications in nonstationary conditions. STFT 

is a powerful tool, which is used to determine the sinusoidal frequency and phase components of a 

local selection of a signal as it changes with time. For extracting the fault harmonic components 

caused by ITSF, STFT is applied in [59]. It is observed that STFT is computationally more complex 

and lacks flexibility due to the fixed window-function, which is normally chosen before the operation. 

The fixed window-function cannot handle all kinds of variations in speed and load during operation. 

To overcome these issues, a different type of time-frequency distribution method WT can be applied, 

which has the ability to divide a wide band and non-stationary signals into a steady state time-

frequency domain and time domain [59–61]. This means that the low-frequency components 

concentrate over a long range of time and HF components over a short range of time [44]. It is noted 

that choosing the proper wavelet-function is a crucial step in the analysis. Additionally, the WT-based 

methods cannot accept the transients of the machine. Therefore, for improvement, the adaptive WT-

based approaches can be an attractive topic for further research [62–64]. HHT is another approach for 

frequency-time analysis used for extraction of the stator current in an ITSF condition [65]. This 

transformation method was proposed by Huang and it successfully overcomes many limitations of 

WT [66] and has been applied to analyze signals in the transient state [67,68]. Despite its edge over 

WT, the time-frequency patterns collected by HHT are less clear compared to WT. Moreover, HHT 



Energies 2018, 11, 3309 9 of 27 

 

can only be used for extracting narrowband signals. In [69,70], an artificial intelligence-based 

diagnosis technique is proposed. In this method, the zero-current component and zero sequence 

component are obtained by summing the instantaneous phase currents and the neural network is 

trained with an Extended Kalman filter using fault data from both the simulation and experiments. 

The performance of the simulation and experimental data is compared to see the performance of the 

algorithm. 

In the case of ITSF, the stator phase current increases, especially in the faulty phase, and this 

sudden boost in current can be used as a fault index. The stator current also increases with the 

increment in load, which decreases the speed, but the control drive adjusts the speed by increasing 

the current. However, the rate of increase in current (di/dt) due to the increase in load is smaller than 

that of the ITSF at the same operating conditions. An artificial neural network (ANN) can be used to 

determine the threshold of the magnitude and di/dt of the supply current for ITSF detection [71]. 

ANN can be trained to cover the different operating conditions of each specific machine and is able 

to update and reconfigure the detection algorithm quickly online during the operation. The selection 

of the optimized activation function is an integral part of this approach because of its effect on the 

training speeds and accuracy. Selection of the activation function versus the algorithm training speed 

can be investigated in the future. Unlike the other methods, there is no negative effect of core 

saturation on this index; however, the fault location identification is one of the limitations of the 

aforementioned method which needs to be investigated.  

3.1.2. Voltage-based Detection Techniques  

Several voltage-based techniques for the detection of ITSF have been proposed. Most of the 

voltage signature analysis-based fault detection approach depends on the different low and high 

order harmonics monitoring in stator current and voltage. However, the amplitude of these 

harmonics might be influenced by various factors, such as current feedback loops of the controller 

drive, variable load, and speed. The zero-sequence-voltage components (ZSVCs) may be used to 

detect the ITSF [72–74]. The ZSVC-based method seems attractive because it is free from the effect of 

the machine drive. Nevertheless, access to the neutral point of the motor winding is required. The 

ZSVC-based diagnostic approach is an attractive solution for fault tolerant schemes. Fault tolerant 

inverters normally utilize an additional fourth inverter leg, which is normally linked to the neutral 

point of the motor under a fault condition [75]. In [76], ZSVC has been examined in both transient 

and steady-state conditions using FFT and HHT, and it has been concluded that its first harmonic can 

be used as the ITSF indicator in a star-connected PMSM. To track this harmonic under variable speed 

and load over the entire operation region of the motor, Vold-Kalman filtering order tracking (VKF-

OT) is applied [76]. The first (V0,1) harmonic tracked using VKF-OT may be approximated as 

2

0,1 1 2 3

π π π
sin( 2 ) cos( 2 ) sin( 2 )

3 3 3

d
V k k k

dt


           (3) 

where ω is the rotating speed of the motor. It has been observed that there is a linear relationship 

between the amplitude of the first harmonic and motor speed. Therefore, in [74], this has been utilized 

to estimate the severity of ITSF using HHT. Ying Fan et al. analyzed ITSF in the multi-phase machine 

using ZSVC in [77] and the severity of ITSF was estimated by the amplitude of the zero-sequence 

current component (ZSCC). An online ITSF diagnosis method for both delta and star connected 

motors is presented in [78]. Mathematical expressions for ZSVC and ZSCC are derived and based on 

the calculated fault current. A fault index is introduced and as per claim of the author, this technique 

is not only able to detect the ITSF, but also to identify the severity of the fault and the faulty phase. 

Under ITSF, the most visible change in machine variables is the imbalance in the stator voltage and 

current. Therefore, a neutral-point voltage-based diagnosis technique is applied to different severities 

of ITSF in the motor [79]. This technique can be used to determine stator voltage phase imbalance 

caused by different types of short and open winding faults, yet the type of fault cannot be determined. 

In a motor control drive system such as vector control and direct torque control, the variation in 

reference phase voltages in the stationary reference frame (Va*, Vb*, and Vc*) and rotating reference 
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frame (Vd*, Vq*, and V0*) can also be used as a fault index. ITSF causes an imbalance in these reference 

phase voltages and the asymmetry generated by the fault can be monitored using current controllers. 

This asymmetry can be used as a fault index [51,80]. T. Noileau et al. analyzed the dq-axis reference 

voltage (Vd* and Vq*) and concluded that the amplitude of second harmonics in the Vdq* increases with 

the severity of ITSF. Therefore, this can be used as an indicator of ITSF by setting a threshold [81]. 

Likewise, continuous WT (CWT) is used to analyzed Vq* for the detection and localization of ITSF in 

a BLDC (brushless direct current) motor [82]. M. Khov et al. proposed a new online ITSF diagnosis 

method for the non-sinusoidal BEMF of a PM machine. In this method, a new set of parameters are 

estimated using a recursive least square method and then calculate the structure distance between 

the faulty model and extended park model [83,84]. Finally, in [85], a cerebellar model arithmetic 

controller is used for the fault diagnosis of a large-scale PM wind generator. Voltage signal-based 

detection techniques are similar to current signal analysis, except the signal sensing, filtering, and 

isolation methods. The fault signals are very low compared to output voltage signals, so it is 

extremely challenging to determine them perfectly on conventional analog to digital converters due 

to the noise factor.  

3.1.3. Parameter Estimation Based Detection Techniques 

The parameters of the PM motors, such as self and mutual inductance induced BEMF, and rotor 

saliency, are extremely sensitive to different unwanted variations caused by various types of faults. 

These parameters are observed during operation to diagnose the occurrence and severity of the fault 

[86]. Mostly, in these techniques, the threshold values for the parameter to be monitored are initially 

defined through FEM simulations or by experiments. A physics-based BEMF estimation method is 

applied to diagnose the ITSF in PMSM in [28]. In this approach, an open loop BEMF estimator is used 

to extract the difference between the estimated and reference BEMF and this difference is used as a 

fault indicator. A current mode tracking method considering the thermal effect of the stator current 

is used to design an induced EMF estimator. The thermal effect helps in the prediction of the winding 

resistances at different operating points and severities of ITSF. In other words, the linear average 

value of the BEMF differences normalized with the rotating velocity is proposed as the fault indicator 

and can be formulated as 

 0 0
0

( ) / ( )
t

index diff mITSF u t t d     (4) 

.. estrefdiff EMFEMFu   (5) 

The authors claimed that their proposed technique can estimate the severity and the 

identification of faulty phase instantaneously and has no limitations. However, there is one 

disadvantage of this index, which is that the estimated BEMF can be affected by several factors, such 

as dead time between the upper and lower switch of the inverter leg, inverter switching frequency, 

the voltage drops in the semiconductor switch, and the offset of the current transducer, which might 

compromise the accuracy. In [87], a diagnostic strategy for an EV drive system is formed by 

integrating online and offline ITSF detection techniques. In an online detection method, an iterative 

observer is used to estimate the negative sequence of BEMF, which can be implemented on hardware 

in different applications. Normally, the online fault detection method has a poorer performance at 

low speed, which can be balanced by using the integrated offline technique that in turn can help in 

improving the performance in the low-speed region. 

ITSF directly affects the magnetic flux distribution due to the generation of the inverse magnetic 

field in the shorted turns of the faulty phase. Therefore, a huge change in an electrical parameter such 

as the self-inductance and mutual inductance occurs. Gu used winding function theory in [88] to 

analyze the variations in self- and mutual inductances of a BLDC machine due to ITSF. In [89], the 

difference in the increased inductance curve between a healthy and faulty motor is used for ITSF 

diagnosis considering the saturation effect of the core. This method detects the type and severity of 

fault based on the variation in inductance curve. Different types of PMSMs are analyzed and a K-
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Nearest Neighbor (KNN) scheme is used to categorize the data obtained from simulation and 

experimental tests to distinguish between ITSF and an eccentricity fault, as well as to estimate the 

severity of each fault. In [90], a Volterra Kernel Identification-based technique is applied to diagnose 

the ITSF in a PM generator. In this method, the stator branch voltage and stator unbalanced current 

are analyzed to diagnose ITSF. Kim et al. compared the ITSF characteristics of interior type PM (IPM) 

and surface type PM (SPM) BLDC motors using winding function theory in [91]. A fault impedance-

based modeling for magnetic characteristic analysis is proposed for IPM type BLDC in [92]. The input 

phase current, circulating/fault current, BEMF, torque density, magnetic flux distribution, and 

performance of the machine are analyzed based on the proposed model and the input impedance is 

used as the indicator of ITSF [93]. Stator winding impedance variation in PMSM under ITSF and 

eccentricity fault is analyzed in [94]. The phase impedances are monitored at a standstill condition 

before or after the operation. It has observed that the effects of ITSF and eccentricity on impedance 

variations have different patterns and these patterns are used for the separation of both types of 

faults. A theoretical approach is used to make a dynamic model of PMSM under ITSF in [95], and [96] 

used a permeance network to study the ITSF. In these two approaches, the author attempted to 

estimate the machine parameters under a fault condition to avoid the computationally complex FEM. 

Furthermore, these approaches can be used for various ITSF locations in the slot considering leakage 

flux and winding distribution. Likewise, Vaseghi in [58] and [97] analyzed an SPM motor under ITSF 

to estimate phase resistance and inductance; a phase variable-based model using FEM for a PM 

machine is suggested for the estimation of the motor parameters with respect to the ITSF location and 

severity [98]. The parameter estimation-based detection technique has also been used for a multi-

phase PMSM in [99].  

High-frequency (HF) signal injection-based algorithms for the detection of ITSF are proposed in 

[100] and [101]. In these techniques, an HF voltage signal in orthogonal space is superimposed on the 

reference voltage and the variation in the incremental inductance of the machine is monitored. The 

variation in the motor saliency component is identified from the measured stator current and this 

estimated saliency is used as the fault index for ITSF. Likewise in [102], a pulsating-type voltage 

signal is superimposed on the d-axis of an IPM machine. In this method, a pulse voltage is injected 

on the d-axis and the induced current ripple is used to monitor the change in d-axis inductance under 

ITSF. This method is not affected by saliency harmonics and is valid under both normal operation 

and standstill conditions. A similar approach using indirect flux estimation and online reactance 

measurement for PMSM can be found in [103]. Furthermore, [104] used two open-loop observers and 

Particle Swarm Optimization (PSO) to estimate the q-axis inductance and current of faulty phase. A 

feedforward neural network-based method is applied to diagnose a fault in the low power hub motor 

in [105]. The aforementioned diagnosis trends show that under ITSF, the electrical parameters such 

as BEMF, resistance, and inductance variation, provide signatures of the fault presence in the system. 

The main edge of the parameter variation-based diagnosis method is its easy implementation and 

there is mostly no need for extra hardware. With a similar hurdle like the MCSA approach, the 

discernment of ITSF and other types of fault is possible due to similar fault indicators. For example, 

in an IDF condition, we get similar indicators on the BEMF for both ITSF and IDF. Thus, further 

analysis is required to discover the forthcoming fault indicators. 

3.1.4. Search Coil Based Detection Techniques 

Search coil and flux sensor-based diagnosis is a very reliable method for the detection of ITSF. 

By monitoring the magnetic flux, the detection and location of ITSF can be easily identified. Dealing 

with winding configuration dependency and fault type discernment is also relatively easier using a 

search coil. However, this method needs hardware-based modification in the machine, and it needs 

to install additional coils, which increase the difficulty of motor design. In radial flux machines, ITSF 

causes asymmetry in magnetic flux distribution and leakage in axial flux. In order to measure the 

variation in this leakage flux, four search coils are employed [106]. Generally, there is an ample 

amount of axial leakage flux so that the search coils are mounted externally to the motor frame. By 

analysis, the following pattern of harmonics has been introduced for the detection of ITSF:  
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where B represents the special harmonics. As the ITSF disrupts the symmetry of the flux, in the end, 

the winding region (due to a reverse magnetic field caused by shorted turns), the location of ITSF is 

found out through measuring the localized magnetic field at the end winding region. A search coil is 

not expensive and can be easily applied to different types of motors. Furthermore, for measurement 

of the proposed harmonics, a simple electronic circuit can be used. However, this method cannot be 

used in nonstationary speeds and load conditions. In [107], a search coil-based ITSF detection 

algorithm is proposed for BLDC machines. In this method, an additional detection coil is wound on 

motor teeth and the terminal voltage across that coil is monitored. Chai et al. presented a comparison 

of ITSF for two-phase and three-phase machines using a search coil in [108]. In [109], various faults 

using a search coil are analyzed, including ITSF. Optimizing the location of the search coil, its 

number, and the adequate parameters for investigation for the severity of the fault can be a future 

research topic. 

3.1.5. Vibration and Acoustic Noise-Based Detection Techniques 

Vibration analysis is the better choice for mechanical failures and can be used for electrical 

failures as well due to additional fault-related torque ripples [110]. However, it is very sensitive to 

external vibrations and environmental disturbance, which can considerably alter the accuracy of the 

fault diagnosis process [111]. Both mechanical power output and vibration-related diagnosis 

techniques need additional sensors, which further increases the fault diagnosis implementation cost. 

As discussed in the earlier subsection, ITSF disturbs the symmetry of the machine due to reverse 

magnetic flux, which results in vibrations and acoustic noise. If the severity of the ITSF is high, then 

this noise can be audible. Some studies used the specific spectrum of vibration and acoustic noise as 

the indicators of faults. However, this method is relatively less common due to its cost effect and 

accuracy. In [112], the mechanical oscillation due to ITSF and an open phase fault is analyzed. In this 

method, two vibration (piezoelectric) sensors are placed on the external body of stators to monitor 

the mechanical oscillations due to ITSF and open phase faults. These faults result in some additional 

vibration components on the frequency spectrum of mechanical vibration, which are considered as 

fault signatures and used for fault detection. Likewise, [113] also used the vibration spectrum to 

detect the IDF and ITSF fault. A spectrum of mechanical power for ITSF detection is presented in 

[114]. According to this analysis of the machine, parameters will eventually be affected due to ITSF, 

irrespective of controller type.  

Vibro-Acoustic fault diagnosis for a hybrid electric vehicle is presented in [115]. The vibration 

and acoustic noise spectrums are collectively analyzed and this data is then applied to the neural 

network to train the algorithm. Eighteen different components are extracted from each spectrum and 

those features are used as fault indicators. 

3.2.Detection Techniques of PM Irreversible Demagnetization Fault (IDF) 

Several methods for the IDF have been proposed on the basis of different fault indicators. In this 

section, the most common and recent trends of irreversible demagnetization fault detection and 

identification in PM machines in steady state/stationary operation and dynamic/nonstationary 

operation are summarized based on their sensor signal and/or signal processing approach. Stator 

current, voltage, parameter estimation, magnetic signals, and torque ripple-based fault indicators are 

discussed one by one. Figure 6 shows the summary of all categories of fault detection technique to be 

discussed in this subsection. The basic idea of each index, implementation method, strength, and 

weakness of each method are discussed in detail.  
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Figure 6. Summary of different fault index categories and their subcategories for IDF. 

3.2.1. Stator Current Based Detection Techniques 

Almost every fault disturbs the symmetry of magnetic flux in the PMSM, which results in torque 

and speed variations in the motor. These variations are reflected in the stator current and the health 

of the motor can be easily determined by studying the so-called MCSA during operation or offline at 

standstill. As discussed in the previous subsection, MCSA does not need any extra sensors or 

hardware and can be easily implemented on modern microcontrollers. IDF causes these harmonic 

components and the high severity of a fault increases the magnitude of these harmonics. Therefore, 

monitoring the magnitude of these harmonics is the proper criterion for fault detection [13,116,117]. 

Generally, FFT is applied to analyze these harmonics and for the detection of IDF. The fractional 

harmonic pattern due to IDF and its amplitude can be written in the following form: 
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where fIDF, fe, Vslot, and KIDF are the demagnetization frequency, fundamental frequency, BEMF 

induced in a single slot, and demagnetization severity, respectively. Based on stator current 

harmonics, some studies on IDF detection for PMSM and BLDC motors have been suggested in [117] 

and [116]. In these methods, the harmonic pattern given in Equation (7), and its amplitudes given in 

Equation (8), in the stator current caused by the IDF are monitored and used as fault indicators. This 

approach is very appropriate in stationary conditions, but not applicable to a small load, fluctuating 

load, and speed. In addition, those harmonic components that appear for a short interval of time 

might be missed by FFT in frequency spectrum analysis. Unlike partial demagnetization, uniform 

demagnetization does not cause any asymmetry in the machine, and hence, no additional harmonics 

appear in the stator current. In addition, such harmonics can be caused due to some other reason, 

such as a fluctuating load and static eccentricity fault. Despite that, according to [118], even though 

both static eccentricity and partial demagnetization faults cause similar harmonic in the frequency 

spectrum, the difference in the appearance of these harmonics and dynamic behavior in two different 

types of faults can be used for distinguishing the partial demagnetization and static eccentricity. 

Unlike the partial demagnetization, in static eccentricity, the inductance profile varies due to the non-

uniform air-gap. However, practically due to inherent manufacturing defects in PMs, these 

harmonics may appear, which makes this method difficult to implement. Moreover, in some winding 

configuration of the motor, in the faulty machine, the multiples of the third harmonic in mechanical 

frequency may cancel out. Therefore, for reliable fault diagnosis, it should be taken into account [119]. 

In the case of concentrated wound PMSM, the harmonics due to a fault in induced voltage appear in 
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the individual coil, but the combined effect of whole windings cancel each other out and the net effect 

is zero. Therefore, similar to uniform demagnetization, in concentrated wound PMSM, the fault 

harmonics in induced voltage will not appear. In [73], the effect of IDF severity upon the zero 

sequence component of the stator current has been studied.  

Advanced signal processing techniques can be applied to overcome the reliability issue of MSCA 

in transient and nonstationary conditions [120]. Similar to ITSF, in the STFT, WT and HHT can be 

applied to diagnose IDF. In [121], using STFT, the signal is divided into various parts using a fixed 

window. The selection of the appropriate type and size of window is crucial in this method and 

should be selected according to application and frequency components, which are normally 

unknown at the start of the analysis. In addition, in the selection of the window, the resolution of 

time and frequency is compromised [122]. Normally, this technique is suitable for steady-state and 

stationary conditions. On the other hand, WT is a multi-resolution signal processing technique and 

it can overcome this limitation of STFT. In [123], the current spectrum of a PMSM is analyzed and 

CWT and the discrete wavelet transform (DWT) are applied for the detection of IDF. Despite its 

merits, WT also needs to determine the parameters, including wavelet type. In [40], CWT is applied 

to the starting stator current of PMSM to diagnose IDF in EVs. Furthermore, another time-frequency 

distribution technique for monitoring harmonic components is based on quadratic distribution. 

Unlike the linear distribution method, which divides the signals based on its initial parts, this 

technique divides the signals based on energy distribution [124]. The most appropriate method of 

this class is Wigner-Ville transform (WVT) [121]. This method has a high resolution compared to 

earlier methods. HHT is also a competitive candidate in the nonstationary time-frequency signal 

analysis, but the drawback of this method is that it can only be applied to the sinusoidal signals. 

However, most nonstationary signals are multi-frequency components. To remove this hurdle, HHT 

uses empirical mode decomposition (EMD) to divide the signal in the time-domain into a restricted 

known number of periodic functions, which is known as intrinsic mode function (IMF) using the 

sifting process, in which HHT is applicable. In [43] and [123], HHT is applied to detect the IDF in the 

PMSM under variable speed. The IMF obtained EMD can have a particular physical concept, which 

helps to analyze more transient and time-varying signals. 

3.2.2. Voltage-Based Detection Techniques 

The reduction in magnetic flux due to demagnetization has an extremely large impact on motor 

BEMF and can be a fault indicator. The BEMF of the motor can be measured in either a direct or an 

indirect way. In a direct way, it can be measured in a generating mode of the machine across the open 

circuit terminals. Therefore, this method based on direct measurement can only be used in an offline 

condition [125,126]. In [127], several methods, including BEMF-based methods, are used to diagnose 

IDF. In order to measure the BEMF in an online state, some indirect analytical model-based strategies 

are suggested. In this side, the inverse transformation method [36] and spatial harmonic-based 

methods [128,129] are used. Like other model-based techniques, the proposed technique is also 

sensitive to parameter variations and operating temperature, which can reduce the accuracy and 

reliability of the algorithm.  

The synchronously rotating harmonics in the air-gap consist of all odd harmonics, among which 

the most effective harmonic is the third harmonic, which generates the zero sequence voltage in phase 

voltage [6]. Thus, instead of BEMF, the triplen harmonic can be tracked in terms of ZSVC. If the 

neutral point of the PMSM is accessible, then the zero sequence component can be easily extracted 

and analyzed for fault diagnosis. There are three different methods for measuring the neutral point 

voltage, depending upon the availability of the motor neutral point and the distance between the 

machine and inverter. Figure 7 shows a schematic diagram of inverter-fed three phase PMSM with 

both the neutral point of PMSM and the artificial resistor network-based neutral point. The ZSVC can 

be measured across three different points: VOS (voltage between common point of the dc-link and the 

artificial common point made by resistor network), VSn (voltage between the artificial common point 

and the neutral point of the motor windings), and VOn (voltage between the dc-link and the machine 

neutral point). If the motor is far from the inverter, then the VOS can be measured using a filter [130].  
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Figure 7. Equivalent circuit of inverter-fed three-phase PMSM with resistor network-based neutral 

point. 

The IDF may cause a different number of harmonics in the BEMF and phase currents depending 

on the winding topology. But it has been observed that no matter what the winding topology is, the 

BEMF of a PMSM with IDF will always reduce, and consequently, the neutral point voltage will also 

decrease. Thus, this phenomenon can be used to measure the severity of the IDF. In [131], the 

following assumption is made. First, the rotor of a healthy surface type PMSM is supposed to have n 

number of identical magnets with the same remanence Br. Second, it is assumed that the BEMF 

voltage in a phase winding ephase is proportional to the number of magnets and also to the angular 

speed of the rotor. If ntotal represents the total number of PMs in a PMSM and neffective the number of 

effective PMs, then in the case of IDF, neffective < ntotal and BEMF under the fault is estimated as follows: 
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where k is the severity index of demagnetization which can be measured using the ZSVC technique 

given in [131]. 
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where Von,f and Von,h are ZSVC for the faulty and healthy motor, respectively. The drawbacks of this 

method are that it cannot be implemented without accessing the neutral point of the motor. However, 

there are other methods, such as the fault tolerant machines [132,133], sensorless control techniques 

for PMSM [6], and sensorless control of BLDC [130], that also require the neutral point. Therefore, 

access to the neutral point is generally justified.  

3.2.3. Parameter Estimation Based Detection Techniques 

In PM-type machines, the variation of parameters due to core saturation and operating 

temperature are considered their weak side. However, in health management of the machine, this 

variation can be used for the detection and measurement of the severity of the fault. The signal 

injection-based parameter estimation technique not only solves the problems of temperature 

sensitivity and saturation, but also enables us to estimate fault severity. This technique can be used 

in all types of motors operated by the inverter; in this technique, a controlled signal with an adjustable 

amplitude and frequency is injected in the motor and the variation of the impedance pattern is 

observed [134]. The signal injection to the faulty machine results in some additional pattern in other 

signals of the motor, which ensures the presence of a demagnetization fault. In [31], a pulsating field 

signal is injected at different angular positions, and variation in current peaks caused by a change in 

the degree of saturation due to IDF is monitored at a standstill condition. Variation in d-axis 

inductance due to IDF by applying a direct-current and alternating current simultaneously is 

presented in [135]. Furthermore, the stator reflected PM high-frequency resistance variations by 

applying a high frequency pulsating sinusoidal voltage signal-based approach is presented in [136]. 
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Differential inductance variation-based fault IDF diagnosis is considered an accurate method in 

a standstill condition. This inductance can be obtained by calculating the slope of the λ-I curve at any 

point. According to [135], this inductance can be written in the following form: 

ddd didL /  (11) 

An AC signal is injected in a d-axis direction to saturate the machine and the reactance is then 

calculated from the fundamental component of the voltage and the variations occurring in the d-axis 

inductance can be used as the fault index. It requires a high magnitude of the direct current field to 

saturate the core under an IDF condition. Figure 8 shows the variation in Ld vs Id in healthy, IDF, and 

eccentricity faults. The difference between both the curves of the fault is compared to the healthy case 

(ΔLd); its peaks are used to separate the faults. This method has several advantages, such as it does 

not require any extra hardware, it is easy to implement, it has a high sensitivity, independent from 

operating conditions, and it has a low cost, independent from other type of rotor faults, and can 

possibly detect both types of partial and uniform demagnetization faults. Despite this, this method 

cannot monitor the PM quality continuously and therefore, this technique can only be applied to the 

system which stops and starts frequently. 

 

Figure 8. Variation in d-axis differential inductance Ld and ΔLd versus Id curves with PM 

demagnetization and eccentricity fault. 

3.2.4. Magnetic Signal Based Detection Techniques 

Investigation of asymmetry in magnetic flux distribution caused by partial or uniform 

demagnetization is the primary step in the IDF diagnosis process. Generally, the precise 

measurement of magnetic flux is only possible by direct measurement using a Gaussmeter [31] and/or 

Hall Effect sensor [39,137]. However, the direct measurement approach is unable to measure the 

magnetic flux online and in many cases, the machine needs to be dismantled, which might not be 

possible in many applications. Moreover, these techniques cannot be applied to IPM-type machines. 

To overcome these issues, some indirect motor model-based techniques are proposed. In these 

techniques, parameters of the machine, the output, and other signals such as magnetization factors 

[138], flux linkage of the machine [39,117,139], torque constant [116], and stator teeth flux in multi-

phase machines [140], are estimated. In order to estimate these parameters, the measured voltage and 

current are used as input variables. For example, the BEMF of the BLDC machine is estimated in the 

following way: 

dcsm IRVe 2ˆ   (12) 

where Vm is the mean value of the input supply voltage, Rs is the stator resistance, and Idc is the dc link 

current. The torque constant of the BLDC motor can be obtained by dividing Equation (12) by the 

rotational speed of the rotor.  

rdcsmt IRVK /)2(ˆ   (13) 
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The estimated values of the torque constant are used to find the quality of PM [116]. Although 

these techniques have no dependency on other parameters of the machine, the core saturation and 

effect of operating temperature on stator inductance and winding resistance can still affect the 

accuracy of the algorithm. In addition, low severities of fault might not be detected using this method. 

Search coil-based measurement is another direct and online flux measurement method. In this 

method, an additional coil is inserted in the specific location according to fault type. In [109], inserting 

a search coil on each tooth is suggested. Search coil measures the armature magnetic flux and the flux 

generated by PM in the linear unsaturated region. In order to design a reliable and noise-free 

detection algorithm, it is necessary to measure the main component of the induced voltage in the 

winding using a linear time-invariant filter and then the components due to PM flux and armature 

flux are decoupled. As the voltage of the search coil is measured for a short period of time, it will not 

be affected by the transients of the motor. The component of magnetic flux measured by 12 search 

coils in PMSM under healthy and IDF conditions at a specific instant is given in Figure 9. 

 
(a) (b) 

Figure 9. Magnetic field component. (a) Uniform demagnetization; (b) Partial demagnetization. 

The reduction in magnetic flux due to partial and uniform demagnetization faults can be 

measured accurately using this method because the speed and load transients have no effect on the 

fault detection algorithm and there is no need to use complex and advanced transformation or pattern 

recognition methods. In addition, the severity of the fault can also be determined, and these methods 

can be applied to other types of faults, such as a static or dynamic eccentricity fault and ITSF. 

3.2.5. Vibration and Acoustic Noise-Based Detection Techniques 

Vibration analysis in PM motor health monitoring is a non-intrusive technique which is widely 

used for fault detection and similar to signal analysis, several commercial applications and industries 

utilize it. The machine current and voltage signal analysis methods are sensitive to electrical failures 

and vibration analysis is sensitive to mechanical failures. Partial demagnetization causes asymmetric 

and unbalanced radial forces, which result in huge vibration and audible noise. To analyze the 

pattern of this vibration, a piezoelectric vibration sensor needs to be installed on the motor stator. In 

case of severe noise, acoustic noise-based analysis can be utilized as an additional approach. In [141], 

the displacement of the shaft due to a partial demagnetization fault is analyzed. The change in shaft 

trajectory severely deteriorates the machine performance and leads to premature aging or IDF. In 

[142], a multi physic analysis based on the acoustic behavior of the PMSM under IDF and an 

eccentricity fault is presented. Different force harmonics in the stator teeth are analyzed and it is 

observed that under IDF, the amplitude of these harmonics is considerably high compared to a 

healthy machine, so these harmonics can be monitored to diagnose the IDF. 
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3.2.6. Torque Ripple Based Detection Techniques 

The effect of a demagnetization fault is directly reflected in the torque profile of the machine. 

The direct analysis of the torque requires an expensive torque sensor, which is mostly not present in 

motor control drive systems. The indirect approaches like signal analysis are sometimes used to study 

the fault harmonic components in the torque profile. The electromagnetic torque of PMSM is 

developed by the interaction between the stator winding field and the rotor PM field in the air-gap. 

IDF distorts the distribution of magnetic flux density in the air-gap, which results in a considerable 

increase in the torque ripples and increases the amplitude of slot harmonics. These harmonics like 

other frequency-based methods are highly sensitive to the degree of fault and motor speed and load. 

Therefore, in [143], the time domain characteristic of torque is used to extract the distortion caused 

by IDF. The time delay embedding-based technique is used here, which is capable of detecting the 

distortion component in the time series data of the torque. In this method, the torque profile is 

transformed and reconstructed for the possible distortion caused by a fault. 

4. Summary and Discussion 

After a detailed literature review of ITSF and IDF diagnosis, one thing is evident, which is that 

researchers have tried to extract every indication caused by the fault in both the time and frequency 

domain and analyzed it in detail using various signal processing techniques to diagnose faults in the 

machine. Tables 1 and 2 show the summary and comparison of the aforementioned techniques for 

ITSF and IDF, respectively. The comparison is carried out based on the strengths and weaknesses of 

each method, such as the ability to detect the fault in an online or offline condition, detecting uniform 

and/or partial demagnetization, estimating the severity of the fault, invasiveness, sensitivity to other 

faults or other disturbances in the system, the capability of detecting more than one fault, and the 

separation of them. In Tables 1 and 2, VH stands for “very high”, H for “high”, M for “medium”, L 

for “low”, ABOFN for “affected by other faults and noise”, Inv “invasive”, PD for “partial 

demagnetization”, UD for “uniform demagnetization”, and Ref. for “reference”. 

MCSA produced the greatest number of indexes and was the easiest method to implement, but 

faces many difficulties in terms of accuracy and reliability. It can be a good choice for specific 

applications with known parameters and stationary conditions. Voltage-based methods, especially 

the ZSVC, are a better option compared to MCSA in terms of sensitivity and reliability. Also, they are 

less affected by other faults and the variation in speed and load, relatively. However, they can only 

be applied to a machine with access to a neutral point. Flux measurement-based methods are more 

practical methods, especially for IDF, because they can diagnose both uniform and partial 

magnetization and represent a reliable method for both ITSF and IDF. The search coil-based method 

is the most reliable technique, and with detection of the fault, it can find the location of fault as well 

and it has no dependency on the machine winding configuration.  

In transient and nonstationary conditions, fault diagnosis without using advanced time-

frequency analysis is almost impossible. However, the main problem in the time-frequency analysis 

is the availability of accurate data and the computational burden of the algorithm. Due to the adaptive 

nature of the HHT, it does not require any preset data before analysis, but it has a relatively low 

resolution. HHT is the best option where the high speed of detection is not required and spreading 

of the fault is not an issue. HHT is the best candidate for IDF detection. On the other hand, in the case 

of ITSF, earliest detection is considered the best because ITSF spreads very fast. The computational 

burden of DWT is relatively lower and it hence has a faster speed. Therefore, DWT can be applied 

for the detection of ITSF. The selection of time-frequency analysis technique highly depends upon 

the conditions and applications. 
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Table 1. Strengths and weaknesses of the fault diagnosis techniques in PM-type machines under 

ITSF. 

Index  
Machine 

Type  
Scheme  Ref.  

Fault 

Identification 

Online/ 

Offline 

Invasive/ 

Noninvasive 
Sensitivity 

Fault 

Severity 
ABOFN 

Stator 

Current  

BLDC 

PMSM 

MCSA [45] No  On  Non L  Might be No  

Neg. [56,57] No  On Inv M  Yes  No  

sequence  [56] No  On Non  H  No  Yes 

Overshoot [71] No  On Non VH No  No  

SM 

PMSM 

di/dt 

(ANN) 
[59] No  Off Non M  No  No  

STFT [63] No  On Non H  No  No   

WT 

HHT 
[65,66] No  On Non H  No  No  

Voltage/ 

BEMF 

PMSM 

ZSVC [76] No  On  Inv M  Yes  yes 

Asymmetry  [53] No  On  Non  H  No  Yes  

Park Vector  [83,84] No  On  Non  H  No Yes  

BLDC 

SPMSM 

WT [84] No  On  Non  M  No  Yes  

VKF-OT [76] Yes  On  Non  H  No  yes 

BEMF [30] No  On  Inv M  Yes  yes 

BLDC WFT [88] No  On  Non  H  No  Yes  

Parameters 

Estimation  

PMSM 

BLDC 

Inductance  [89] yes on Non  M  yes No  

Resistance [58] No  On  Non  H  No  Yes  

Impedance  [92] yes On  Non L  Yes  Yes  

Magnetic 

Flux 

BLDC 
Search coil  [107] No  On  Inv H  No  No  

 [108] No  On  Inv H  No  No  

SM 
Leakage 

flux  
[106] yes On  Inv VH No  No  

Mechanical 

outputs 
PMSM 

Vibrations  [112] yes On  Inv L  No  Yes  

Acoustic 

Noise 
[115] yes On  Inv M  No  No  

Table 2. Strengths and weaknesses of fault diagnosis techniques in the PM machine under IDF. 

Index  
Machine 

Type  
Scheme  Ref.  PD UD 

Inv/ 

Noninv 
Sensitivity 

On/ 

Offline  
ABOFN 

Fault 

Severity  

Multi 

Fault  

Stator 

Current  

PMSM 

BLDC 

MCSA [116] Yes  No  Non  VH On  Yes  Yes  Yes  

WT [123] Yes  No  Non  H On  No   No  No  

HHT [45] Yes  No  Non  H On  No   No  No  

Voltage 

/BEMF 

BL`DC 

PMSM 

BLDC 

ZSVC [131] Yes  No  Inv H  On  Yes  Yes  No  

Direct 

BEMF  
[126] Yes  No  Non  M  Off Yes  Yes  No  

Indirect 

BEMF 
[128] Yes  No Non  L  On  Yes  No  No  

Parameters 

Estimation  

BLDC 

PMSM 

Signal 

injection 
[31] Yes  Yes  Inv H Off  No   No  No  

Ld variation  [135]   Inv VH Off  No  Yes  Yes  

Impedance  [132]   Inv H Off  Yes   No  

Resistance  [136]   Inv H  Off  Yes  Yes  No  

Magnetic 

Signals 

BLDC 

PMSM 

Hall sensor  [137] Yes  Yes  Inv VH On  Yes  No  No  

Gaussmeter [31] Yes  Yes  Inv H  Off  No  No   No  

Search coil  [109] Yes  Yes  Inv H On  No  Yes  Yes  

Mechanical 

outputs 
PMSM 

Torque 

ripple  
[143] Yes  Yes  Non  H On  Yes  No  No  

Acoustic 

Noise 
[142] Yes  No  Inv VH On  Yes  No  Yes   

5. Suggestion for Future Work 

An immense amount of work has already been done in the area of fault diagnosis. However, the 

reliability and accuracy still need to be addressed. For instance, the popular MCSA approach needs 

further study to explore the integral fault signatures or combine the existing indexes to ensure 

robustness of the diagnostic scheme. In addition, the fault location, machine structure, and the effect 

of the control drive on the fault harmonic components in open and closed-loop control should also 

be considered to further enhance the reliability at different operating conditions. Moreover, 

estimating the fault severity, the post-fault life of the machine, mitigation of fault, and ultimately fault 

tolerant control can be a future research area. 

Most of the proposed algorithms are for a medium and high severity of demagnetization, and 

except for BEMF-based techniques, the rest of the techniques are almost unable to detect small 
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demagnetization, so this side also needs attention. Moreover, the diagnostic mechanism of the multi-

phase machine is also a less studied research area.  

6. Conclusions 

A detailed review of ITSF and IDF diagnosis for PMSM is presented in this paper. The main 

challenges in ITSF are its early detection to prevent it from spreading, identifying the fault location, 

and estimating the fault severity. In IDF, discriminating the partial and uniform demagnetization, 

discriminating the fault signatures from other faults, such as an eccentricity fault, and detecting IDF 

in dynamic or nonstationary conditions, are challenges.  

To meet these challenges and achieve a high reliability in machine health analysis, efficient 

techniques must be applied. Motor current and voltage analysis are the most popular techniques due 

to noninvasiveness, less computational burden, and easy implementation without any extra 

hardware. However, these methods face many robustness issues; other techniques such as signal 

injection, search coil, and ZSVC-based methods show more robustness. Generally, a method based 

on BEMF and flux measurement is more accurate and reliable.  

Dealing with faults in transient and nonstationary conditions, the time-frequency analysis of the 

fault signatures is mandatory. STFT, WT, and HHT are common techniques for time-frequency 

analysis in machine fault diagnosis. The required resolution, computational complexity, 

linearity/nonlinearity of the problem, and intended frequency basis are different important aspects 

of these techniques for various applications. Furthermore, the fault signatures are normally highly 

dependent on the location and operating condition of the machine and using one type of signature 

may not provide accuracy at all operating conditions. Therefore, further research is required to 

develop techniques based on multiple fault indexes to ensure accuracy and reliability at every 

operating point.  
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