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Abstract: Long-term electricity load forecasting plays a vital role for utilities and planners in terms of
grid development and expansion planning. An overestimate of long-term electricity load will result in
substantial wasted investment on the construction of excess power facilities, while an underestimate
of the future load will result in insufficient generation and inadequate demand. As a first of its
kind, this research proposes the use of a multiplicative error model (MEM) in forecasting electricity
load for the long-term horizon. MEM originates from the structure of autoregressive conditional
heteroscedasticity (ARCH) model where conditional variance is dynamically parameterized and it
multiplicatively interacts with an innovation term of time-series. Historical load data, as accessed
from a United States (U.S.) regional transmission operator, and recession data, accessed from the
National Bureau of Economic Research, are used in this study. The superiority of considering volatility
is proven by out-of-sample forecast results as well as directional accuracy during the great economic
recession of 2008. Historical volatility is used to account for implied volatility. To incorporate future
volatility, backtesting of MEM is performed. Two performance indicators used to assess the proposed
model are: (i) loss functions in terms of mean absolute percentage error and mean squared error (for
both in-sample model fit and out-of-sample forecasts) and (ii) directional accuracy.

Keywords: load forecast; long-term horizon; multiplicative error model; time-series
forecasting; volatility

1. Introduction

Load forecasting in the long-term horizon is important for electric utilities and planners in terms
of grid expansion planning, future investments, and revenue analysis for long-term decision-making
process. Moreover, it plays a crucial role in the economic and social development of a country (or
specific region in case of some utilities). A more realistic range of future generation scenarios can
be modeled when the electricity consumption is increasing at a faster rate in this globalizing world.
For instance, annual load forecasting is favored among utilities and is one of the common long-term
load forecasting problems. It can alleviate the disparity between demand and generation, thereby
maintaining the required level of security of supply. Choosing the right forecast horizon for long-term
varies from one utility to another based on their policies. Usually a monthly or yearly time-step for
one to ten years ahead in long-term load forecasting is helpful in inter-tie tariff setting and long-term
grid investment return problems.

It is often difficult to accurately forecast load over such a long planning horizon and it is due to
the stochastic nature of demand growth and the influential parameters. Most of these parameters
are, by nature, unpredictable and uncontrollable. Some examples are socio-economic development,
the occurrence of special events, and/or climatic conditions, and regulatory requirements.
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Any considerable deviation in forecast results in over expenditure on generation/transmission
infrastructure or energy resource waste. Hence, in order to improve the forecast accuracy in the
long-term horizon, attention is needed either in terms of improvement of existing employed techniques
or development of a new technique to consider all the aforementioned parameters. Forecast accuracy
influences the decision making of generation and transmission companies on their plans to address
the future load growth and market volatilities. Based on the forecast, electric utilities coordinate
their resources to meet the actual demand using a cost-effective plan. As we look into the future, in
the energy consumption scenario, it is expected that electricity will play a major role as we move
towards the declined use of de-carbonized heat pumps in the residential sector and the addition
of electric vehicles (EVs) and other hybrid vehicles in the transportation sector. Such a transition
will have an significant impact on overall load profile. To visualize, Figure 1 depicts the future
complexity in the context of load forecast, various players in action and the inter-dependency that
needs attention as well. Stochasticity in future scenarios, such as economy (GDP: Gross Domestic
Product), demographics (change in energy usage of end-users), energy generation mix (renewable
energy generation depends on forecasting of a resource like wind, solar irradiation), and technology
advancement, influences the forecast accuracy to a large extent. For utilities, the evolution of prosumer
complicates the forecasting methodology. A prosumer (combination of words producer and consumer)
is a consumer that has its own production facility (e.g., rooftop solar panel). Because of decentralized
power generation, prosumers have evolved recently and played an active role in electricity generation
and the provision of grid services. Not to be forgotten is the spatial complexity as the area expands
from the distribution system operator (DSO) level to multi-transmission system operator (TSO) level.
Decisions about grid development are mostly based on the accuracy of predictions of both the scale
and occurring geographical locations of energy consumption in the long-term horizon. Any change
in the modification of electric consumption patterns is compensated by financial incentives and/or
electricity tariffs. In such cases, accurate forecasting will certainly provide support for the utility
(TSO/DSO) to estimate the amount of investment needed.
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This research sums up the need for accurate load forecasting in the long-term horizon as,

• Firstly, moving towards a greener future is accredited with development in new technology and
the integration of renewable energy into primary grid while discarding fossil fuels is becoming
important. In the Paris Agreement 2016 [1], it was agreed upon to move towards renewable
energy from the more conventional energy. Such a move is realized with an accurate and reliable
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forecast of the electrical energy demand. Despite advancements in battery technology, storing
energy for the long-term purpose is not the viable option. Thus, accurate and reliable forecasting
is required for planning the right tools.

• Secondly, considerable changes in weather factors, like temperature, rainfall, and hot/cold days.
Any change in climatic variables will have a direct impact on the demand pattern. Erratic weather
events posed due to climate change pose some serious burden on forecasters to accurately model
load growth when considering the long-term horizon.

• Thirdly, maintaining the security of supply during the energy transition. In today’s date, existing
grids are performing under stress to deliver the growing demand in the presence of variable
stochastic renewable energy sources.

• Lastly, black swan events, like the great economic recession of 2008, jolted the economic backbone
of many countries. Its effect was widespread and energy investment worldwide plunged into
tougher financing environment and weakening final demand for energy [2]. This reminds
the importance to study the financial aspects of long-term forecasting by energy forecasters in
electric utilities.

Based on the needs, the key contributions of this research can be listed as:

• Reviews recent advancement in long-term electricity load forecasting in terms of techniques and
models developed.

• Provides a comprehensive and critical evaluation of long-term electricity load forecasting while
considering historical volatility.

• Proposes the use of multiplicative error model (MEM) to model conditional mean and to forecast
aggregated zonal monthly load. In this research, we consider a forecast horizon of four years as
a solution for electric utilities and planners based on the fact that construction of offshore wind
farms takes approximately 3–4 years depending on the capacity [3].

The rest of the paper is organized, as follows: Section 2 gives a background on long-term electricity
load forecast and the need for accounting volatility, Section 3 introduces multiplicative error model,
and is followed by forecast methodology in Section 4. Section 5 analyses the forecast results based on
real data. Finally, Section 6 concludes the paper.

2. Background on Long-Term Electricity Load Forecast

Electricity load forecasting in the long-term horizon is an important part of the transformation of
electric power systems and it has appealed more and more attention from both academics and industry.
By principle, a load forecasting model aims at a mathematical representation of the relationship
between load and influential parameters. Such a model is identified with coefficients that are used
to forecast future values by extrapolating the relationship to the desired lead time. Eventually,
the accuracy of the model depends on both the selected model as well as the accuracy of the estimated
parameters. Literature study reveals that long-term load forecasting received less attention when
compared to short-term load forecasting. This is because of the complexity involved in achieving an
accurate forecast. Long-term load forecasting is based on the integration of concepts from theoretical
foundations of economic theory with knowledge on financial, statistical, probability, and applied
mathematics to make inferences about the load growth/fall and technology evolution. Reference [4]
illustrates rationally the concept of long-term load forecasting and also presents recent development
within the electric power industry. Reference [5] performed a study on past, current, and future trends
in energy forecasting while stating the trend in spatial, short-term, and long-term load forecasting,
and energy price forecasting in a lucid manner. Reference [6] proposed three methods that are suitable
for long-term forecasting as time-series approach, econometric approach, and end-use approach.
For long-term forecasting, all approaches require historical data and they are broadly categorized
into traditional (or statistical) and non-traditional (or artificial intelligence AI) based methodologies.
In recent times, the use of probabilistic methods in long-term forecasting is also reported [7,8].
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Traditional methods include regression-based model and time-series methods. Reference [9]
proposed univariate autoregressive models to forecast load with monthly time-step in Lebanon.
Multiple linear regression models were proposed in [10]. Reference [11] implemented a
knowledge-based expert system to support the choice of the most suitable load forecasting model with
practical application. However, traditional methods are criticized for their weakness of non-linear
fitting capability. In AI-based techniques, artificial neural network (ANN) is one of the most popular
models. Its application in forecasting Greek long-term energy consumption for the years ahead is
reported in [12]. Reference [13] used ANN on the Egyptian electrical network for long-term peak
load forecasting. Reference [14] reported the superiority of ANN for medium and long-term load
forecasting in terms of accuracy and robustness. Hybrids of fuzzy and ANN are reported in [15] for
forecasting Taiwan’s annual electricity load and in [16] for long-term electrical energy consumption in
India. Use of Bayesian statistics for load modeling is reported in [17] and for long-term forecasting is
reported in [18]. Other AI techniques include support vector regression models (SVR) [19,20] and SVR
with simulated annealing algorithms [21].

Use of metaheuristic methods, such as genetic programming [22], fruit-fly algorithm [23],
gravitational search algorithm [24], and particle swarm optimization (PSO) [25,26] are also reported.
Other methods include long-term forecasting based on partial least squares method [27] and complete
decomposition method [28]. A recent study includes forecasting for country-specific, such as Spain [29],
Greece [12,30], Lebanon [9], and Turkey [31–33]. More recently, reference [34] used gene expression
programming for long-term prediction of electrical energy consumption in ASEAN (Association of
Southeast Asian Nations, a regional intergovernmental organization comprising ten Southeast Asian
countries)-5 countries and projected up to 2030 according to rolling-based forecasting procedure.
The results are compared with those that were obtained from ANN, SVR, adaptive neuro-fuzzy
inference system (ANFIS), rule-based data mining algorithm, gene expression programming (GEP),
linear and quadratic models optimized by PSO, cuckoo search algorithm (CSA), and backtracking
search algorithm (BSA).

It was learned that the developed models aim at predicting accurate peak load or electrical energy
consumption while comparing with any classical model. However, one aspect that has received less
attention in long-term electricity load forecasting when the whole energy scenario is growing in terms
of complexity and dynamics is volatility. The concept of volatility is prevalent in financial markets and
it refers to the degree of erratic variations of a process over time. It is used as a criterion to study the
risk associated with a financial asset. Reference [35] showed that power markets have greater volatility
levels than other financial markets, like crude oil, natural gas, or stock prices. Literature study reveals
volatility studies on various electricity markets: Spanish, Californian, UK, and PJM (Interconnection,
a regional transmission organization (RTO) in the eastern United States that operates one of the
world’s largest competitive wholesale electricity markets) electricity markets [36], Ontario and some
of its neighboring markets [35], German market [37], Australian electricity market [38], to name a
few. Reference [39] examined and compared the volatility of 14 deregulated markets through the
“price velocity” metric. The Nordic pool was studied in [40] while considering volatility clustering,
log-normal distribution, and long-range correlations. In time-series forecasting of electrical load,
volatility is defined as a deviation from the mean, which corresponds to risk. An advantage of such an
approach is that once the time-series model is understood, it is possible to simulate the data generation
for any lead time in the future. Reference [41] explained the importance of volatility in long-term
electricity load forecast, which no work reported earlier. Extending the concept of volatility forecast to
electricity load forecast in the long-term horizon is adopted in this research.

Volatility is a fundamental issue in financial and econometrics domain, and virtually present in
all financial decision making. The concept of volatility in financial markets refers to the degree of
unpredictable fluctuations of a process over time. Volatility can be broadly classified into five major
types: price volatility, stock volatility, historical volatility, implied volatility, and market volatility [42].
In this study, historical volatility is used to account for implied volatility. In the financial market,
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historical volatility is understood as how much volatility that a stock has had over the past time-frame
(say, 12 months). If the stock price varied widely in the past 12 months, it is considered to be more
volatile and riskier. Implied volatility is understood as how much volatility the stock will have in the
future. In fact, volatility is forecastable because of a number of persistent properties: (i) it appears
in clusters, (ii) it changes over time and has unusual jumps, (iii) it does not grow to infinity and is
persistent in specific time-span, and (iv) it reacts different for an increase or decrease of the considered
entity. For instance, load forecast in the long-term horizon takes into account socio-economic factors,
like population growth and gross domestic product (GDP), along with explicit factors, like historical
load and weather data. Presence of economic factors induces volatility, or what is called as implied
volatility. In fact, implied volatility is generally treated to be the best available forecast as it has
certain characteristics that can increase the accuracy of forecast values. Likewise electricity load, future
volatility prediction is an extremely difficult task as well because the actual realization of the future
process volatility will be influenced by events that happen in the future. Thus, it is important to
develop a model that can fit the sequence of calm and turbulent periods. Studies reveal that linear
regression techniques, for example autoregressive integrated moving average (ARIMA) model, one
of the most well-known forecasting models, is inadequate in long-term forecasting task because it
suffers from the mean convergence problem. It means that ARIMA forecast converges to the mean of
the observations as the forecast horizon grows. To address the short-coming and treating volatility as
an influential parameter, the next section introduces the concept of MEM and its application to load
forecast in the long-term horizon.

3. Multiplicative Error Model for Long-Term Electricity Load Forecast

Multiplicative error model (MEM) was introduced by Engle in 2002 [43] as an adaptation of
the autoregressive conditional duration model [44] to be used for time-series that always receive
positive values. Literature study on MEM reveals its application in financial risk and volatility
forecasting [45–47]. A search about the application of MEM in electricity load forecasting reveals
no information, not even for short-term forecasting, which is common among forecasters. Hence,
the proposed model is first-of-its-kind to introduce MEM for electricity load forecasting. As the electric
load is always represented as a non-negative time-series, MEM is presumed to be a good fit to forecast.
The MEM for a non-negative time-series (yt) on [0,+∞) and considering Ft−1 as information available
for forecasting yt is written as [43]:

yt = µtεt (1)

where, the range of the disturbance εt is non-negative on [0,+∞), unit mean, and unknown constant
variance given as εt|Ft−1 ∼ D(1, ψ) for positive distribution D. µt is conditional on Ft−1 and positive,
described on a parameter vector θ as:

µt = µ(θ,Ft−1) (2)

When Ft−1 includes only historical values of the series, µt can be generalized as:

µt = δ +
p

∑
i=1

αiµt−i +
q

∑
j=1

β jyt−j (3)

where, δ is constant, term ∑
p
i=1 αiµt−i represent an inertial component, and term ∑

q
j=1 β jyt−j

represent more recent observation. Equation (3) is referred to as referenced MEM of order (p, q).
Model specifications can be modified to adapt to the needs of the load forecast. For instance, residuals
at t-th observation denoted as ϑt = yt − µt and α∗1 = α1 + β1, Equation (3) can be written as:

yt = δ + α∗1yt−1 + ϑt − α1ϑt−1 (4)
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Equation (4) represents an ARMA model with heteroskedastic errors and is the cornerstone of
this modeling approach. The procedure of finding and validating a suitable MEM for a given dataset
is discussed in the next section.

4. Forecast Methodology Considering Real Data

In order to realize a suitable long-term forecasting model, one must start with a rich historical
database, construct the model, identify the appropriate model, and finally evaluate the forecast results.
Figure 2 shows the steps to forecast load using MEM. Since MEM falls under time-series models, we
follow the Box-Jenkins methodology of building a model with certain adaptations [48]. Starting from
data preparation, the first part involves stationarity checking, data fitting, and model identification
while checking various statistical properties of the time-series. Identifying the right model, estimating
parameters, and checking the model adequacy falls under this part. In the second part, MEM is
validated for forecasting both as the in-sample model fit and out-of-sample prediction. Modeling of
MEM starts with the identification of autoregressive and moving average parameters of non-negative
time-series that has predictive power regarding the directional change, and later added by persistent
error specifications that eventually improves forecast. MEM differs from linear regression models in
the sense that the mean equation, which is a scalar factor, is multiplied with the independent and
identically distributed (i.i.d.) error term. The scalar factor evolves in a conditionally autoregressive
manner, and hence is favorable for forecasting. The assumption of i.i.d. means that the error terms
behave randomly with constant mean and variance over a considered time-horizon. However, in
reality, both the original time-series as well as error time-series are highly correlated and do not behave
as an i.i.d. process.
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4.1. Database Generation

Forecast accuracy strongly depends on the quality of available historical data. A poor history,
composed only by anomalous or average events, may polarize the analysis and affect the quality of
the forecast values. For this study, historical data of a specific load zone region under a United States
(U.S.) regional transmission operator [49] and data describing the economic recession as extracted
from National Bureau of Economic Research (NBER) [50] is considered. Hourly load data for years
1993–2016 is extracted and sampled to monthly aggregated load, as shown in Figure 3. The use of
monthly time-stamp enables in understanding the monthly energy consumption. Recession data for
years 1993–2012 is used to build the predictor. From Figure 3, it is evident that the load growth is on
a fairly positive side apart from a few incidents where a downturn in demand is observed. Such an
incident is the year span of 2006–2009, where the year 2007–2008 is identified by large variability in
demand value because of spikes and negative demand growth coincide with the great recession of
2008. The de-seasonalized data, as shown in blue color in Figure 3, help in obtaining a goodness-of-fit
measure. It is achieved by dividing the original data by the seasonal factors (12 months as it is monthly
aggregated data) to get something that looks more like a straight line.
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4.2. Stationarity and Autocorrelation Test

A visual inspection of Figure 3 suggests non-stationary time-series with a linear trend and seasonal
periodicity. Tests reveal that non-stationarity is apparent as both mean and variance increase with
time. The class of MEM requires time-series to be stationary so that its statistical (up to the second
order moment) properties do not depend on time. This is coherent with any time-series forecasting
because non-stationary time-series are erratic and unpredictable. Phillips-Perron (PP) test is used for
stationarity check [51]. For any time-series xt = axt−1 + et where et is the residual, PP test checks
for the null hypothesis (H0 : a = 0 vs. H1 : a 6= 0). The use of PP test is preferred over the widely
used Augmented Dickey-Fuller (ADF), because of its non-parametric nature. In addition to the steps
from ADF test, PP test corrects the statistics to account for autocorrelations and heteroscedasticity.
The time-series is checked for 0 lags and both the tests reject the null hypothesis with p-value of
0.001. In some cases, unit root tests cannot distinguish highly persistent stationary processes from
non-stationary processes very well and thus a modified unit root rest is preferred. A more powerful
and reliable test for small data by Ng and Perron (2001) is adopted [52] and for further reading [53] is
recommended. When compared to the PP test, the Ng and Perron test is argued to exhibit excellent
power and size performance and the accompanying code is available here [54]. The test rejects the null
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hypothesis and, thus, the time-series is differenced to obtain a stationary time-series. Next step is to
determine the presence of autoregressive or moving average terms to correct any autocorrelation that
exists in the differenced time-series.

The two tests used to check the null hypothesis (H0 : no autocorrelation vs. H1 : correlation) are
Ljung-Box Q-test (Q) and Durbin-Watson (DW) test [55]. The Q-test statistic for R residuals, L lags is
written as,

Q = R(R + 2)
L

∑
l=1

(
ρ(l)2

(R− l)

)
(5)

where, ρ(l) is the autocorrelation coefficient at lag l. The Durbin-Watson statistic (DW) is conditioned
on the order of the observations (rows) or the number of months in our study. The DW-test statistic for
n-observations is written as:

DW =
∑n

i=2(Ri − Ri−1)
2

∑n
i=1 R2

i
(6)

Presence of autocorrelation in a time-series indicates that the values of adjacent observations are
correlated. Figure 4 shows the autocorrelation function (ACF) and partial autocorrelation function
(PACF) plot giving evidence of the presence of autoregressive and moving average parameters.
The ACF plot reveals the presence of significantly large autocorrelations, particularly at every 12th
lag. The presence of autocorrelation suggests that the data is dependent and correlated and needs
modification. Table 1 displays the detailed statistics of original and differenced time-series. Taking a
look at the third and fourth moments of distribution (skewness and kurtosis), it is realized that the
differenced time-series is close to normal. It is slightly left-skewed, which means that the left tail
is longer. Skewness involves the third moment of the distribution and kurtosis involves the fourth
moment. The outliers in the distribution, therefore, have even more effect on the kurtosis than they
do on the skewness. In a symmetric distribution, both tails increase the kurtosis, unlike skewness,
where they offset each other. The mean and standard deviation have the same units as the original
data, and the variance has the square of those units. However, the kurtosis, like skewness, has no units:
it is a pure number. The standard value of kurtosis of a normal distribution is 3.
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differenced time-series.



Energies 2018, 11, 3308 9 of 19

Table 1. Detailed statistics of load time-series.

Original Differenced

Mean 154,581.1 53.40888
Max 215,379.9 45,842.8
Min 123,786.5 −49,286.9

Median 149,928.9 433.1667
Standard Deviation 20,514.4 17,879.6

Skewness 1.015012 −0.10097
Extra Kurtosis 3.449577 3.005507

4.3. Volatility Check and Multiplicative Error Modeling

The next step in modeling is to check if the differenced time-series shows any cluster of volatility
and satisfy the homoscedastic assumption of constant variance or heteroskedastic behavior. It may
happen that squared values of the differenced time-series exhibit significant serial correlation. It means
that values are again dependent but serially uncorrelated. So, the sample autocorrelation and partial
autocorrelation test is repeated for squared residual followed by Q-test and DW-test. The tests
re-confirm our model selection [56], and the corresponding plot of autocorrelation and partial
autocorrelation function is shown in Figure 5.
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Figure 5. Sample autocorrelation function (ACF) and partial autocorrelation function (PACF) plot of
squared residuals.

The ACF and PACF plots in Figure 5 verify the presence of conditional heteroscedasticity
and also facilitates in identifying the appropriate order for de-seasonalized differenced time-series.
After checking for heteroscedasticity and before proceeding to forecast, we checked the presence
non-linearity in our residual by using BDS test [57]. The BDS test (after the initials of W. A. Brock,
W. Dechert, and J. Scheinkman) detects non-linear serial dependence in time-series and checks for
the null hypothesis that the residuals are i.i.d. It is proven to be powerful against a wide range of
non-linear alternatives and it does not require any distributional assumptions on the tested data.
For further reading, reference [58] is recommended. The BDS code for MATLAB can be accessed
at [59]. Upon testing the residuals, the BDS test rejected the null hypothesis, hinting the presence of
non-linearity or non-stationarity or other types of structure missed out by de-trending or model fitting
in residuals. This is followed by conditional heteroscedasticity modeling.

As stated in [43], generalized autoregressive conditional heteroscedasticity (GARCH) models
are a form of MEM and form the basis of the proposed model. With reference to Equation (1), if µt

is the conditional expectation of yt w.r.t available information (or historical values), its parameters
can be estimated by specifying a GARCH for the conditional second moment of

√
yt while imposing

its conditional mean to be zero. Reference [60] augmented the regression model with GARCH error
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modeling, and the same concept is adapted for this study. The standard model that is common to both
the processes and its square while rewriting Equation (1) is:

Zt =
√

htet

Z2
t = hte2

t
(7)

In the squared equation, the dependent variable (Zt) is non-negative with conditional mean h
and a non-negative multiplicative error term et ∼ i.i.d. (0, 1) with unit mean. This can be estimated
by taking the load residual as the dependent variable of a GARCH model. The GARCH model is
an extension of the ARCH model, in the way that it allows current volatility to be dependent on its
lagged values directly. For more information on ARCH and GARCH, reference [61] is recommended.
The model can be estimated by taking Zt as the dependent variable, with specifications of zero mean
and an error process. In such case, the conditional variance is then the conditional mean of Z2

t [62].
Rewriting Equation (1), the GARCH model with order p ≥ 0 and q ≥ 0 is defined as [61]:

Zt =
√

htet (8)

ht = α0 +
p

∑
i=1

αiZ2
t−i +

q

∑
j=1

β jh2
t−j (9)

for the square root of duration, and where α0 > 1, αi ≥ 0, and β j ≥ 0 are constants with

p

∑
i=1

αi +
q

∑
j=1

β j < 1 (10)

and e(t) is independent of Zt−k, k ≥ 1.
Selecting the right order (p, q) is achieved by following one of the many order selection tests.

Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) tests are chosen in this
study. The reasons for choosing the two criterions are that both of the tests assess the fit between
model predicted and original values and penalize models with a larger number of parameters.
Tests confirmed the use of order (1, 1) multiplicative error model. Figure 6 shows the innovation
plot for a sample size of 101 (0–80 range shown in Figure 6), and it can be concluded that clusters of
volatility appear in a periodic manner. The innovation is the difference between the observed value of
a variable at time t and the optimal forecast of that value based on information available prior to time t.
Thus, the movement of non-linearity is not only dependent on the previous values but for the whole
time-series, it is uncorrelated. Innovations display non-seasonal periods of high and low variances.
Volatility tends to cluster into periods with higher and lower volatility. This effect proves that volatility
at some time must be dependent on its historical values, say with some degree of dependence.

After the model order is identified, maximum likelihood estimator is used to estimating the
parameters. Regardless of the low standard errors, parameter estimation is still feasible. As the sample
size runs from N → ∞, the probability that the value of the estimators shows a large divergence from
the true (which is unknown) parameter values goes to 0, making it a consistent estimator. Estimation
is achieved with conditional variance ht ∼ i.i.d.(0, 1) and with an assumption that error distribution
follows student t-distribution, a version of the generalized error distribution, whose density is given as,

f (x) =
ve(−

1
2 |

x
λµ |

v) 1
µ

λ2(1+
1
v )Γ
(

1
v

) (11)

where v is a positive measure of fat tail, λ =

√
2−(

2
v )

Γ( 1
v )

Γ( 3
v )

, and Γ(.) is the gamma function defined as

Γ(x) =
∫ ∞

0 yx−1e−ydy. This assumption helps in the better modeling of excess kurtosis (in Table 1).
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It also approximates the normal distribution as the degrees of freedom grow to infinity. Presence of fat
tail is evident from Q-Q plot in Figure 7.
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5. Results and Analysis

Result analysis consists of two parts: first part consist of in-sample model fit using load and
economic data followed by out-of-sample forecast, and the second part is checking directional accuracy
by forecasting for the year 2008 during the great economic recession.

5.1. In-Sample Model Fit and Out-of-Sample Forecast

A forecast horizon of 4 years is chosen in this study for both in-sample model fit as well as
out-of-sample forecast. It is based on the assumption that off-shore wind-farm plant needs at least
3–4 years for completion, which is itself a long-term grid development action [3]. For the in-sample
model fit, the study embodies fitting the MEM using load data and recession data of years 1993–2008
and then evaluating its performance on the dataset for years 2009–2012. When assessing point forecasts
with mean square errors, it appears to be useful to use a longer in-sample period for model estimation,
as followed in this study. Figure 8 shows the in-sample model fit for the years 2009–2012. It is clear from
Figure 8 that the in-sample model fit is below the original values for the last three years (2010–2012) but
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the year 2009. For the year 2009, the original values show a lower peak aggregated load as compared
to model fit prediction. Hereby, it is essential to note that the economy was just reviving after the
great economic recession of 2008. Thus, the year 2009 shows a lower peak while the in-sample model
fit does not recognize and is higher. However, the model learns and consequently the peak is lower.
To check the model accuracy, apart from visual inspection, an expected loss function is required to
assess the model performance and check the model accuracy. Use of appropriate loss function also
aims at summarizing the accuracy of the point estimate and future distribution. The two loss functions
used in this research are Mean Absolute Percentage Error (MAPE) and Mean Squared Error (MSE),
both being unit-free measures. While the optimal point forecast under mean absolute error (without
percentage) is the median, MSE represents the (conditional) mean.
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For two sets of n-observations (xi,...,n, yi,...,n), MAPE is defined as

MAPE =
100
n

n

∑
i=1

∣∣∣∣yi − xi
yi

∣∣∣∣ (12)

where yi is the original monthly aggregated load and xi is the predicted monthly aggregated load.
In-sample model fit accuracy is achieved with MAPE of 4.98%. MSE is defined as

MSE =
1
n

n

∑
i=1

(yi − xi)
2 (13)

The MSE, a quadratic and symmetric function, is a measure of how close a fitted line is to data
points. The smaller the MSE, the closer the fit is to the data. However, studies reveal that median
error measures are not sensitive [63]. Thus, we employ Root Mean Squared Error (RMSE), which is
just the square root of the MSE and it measures the deviation in terms of MW. The RMSE describes
the magnitude of the error in terms that would be relatively more useful to decision makers. It can
be argued that both MAPE and MSE are less appealing, because percentages do not have obvious
implications for decision making. While MAPE is scale independent, MSE is more sensitive to a
few large errors than to many small errors. In addition, squared error terms may be more difficult
for decision makers to understand. The RMSE is calculated as the distance, on average, of a data
point from the fitted line, measured along a vertical line. For in-sample model fit, calculated RMSE is
7.7× 103 MW.
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No forecasting analysis is complete without performing out-of-sample forecasts. For better
out-of-sample forecasts, the most crucial choice is splitting the series between training and test periods.
Unfortunately, no study exists so far that discusses how to choose the decision point [64]. In this study,
the training dataset of 1993–2012 is chosen to forecast the next four years (2013–2016). The accuracy of
the MEM model is improved with backtesting technique, where the aim is to achieve a dynamic model
that can address the future volatilities. With 48 months as forecast horizon and monthly timestamp,
the MEM is built every month and forecasts ahead 48 months. The forecast result compares with
original values and averages the error. In such a manner, the out-of-sample result improves as the
model learns and adapts from past results. Figure 9 shows the out-of-sample forecast results with
MAPE of 7.09% and RMSE of 1.09× 104 MW. A high error percentage and MW error as compared to
the in-sample model fit are understood from the long out-of-sample forecast horizon.Energies 2018, 11, x FOR PEER REVIEW  13 of 19 
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lower and a MAPE of 7.09%.

To better evaluate the model accuracy, Monte Carlo simulation is run for 500 sample paths by
choosing a confidence interval of 95%. The motivation behind calculating range forecasts this way
is to evaluate the likelihood that a particular forecast will be accurate within a specified confidence
bound. In this way, the values within the confidence interval of the conditional mean describe the
considerable range of values of the point on the line. Thus, the conditional mean for all the values of
time-series indicates how much the entire MEM prediction can considerably move from sample to
sample. It eases in predicting the range of likelihood values that an observation in the next time step
may take. The confidence interval of the out-of-sample forecast presents a range for the mean rather
than the distribution of individual data points. Figure 9 shows a comparative analysis of out-of-sample
forecast and the Monte Carlo simulation results. Both the forecast as well as confidence intervals
from the two outputs are virtually indistinguishable. To understand the intervals, a value of 0.05
corresponds to predicted upper and lower intervals where there is a 5% chance that original values
will not be in that range.

It is implicit that forecast error measure increases with forecast horizon. Thus, to check the
forecasts, both in-sample model fit as well as out-of-sample forecasts are evaluated by means of their
MSE values. A comparison of MSE for the 48 months horizon for both in-sample model fit and the
out-of-sample forecast is shown in Figure 10. The error difference is quite large at the beginning of
the horizon and increases in the middle, evident in 13–36 months. An exceptional performance of
out-of-sample forecast is observed when it outperforms the in-sample model fit results. The error
comparison graph reveals that out-of-sample forecasts better reflect the information that is available to
the forecaster in real time.
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out-of-sample forecast.

While evaluating the forecast results, we take a glimpse back at Figure 7 and observe that the data
is skewed to the right. The Q-Q plot also displays sizeable excess kurtosis or fat tails. Also referring
to Table 1, the high skewness and kurtosis value is an indicator of non-normal time-series. To verify
the claim, the Jarque–Bera (JB) test is considered in our study. It is usually used for large datasets
because other normality tests are not reliable for large datasets. The JB-test verifies the null hypothesis
(H0 : normal vs. H1 : non− normal distribution). The JB-test statistic is written as [65]:

JB = N

(
s2

6
+

(k− 3)2

24

)
(14)

where, N is the sample size, s is the skewness coefficient, and k is the kurtosis coefficient. A value of
1 from JB-test indicates the data is non-normally distributed. The residual distribution is fitted with
Student’s t-distribution, which has a thicker tail and is thus more tolerant of extremes. The study is
repeated by including both fat-tails and volatility to verify if the forecast improves and the result is
significant. Figure 11 shows the forecast for years 2013–2016 with and without accounting for fat-tails.
The inclusion of fat-tail is significant, because it represents a greater likelihood of extreme events
occurring similar to the financial crisis, also called the black swan event [66]. Some notable features of
volatility that should be clearly mentioned are: volatility appears in clusters apparent from Figure 7,
volatility changes over time and that jumps in the volatility are unusual, volatility does not grow to
infinity; it rather stays within some spans, and the fourth characteristic is that the volatility reacts
differently on a drop in the demand than it does for an increase in the demand. The estimated MEM
parameters are shown in Table 2. To support the range for in-sample model fit, one of the assumptions
in the study is that a t-statistic > 2 in magnitude correspond to approximately a 95% confidence level.
The t-statistic column is the parameter value divided by the standard error and is normally distributed
for large samples. It measures the number of standard deviations that the parameter estimate is away
from zero.
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Table 2. Multiplicative Error Model Parameters.

Parameter MEM Values Standard Errors t-Statistic

α 1.368271 × 107 0.000153268 7.22314 × 1010

α1 0.703561 0.012491 40.1238
β1 0.0241376 0.0201932 1.5713

5.2. Directional Accuracy of Forecast Methodology

The second part of result analysis is checking directional accuracy during the year 2008 when
the great economic recession hit the whole world and the U.S. was largely affected. Since the data
is from U.S. utility, it was decided to check the robustness of the model during that period. The loss
functions were used to evaluate the accuracy of the proposed methodology. However, their usage
does not distinguish the direction of errors. In other words, the positive forecast errors (i.e., when
historical values more than forecasted values) and negative forecast errors (i.e., when historical values
less than forecasted values) are counted equally in the error metrics. It can be agreed that ignoring the
direction of errors simplifies the efforts of evaluating forecasting accuracy. Nevertheless, it should be
noted that the directions of errors often have an economic impact in long-term forecast applications.
For example, in power system planning, positive forecast errors (i.e., historical values more than
forecast values) can result in planning inadequate capacity, and in turn, loss of load service. On the
other hand, negative forecast errors (historical values less than forecast values) can result in wasting
of resources by deploying more capacity than necessary. Note that economic loss corresponding to
losing load (due to positive errors) is often different from that corresponding to resource wasting (due
to negative errors).

An out-of-sample forecast is performed for the year 2008 with a training dataset of years 1993–2007.
When economic factors play a pivotal role, the need to study market movements is important.
Not many forecast studies include the significance of directional forecasting and how its accuracy
supports the statistical parameters. Figure 12 shows the two overlapped time-series. A long period of
uniform load growth was interrupted in the early 2000s till mid-2000s. In fact, the 2000s show two
distinct jumps in historical load data (seen in Figure 3): one was triggered by energy crisis because of
fluctuating oil prices, and one was prompted by the great recession of 2008. Since then, load growth
has regularly displayed volatility relative to the pre-2000s. As the real load growth has not changed
much over time, still large fluctuations tend to be concentrated over somewhat short periods, thus
embodying directional accuracy along with an improved and accurate forecast result is preferred.
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6. Conclusions

This paper proposed a novel implementation of MEM to forecast electricity load in the long-term
horizon and used historical volatility to account for implied volatility. The proposed model aimed at
accurate forecasting of the monthly aggregated load for a horizon of four years (or 48 months) and
the error metrics used to validate the model are mean squared error and mean average percentage
error. To account for future volatility, the proposed MEM is built upon recession data accessed from
NBER. MEM is able to model the volatility in time-series by accounting for conditional variance.
The term conditional variance in MEM denotes the dependency on past sequence of events and is
quite contrasting to unconditional, which implies long-term behavior assuming null knowledge on
past events. Moreover, the discovered non-linearity could be well handled using MEM. The two
performance indicators for this research are: point forecast with a low error percentage as proved
by mean error metrics for both in-sample and out-of-sample forecasts, and the directional accuracy
during the recession. The inclusion of heteroscedastic errors improved forecast performance and also
showed that it is possible to predict the direction of change of residuals in the presence of conditional
heteroscedasticity, even if the residuals themselves cannot be predicted.
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