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Abstract: Train speed trajectory optimization has been proposed as an efficient and feasible method
for energy-efficient train operation without many further requirements to upgrade the current railway
system. This paper focuses on an adaptive partial train speed trajectory optimization problem
between two arbitrary speed points with a given traveling time and distance, in comparison with full
speed trajectory with zero initial and end speeds between two stations. This optimization problem is
of interest in dynamic applications where scenarios keep changing due to signaling and multi-train
interactions. We present a detailed optimality analysis based on Pontryagin’s maximum principle
(PMP) which is later used to design the optimization methods. We propose two optimization methods,
one based on the PMP and another based on mixed-integer linear programming (MILP), to solve
the problem. Both methods are designed using heuristics obtained from the developed optimality
analysis based on the PMP. We develop an intuitive numerical algorithm to achieve the optimal
speed trajectory in four typical case scenarios; meanwhile, we propose a new distance-based MILP
approach to optimize the partial speed trajectory in the same scenarios with high modeling precision
and computation efficiency. The MILP method is later used in a real engineering speed trajectory
optimization to demonstrate its high computational efficiency, robustness, and adaptivity. This paper
concludes with a comparison of both methods in addition to the widely applied pseudospectral
method and propose the future work of this paper.

Keywords: Pontryagin’s Maximum Principle (PMP); speed trajectory optimization; Mixed-Integer
Linear Programming (MILP); energy-efficient train operation; motor efficiency; Pseudospectral method

1. Introduction

With the increasing energy demand and more emphasis put on the carbon footprint, energy-saving
is becoming a hot spot in rail transportation. In order to obtain lower energy consumptions,
many researchers have focused on energy-efficiency enhancement technologies in both academia
and industry. In these studies, such as the earlier works by [1,2], how to use the traction energy in a
more efficient way and to use electrical braking to recycle the kinetic energy are studied. With few
requirements to improve the existing infrastructures, the speed trajectory optimization is regarded as
an effective method to reduce the energy consumption in rail systems. In this paper, the regenerative
braking is utilized to reduce the total net energy consumption. In particular, this paper explicitly
considers the motor efficiency during both traction and braking procedures.

In previous studies, [3] demonstrated that the constant efficiency of motor plays a key role in
the partial speed trajectory optimization problem. In most cases, a constant efficiency does not fully
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reflect the efficiency of electric motors in real operation, and taking more motor characteristics of motor
may enable the model to generate more precise results, reflecting the actual energy consumption in
short-term dynamic operations. The current constant-efficiency assumption is based on a general
observation that the motor efficiency can be considered constant for the long-term operations of typical
railway vehicles. Based on our study outcomes, we wish to offer an optimal train control strategy
for the long-term operations, which has been adopted by most existing studies. We considered the
current proposed methods can be applied to most traditional tractions where the motor efficiency can
be regarded constant in regular duty cycles. Similar considerations with respect to the drag forces and
train modeling are all based on similar thoughts, where the modeling will be generally precise enough
when system dynamics can generally be ignored so that the computational efficiency can be achieved
for potential online/offline applications. In the meantime, the highly dynamic efficiency mechanisms of
the motors may also put further challenges on a precise mathematical modeling. For example, the motor
efficiency is affected by the operation temperature and dynamic load conditions. This dynamic efficiency
of motor would be beyond the scope of our current study in this paper. In general, we propose the
adoption of a constant energy efficiency, in spite of the possibility of using a variable efficiency function
in the model, due to two reasons: reducing model complexity to guarantee computation efficiency and
considering motor efficiency as the average value for long-term operations.

Different from previous studies on full speed trajectory optimization, this paper is focused on a
special problem, i.e., the adaptive partial speed trajectory optimization. The adaptive partial speed
trajectory optimization is used to locate the speed trajectory with the minimum energy consumption in
more general cases. The full speed trajectory considers cases with a zero initial speed and a final speed,
which can otherwise be arbitrarily non-zero for partial speed trajectory optimization as shown in
Figure 1. For example, when the vehicle is undergoing special operation sections, e.g., going through
signal blocks or a junction area of railway networks ([4,5]), a partial speed trajectory optimization
problem will be quickly adapted to special constraints imposed by signaling and multi-train operations.
In the meantime, with a wider application of regenerative braking, partial speed trajectory optimization
will be able to determine how much the most regenerated energy would be when a train is approaching
the station. Similar to full speed trajectory optimization, partial speed trajectory optimization, to a
large extent, could provide an optimal control strategy for the automatic train control (ATC) system
or automatic train operation (ATO) system in online applications if the computational time is short
enough. In this paper, we present adaptive partial speed trajectory optimization methods to highlight
the adaptiveness of the proposed method ([6]), which is capable of dealing with any arbitrary initial
and end speeds.

Speed

Distance

Initial Speed 

Final Speed 

Initial Position Final Position

Figure 1. A typical optimal partial train speed trajectory between two non-zero speed points.

This paper aims to provide two different solutions to the adaptive partial speed optimization
problem, i.e., optimal train control based on Pontryagin’s maximum principle (PMP) and mixed-integer
linear programming (MILP), to obtain the optimal partial speed trajectory considering motor efficiency.
Based on the PMP, this paper provides explicit optimality analysis for nine different case scenarios
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and summarizes the possible control strategies for each case. We also propose an intuitive numerical
algorithm using the optimality analysis based on the PMP. Similar studies were once conducted
in papers by [7,8]. On the other hand, a distance-based MILP model is proposed to solve the
same optimization problem and provide optimization results to be compared and contrasted to
the ones obtained from the PMP-based method. A thorough discussion based on the results from both
methods will be conducted with an emphasis on the applicability and adaptivity of the mathematical
programming method.

Compared to previous papers in the field, we aim to contribute to the literature in the following
three aspects.

• First, from a viewpoint of train optimal control, we consider a special problem, i.e., the adaptive
partial speed trajectory optimization problem with arbitrary initial and ending speeds.
This optimization problem is of interest for more dynamic applications where the operation
scenarios keep changing due to signaling and multi-train interactions. We present a detailed
optimality analysis based on the PMP which is later used to design the optimization methods.

• Second, we propose two optimization methods: one based on the PMP as an indirect method
and another based on MILP as a direct method, to solve the problem. Though both methods
are popularly applied in train optimal control, such a comparative study has not yet been done.
We develop an intuitive numerical algorithm to achieve the optimal speed trajectory in four
typical case scenarios; meanwhile, we propose a distance-based MILP model to optimize the
adaptive partial speed trajectory in the same scenarios with high modeling precisions.

• Third, in terms of traction technologies, we explicitly consider the motor efficiency from both
traction and braking phases, rather than only the efficiency from regenerative braking phase or no
efficiency considered compared to most existing studies, which has been demonstrated to impose
significant impacts on optimal train speed trajectory.

This paper is arranged as follows. Section 1 provides an introduction on the research background
and review on relevant literature. Section 2 gives a comprehensive optimality analysis on the adaptive
partial speed trajectory optimization problem based on the PMP. Section 3 provides details about how
to build the MILP model with a set of constraints to solve the problem. Section 4 demonstrates the
results obtained from both PMP and MILP methods and provides comprehensive discussions based
on the results. Section 6 draws the conclusion of this paper.

1.1. Literature Review

In Table 1, we list a number of selected papers in three main categories in terms of the main
methods applied, i.e., optimal control based on the PMP, a heuristic algorithm, and mathematical
programming.

The speed trajectory optimization problem has been tackled by a variety of methods in the past
few decades. These methods can be generally categorized into optimal control, heuristic algorithm,
and mathematical programming. Although the method based on optimal train control theory can be
regarded as a type of mathematical programming due to its characteristics in minimizing the objective
functional, we separate this method to recognize its important contribution on the area. In this paper,
based on the optimality analysis using PMP, we propose an intuitive numerical algorithm and apply
MILP to solve the adaptive partial speed trajectory optimization problem.
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Table 1. Selected publications on train speed trajectory optimization.

Methods Publication Algorithms/Theory Multiple/Single Train(s)

Optimal control based on the PMP [9] PMP Single
[7] PMP Single

[10] PMP Single
[8] PMP Single

[11,12] PMP Single

Heuristic algorithm [13] Genetic Algorithm Single
[14] Genetic Algorithm, Ant Colony

Optimization and Dynamic
Programming

Single

[15] Genetic Algorithm Multiple
[16] Brute force, Ant Colony

Optimization and Genetic
Algorithm

Multiple

[17] Genetic Algorithm Multiple
[18] Genetic Algorithm Single

Mathematical programming [19] Sequential Quadratical
Programming

Single

[20] Pseudospectral method and MILP Single
[21] Kuhn-Tucker Conditions Multiple
[22] Bellman-ford Algorithm Single
[6] MILP Single

[23] Dynamic Programming Single
[4] Pseudospectral method Single

[24] Pseudospectral method Multiple
[25] Genetic algorithm and Brute Force Multiple
[26] Monte Carlo Simulation Multiple

This paper MILP & PMP (Distance-based
mathematical programming and
PMP-based numerical algorithms)

Single/adaptive

As early as 1968, the authors in [27] had applied the modern optimal train control theory based on
the PMP in rail systems to optimize the train control strategy. Many similar studies on this area were
conducted during 1970–2000. Some earlier works of significance can be found in papers by [28–31].
After 1990, the Scheduling and Control Group (SCG) at the University of South Australia developed
the modern theory of train control in a collection of publications by [32–38]. These papers demonstrate
that the study of optimal train control problems is taking more practical considerations with respect to
the speed limit, traveling time, gradient, etc. and is targeting different train systems such as diesel
freight trains and electric passenger trains.

The authors in [9] applied PMP to study the optimal control for both continuous and discrete
control cases. Taking time as the independent variable in the model, the paper develops key equations
to determine the optimal switch points based on the necessary conditions on an optimal strategy.
The authors in [7] proposed the linking function to find the optimal trajectory and presented a
numerical algorithm to solve the optimal train control problem with varying gradients and speed
limits. The authors in [10] proposed an analysis method to deal with the switching point between each
control strategy and, using a complementary variable, to meet the speed-limit constraints. The authors
in [39] proposed a new local energy minimization principle to locate the critical switching points for a
global optimal strategy on a track with steep gradients. [7,8] proposed applying a numerical algorithm
to optimize the trajectory with a consideration of both varying gradient and speed limit. The authors
in [40] studied the control operation during the varying gradient and the coasting operation on
the slope and provided an analysis of a new local optimization principle. The authors in [11,12]
summarized the key principles of optimal train control developed in the past few decades, in which
different aspects of optimal train control problem have been summarized and discussed. These two
papers are focused on the classic two-station train optimal control problem, where it is proved that an
optimal strategy always exists in the proposed optimal train control model, and perturbation analysis
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is used to show that the strategy is unique. In particular, regenerative braking has been taken into
account, but the efficiency of motor during traction is not within the proposed research scope.

On the other hand, by modeling the train operations as a standard optimal control problem,
researchers from Delft University of Technology and University of Leeds, proposed applying a
pseudospectral algorithm and non-linear programming, as a direct method in comparison to an
indirect method such as PMP, to solve the train speed trajectory optimization problem under a
variety of engineering constraints. The studied cases can be well extended to multi-train problems
and is able to take into account more complex signaling and operational constraints ([4,5,20,24,41]).
The authors in [20] applies both a pseudospectral algorithm and MILP to solve the speed trajectory
optimization problem with consideration of the passenger riding comfort. The problem is formulated
as an optimal control problem and a comparative study is conducted between the two proposed
methods. The authors in [4] presented a multiple-phase optimal control model for train trajectory
optimization to be solved by a pseudospectral algorithm. The paper put particularly considered the
operational (time and speed restrictions) and signal (signal aspects and automatic train protection)
constraints for the trajectory optimization under delay and no-delay situations. The authors in [24]
applied a pseudospectral method to optimize the multi-train optimization by formulating the problem
as a multiple-phase optimal control problem. Multiple objectives including the minimization of
energy consumption and train delays exist for the optimization to locate proper driving strategies.
By modeling train operation in a closed-form model, the authors in [5] applied non-linear programming
to address the train optimal control problem and the proposed methods have been further applied to
formulate more complex optimal train control problems in scheduling and train following. In the above
studies ([4,5,24]), undesirable fluctuation of speed trajectory and operations spanning across short
durations are presented, which may hinder the direct applications of these methods if not properly
addressed. Compared to these papers, our proposed methods have not yet considered multi-train
operations and signaling constraints since our main objective of this paper is to target the partial speed
trajectory optimization problem considering motor efficiency during both traction and braking with a
detailed comparative study not yet conducted before with both a direct method (MILP) and an indirect
method (PMP). Nevertheless, our proposed distance-based model solved by MILP is capable of an
extension by taking into account similar signaling constraints by imposing linear constraints arising
from an operational time window and multi-train operation constraints.

Apart from the optimal train control algorithm, the speed trajectory optimization problem has
also been solved using different heuristic algorithms. As discussed in the book by [42], this is usually
due to the fact that, with more practical constraints considered, many practical problems such as
the speed trajectory optimization become an “NP-complete” problem. Heuristic algorithms, usually
regarded as approximate algorithms, are applied to achieve near-optimal solutions with a reduced
computational time. Typical heuristic algorithms include the ant colony algorithm (ACO), the genetic
algorithm (GA), and the particle swarm algorithm. These algorithms are able to find the available
solution with an acceptable cost arising from the consumed energy and elapsed time. The genetic
algorithm (GA) is one of the most widely used methods in speed trajectory optimization ([13,15–18,43]).
GA was applied to design a formal method to optimize the traction energy and to investigate the
relationship between the journey time and energy consumption ([13]). The authors in [15] applied a
GA to solve an optimization model targeting the minimization of net energy. In this model, both train
operation and time tabling are considered so that the integrated model is able to take advantage of
regenerative braking and speed trajectory optimization during the multi-train operations. As one of
the advantages, different heuristic methods could be easily applied to solve the same optimization
problem and make comparative studies on each algorithms.

The authors in [18] used a GA to solve the speed trajectory optimization problem with special
consideration of regeneration braking so that the net energy could be reduced. The authors in [43]
investigated the influence of the error of train positioning in optimal speed trajectory obtained using
a GA. The speed trajectory optimization is based on a simple case with a single speed limit and
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assumes that the operations of the train are designed in a preset sequence. In a recent paper by [17],
a simulation-based GA was applied to solve a two-phase stochastic model considering the uncertain
train mass to optimize the timetable and train speed profile. The optimization of the train speed profile
was based on a simple assumption that the optimal train trajectory consists of maximum acceleration,
coasting, and maximum deceleration. The authors in [25] proposed an integrated optimization model
to simultaneously consider both timetabling and train trajectory for minimum energy consumption
using GA and brute force methods. Based on Monte Carlo simulation, the authors in [26] presented an
integrated optimization method to incorporate the train operation and electric network power flow.

Compared to the heuristic algorithms arising from the advances of computational intelligence,
mathematical programming in more traditional optimization methods heavily relies on numerical
iterations and mathematical modeling. With proper linearization and modeling of practical problems,
such a method can also be robust and adaptive with guaranteed global optimality in convex cases.
Many studies have also utilized mathematic programming to locate the optimal speed trajectory in
different scenarios. The authors in [19] proposed a sequential quadratic programming (SQP) model
to optimize the speed profile considering the charge and discharge of the on-board storage device.
The authors in [14] achieved the optimal train speed trajectory in a discrete search space for a single
train by using a GA, ACO, and dynamic programming using a distance–time–speed model, which has
become a popular way of modeling in dealing with integrated optimization for both speed profiles
and timetabling ([44]). The authors in [21] proposed an integrated model to minimize the energy in
dynamic train scheduling and control in metro rail operations. In this paper, a convex optimization
model is built to consider the train operation in terms of curve planning and scheduling in terms of
journey time allocations simultaneously. Kuhn–Tucker conditions are applied to solve the optimization
model to achieve a significant energy reduction. The authors in [45] applied an approximate dynamic
programming to solve the train rescheduling problem in which speed trajectory was optimized in
a discrete search space. The authors in [23] proposed a dynamic programming method to solve
speed trajectory optimization using event-based decomposition to reduce the search space leading to
significant computational time reduction. The authors in [44] proposed a unified modeling approach
using space–time–speed to address the joint optimization problem for high-speed train timetables
and speed profiles. Dynamic programming and Lagrangian relaxation were applied to address the
power supply and safety constraints. However, motor characteristics, such as maximum power and
maximum tractive effort, were not considered in the paper.

After 2014, the authors in [6,22,46,47] conducted a series of studies focused on the partial speed
trajectory optimization problem. This problem arises from the question, “How much regenerative
braking energy can be obtained from a braking procedure of train with a given travel distance
and elapsed time?” The problem was first studied in the paper by [22] using the Bellman–Ford
algorithm, i.e., a dynamic-programming-based graphical searching method, by modeling the braking
speed trajectory in a discrete manner. An optimality analysis based on the PMP was conducted and
high-level agreements between the analysis and optimization results were demonstrated. The authors
in [46,47] proposed linear programming to solve monotonous speed trajectory during the regenerative
braking process. The latter study applies a similar method in application of the eco-approach
and departure for electric vehicles in signaling section areas. The authors in [6] applied MILP to
address non-linear constraints arising from varying gradients along the braking route for partial speed
trajectory optimization problems. By formulating the speed trajectory optimization as an MILP model,
the authors in [48] tried to optimize the speed trajectory to achieve the minimum net energy. Further
to this work, this paper develops and proposes an MILP model for adaptive partial speed trajectory
optimization with considerations of motor efficiency during regenerative braking and traction.

In summary, train speed trajectory optimization has been long studied since the 1960s. A variety
of methods such as optimal control theory, heuristic algorithms, and mathematical programming have
been proposed in solving the problem. As discussed in two survey papers by [49,50], more studies
were focused on the trajectory optimization in interconnected urban railway systems so that net
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energy consumptions, passenger information, service qualities, and timetabling could be considered
concurrently. As such, popularity has been gained on integrated models to realize a systematic
integration of different railway planning and control aspects across decision layers in recent years.
It has also been noted that many of the previous studies have not taken into account the energy
efficiency during energy conversions and transmissions via electric motors and electric grids and
other energy sub-systems, which is considered important in optimal train control strategies [26,51].
It is for this reason that this paper proposes the inclusion of the efficiency during both traction and
regenerative braking operations, which is different from many previous papers, which only take
efficiency in regenerative braking phases into account (if at all). We investigate the impact raised by
these two efficiencies and set up an objective function to minimize the net electrical energy of the
individual train but not the net mechanical energy only. Compared to previous studies on speed
trajectory optimization between two adjacent stations, this paper tries to apply PMP and MILP to
tackle an adaptive partial speed trajectory optimization problem between two arbitrary speed points,
taking into account the efficiency of the motors during both traction and regenerative braking.

2. Optimality Analysis Based on Pontryagin’s Maximum Principle

Given a unit mass, two state equations of train movement depending on distance are listed as follows:

dt
dx

=
1
v

(1a)

dv
dx

=
ut ft(v)− ub fb(v)− wo(v)− g(x)

v
. (1b)

In Equations (1a) and (1b), x is distance, t is time, v is train speed, ut and u f are the control
variables ranging from 0 to 1, i.e., ut ∈ [0, 1] and ub ∈ [0, 1], ft(v) and fb(v) are the maximum electrical
traction and braking forces related to v, wo(v) is the resistance force due to aerodynamic drags and
rolling resistance and could be typically represented by a quadratic formula in respect to v, and g(x) is
the gradient depending on distance.

The objective function is to minimize the net electrical energy as shown below:

J =
∫ S

0

[
ut ft(v)

ηt
− ub fb(v)ηb

]
dx (2)

where ηt and ηb are the efficiency of electric motors ranging from 0 to 1 during the traction and braking
operations. For traction operation, the electrical energy consumption can be regarded as the traction
energy consumption divided by the efficiency ηt. For braking operation, the regenerated electrical
energy can be regarded as the traction energy multiplied by the efficiency ηb.

Based on the PMP, the Hamiltonian is expressed as

H =− ut ft(v)
ηt

+ ub fb(v)ηb

+
λ1

v
+ λ2

ut ft(v)− ub fb(v)− wo(v)− g(x)
v

=

(
λ2

v
− 1

ηt

)
ut ft(v) +

(
ηb −

λ2

v

)
ub fb(v)

+
λ1

v
− λ2

v
[wo(v) + g(x)] .

(3)
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In Equation (3), λ1 and λ2 are the co-state variables. To simplify the form of Hamiltonian, we
introduce another co-state variable θ to substitute λ2, θ = λ2

v , and Equation (3) can then be transformed
into Equation (4).

H =

(
θ − 1

ηt

)
ut ft(v) + (ηb − θ)ub fb(v)

+
λ1

v
− θ[wo(v) + g(x)].

(4)

According to PMP, in order to minimize the objective function of Equation (2), the Hamiltonian
Equation (4) needs to be maximized. Therefore, co-state variable θ can be divided into five different
regions corresponding to different operations. The relation is summarized in Table 2.

Table 2. Different optimal control operation corresponding to different co-state variable and controlled variable.

Co-State Variable Optimal Control Operation Controlled Variable

θ > 1
ηt

Full traction ut = 1 and ub = 0

θ = 1
ηt

Partial traction ut ∈ [0, 1] and ub = 0

ηb < θ < 1
ηt

Coasting ut and ub = 0

θ = ηb Partial braking ut = 0 and ub ∈ [0, 1]

θ < ηb Full braking ut = 0 and ub = 1

In our optimality analysis, we consider cases where no extreme gradient and speed limit exists.
Extreme gradients exist when the following two inequality applies.

ft(v)− w0(v)− g(x) < 0 (5)

− fb(v)− w0(v)− g(x) > 0. (6)

Based on the PMP, the following two equations should be satisfied.

dλ1

dx
= −∂H

∂t
(7)

dλ2

dx
= −∂H

∂v
. (8)

Since the Hamiltonian Equation (3) is not directly related to t, dλ1
dx = 0, and this leads to a constant

value of λ1. In addition, Equation (8) can be further presented as

dλ2 = −∂H
∂v

dx

=

[
ut

ηt
f
′
t (v)− ubηb f

′
b(v) +

λ1

v2

− λ2
ut f

′
t (v)− w

′
o(v)− ub f

′
b(v)

v

+λ2
ut ft(v)− wo(v)− ub fb(v)− g(x)

v2

]
dx

=

[(
1
ηt
− λ2

v

)
ut f

′
t (v) +

(
λ2

v
− ηb

)
ub f

′
b(v)

+
λ2

v
w
′
o(v) +

λ1

v2 +
λ2dv
vdx

]
dx.

(9)



Energies 2018, 11, 3302 9 of 33

The state function of Equation (1b) can be rewritten with the following relation:

dv
vdx

=
ut ft(v)− wo(v)− ub fb(v)− g(x)

v2 . (10)

Assume a new costate variable λ2 = θv, and we have the following:

dλ2 = vdθ + θdv. (11)

Combining Equations (9) and (11), we can get the form of the dθ expressed by θ.

dθ =

[
1/ηt − θ

v
ut f

′
t (v) +

θ − ηb
v

ub f
′
b(v)

+
θw
′
o(v)
v

+
λ1

v3

]
dx.

(12)

Without the influence of the speed limit, θ is continuous, and dθ
dx is differentiable along the track.

Depending on different gradients, two cruising operations exist using either partial traction or
partial braking. The partial traction is analyzed as follows. During the partial traction, θ = 1

ηt
, ub = 0,

and ut ∈ [0, 1], as shown in Table 2.
Equation (12) is transformed as follows:

dθ

dx
=

w
′
o(v)
ηtv

+
λ1

v3 = 0. (13)

We rearrange Equation (13), and it leads to

− λ1 =
v2w

′
o(v)

ηt
. (14)

Since λ1 is a constant, we can reasonably assume there is a constant Vtc corresponding a constant λ1.

− λ1 =
V2

tcw
′
o(Vtc)

ηt
. (15)

We then use ϕ(v) to denote the term v2w
′
o(v), where ϕ(v) is a monotonously increasing function

of v.
We substitute it into Equation (15) and obtain

1
ηt

ϕ(Vtc) =
V2

tcw
′
o(Vtc)

ηt
= −λ1. (16)

Similarly, during the partial braking operation, we can deduce the relation between λ1 and ϕ(Vbc).

ηb ϕ(Vbc) = ηbV2
bcw

′
o(Vbc) = −λ1. (17)

With the motor efficiency ηb and ηt ranging from 0 to 100%, we can derive Vbc > Vtc.
If the speed value of train and co-state variable are given, the evolutionary trend of θ can be

deducted. Based on the current speed of the train in relation to Vbc and Vtc, we make the following
analysis in various cases.
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2.1. Optimality Analysis for High Train Speed

2.1.1. Case 1: v > Vbc, θ < ηb

We consider a case with Vbc by using partial braking, the speed v > Vbc, and the co-state variable
θ < ηb. Equation (12) can be transformed into

dθ

dx
= (θ − ηb)

f
′
b(v)
v

+ θ
w
′
o(v)
v

+
λ1

v3

=
1
v3

[
v2(θ − ηb) f

′
b(v) + θϕ(v)− ηb ϕ(Vbc)

]
=

1
v3 {θ[φ(v) + ϕ(v)]− ηb[ϕ(Vbc) + φ(v)]}.

(18)

In Equation (18), we use φ(v) to denote v2 f
′
b(v). We set dθ

dx = 0. Assume that there is one θx

resulting in dθ
dx = 0, and we have

θx1 = ηb
ϕ(Vbc) + φ(v)
ϕ(v) + φ(v)

. (19)

To determine the relation between θx1 and ηb, we first consider the sign of the ϕ(v) + φ(v).
We introduce an equation ζ(v) = f

′
b(v) + w

′
o(v). Considering the traction characteristics of electric

motors, the braking and traction effort at low speed can be regarded as constant. This gives f
′
b(v) = 0.

In addition, w
′
o(v) is positive and this leads to ζ(0) > 0. We then can calculate ζ

′
(v) based on the

characteristics of fb(v) and wo ( fb(v) is considered to be in proportion to 1
v , and wo(v) is in a quadratic

form of v.), and it is derived that ζ
′
(v) > 0. Therefore, we conclude that ζ(v) > 0, and this leads to

ϕ(v) + φ(v) > 0. Due to the monotonicity of φ(v) and ϕ(v), we can determine that θx1 < ηb.
With a given v, dθ

dx in Equation (18) is positively linear to θ. A schematic to illustrate the relationship
between θ and dθ

dx is shown in Figure 2.

dθ/dx

θ
θX1 ηb 

Figure 2. dθ
dx vs. θ in Case 1.

We can make the following remarks.

• Case 1.1: If θ > θx1, dθ
dx > 0. With v > Vbc and θx1 < θ < ηb, the optimal evolution of θ will be

increasing and v will be decreasing until it reaches the condition v = Vbc and θ = ηb.
• Case 1.2: If θ < θx1, dθ

dx < 0. Therefore, with v > Vbc and θ < θx1, θ will be decreasing and v will
be decreasing until it reaches the final state.
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2.1.2. Case 2: v > Vbc, ηb < θ < 1
ηt

There exists a state with Vbc, v > Vbc, and ηb < θ < 1
ηt

. Equation (12) can be transformed into

dθ

dx
= θ

w
′
o(v)
v

+
λ1

v3

=
1
v3 [θϕ(v)− ηb ϕ(Vbc)] .

(20)

ηb < θ < 1
ηt

, v > Vbc, and ϕ(v) is a monotonously increasing function of v. These conditions can

guarantee dθ
dx > 0.

As a result, if there is a coasting operation with ηb < θ < 1
ηt

, this will lead to dθ
dx > 0. θ will be

increasing and v will be decreasing until it reaches the condition v = Vbc and θ = 1
ηt

.

2.1.3. Case 3: v > Vbc, θ > 1
ηt

If there exists a constant cruising speed Vbc, v > Vbc, and θ > 1
ηt

, Equation (12) can be transformed into

dθ

dx
=

1/ηt − θ

v
f
′
t (v) + θ

w
′
o(v)
v

+
λ1

v3

=
1
v3

[
v2(1/ηt − θ) f

′
t (v) + θϕ(v)− 1

ηt
ϕ(Vtc)

]
.

(21)

With the conditions that θ > 1
ηt

, v > Vbc, and ϕ(v) is a monotonously increasing function of v,

f
′
t (v) is negative. We can determine the term θϕ(v)− 1

ηt
ϕ(Vtc) > 0. This can guarantee dθ

dx > 0.

As a result, if there is an acceleration operation with θ > 1
ηt

, v > Vbc, θ will be increasing and

v will be increasing. In this case, θ > 1
ηt

along x. The corresponding optimal operation will be full
traction until it arrives at the final speed.

2.2. Optimality Analysis for Medium Train Speed

2.2.1. Case 4: Vtc < v < Vbc, θ < ηb

There are two constant cruising speeds Vbc and Vtc. The train speed Vtc < v < Vbc and θ < ηb.
Equation (12) can be transformed into Equation (22):

dθ

dx
= (θ − ηb)

f
′
b(v)
v

+ θ
w
′
o(v)
v

+
λ1

v3

=
1
v3

[
v2(θ − ηb) f

′
b(v) + θϕ(v)− ηb ϕ(Vbc)

]
=

1
v3 {θ[φ(v) + ϕ(v)]− ηb[ϕ(Vbc) + φ(v)]}.

(22)

Similar to Case 1, we assume that there is one θx2 leading to dθ
dx = 0, so we have Equation (23).

Using a similar deduction as in Case 1, it can be shown that θx2 > ηb. With a given positive v, we are
able to present the relationship between dθ

dx , and θ in positive linearity as shown in Figure 3. In this
case, we have dθ

dx < 0. Therefore, θ and v will be decreasing until it reaches the final speed.

θx2 = ηb
ϕ(Vbc) + φ(v)
ϕ(v) + φ(v)

. (23)
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dθ/dx

θ
θX2ηb 

Figure 3. dθ
dx vs. θ in Case 4.

2.2.2. Case 5: Vtc < v < Vbc, ηb < θ < 1
ηt

In this case, the train speed is maintained by the coasting operation, and the train speed falls
between two cruising speeds: Vtc < v < Vbc and ηb < θ < 1

ηt
. Equation (12) can be transformed into

Equation (24) as follows:
dθ

dx
= θ

w
′
o(v)
v

+
λ1

v3

=
1
v3 [θϕ(v)− ηb ϕ(Vbc)]

=
1
v3

[
θϕ(v)− 1

ηt
ϕ(Vtc)

]
.

(24)

With ηb < θ < 1
ηt

, Vtc < v < Vbc, and ϕ(v) being a monotonously increasing function of v, we are

able to calculate the value of θx3, leading to dθ
dx = 0.

θx3 = ηb
ϕ(Vbc)

ϕ(v)
=

1
ηt

ϕ(Vtc)

ϕ(v)
. (25)

Equation (25) shows ηb < θx3 < 1
ηt

. As shown in Figure 4, there are two possible cases.

dθ/dx

θ
θX3ηb ηb 1/ηt 

Figure 4. dθ
dx in Case 5.1 and Case 5.2.

• Case 5.1: θ > θx3 leads to dθ
dx > 0. As a result, if ηb < θ < 1

ηt
, Vtc < v < Vbc, θ will be increasing

and v will be decreasing until it reaches the condition θ = 1
ηt

.
• Case 5.2: θ < θx3 leads to dθ

dx < 0. Therefore, with Vtc < v < Vbc and ηb < θ < 1
ηt

, θ < θx3, θ will
be decreasing and v will be decreasing until it reaches the condition θ = ηb.
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2.2.3. Case 6: Vtc < v < Vbc, θ > 1
ηt

The train is with a speed Vtc < v < Vbc and co-state variable θ > 1
ηt

. Equation (12) can be
transformed into Equation (26):

dθ

dx
=

1/ηt − θ

v
f
′
t (v) + θ

w
′
o(v)
v

+
λ1

v3

=
1
v3

[
v2(1/ηt − θ) f

′
t (v) + θϕ(v)− 1

ηt
ϕ(Vtc)

]
=

1
v3 {θ[φ(v)− ϕ(v)]− 1

ηt
[φ(v)− ϕ(Vtc)]}.

(26)

Similar to Case 1, we assume that there is one θx4 leading to dθ
dx = 0, so we have Equation (27).

Using a similar deduction as in Case 1, it can be shown that θx4 < 1
ηt

. With a given positive v, the

relationship between dθ
dx and θ is positively linear as shown in Figure 5. With Vtc < v < Vbc and θ > 1

ηt
,

we can conclude that dθ
dx > 0. As a result, both θ and v will be decreasing until it reaches the final speed.

θx4 =
1
ηt

φ(v)− ϕ(Vtc)

φ(v)− ϕ(v)
. (27)

With Vtc < v < Vbc and θ > 1
ηt

, the optimal evolution of θ and v will be increasing until it reaches
the condition v = Vbc.

dθ/dx

θ
θX4 1/ηt 

Figure 5. dθ
dx vs. θ in Case 6.

2.3. Optimality Analysis for Low Train Speed

2.3.1. Case 7: v < Vtc, θ < ηb

With Vtc, v < Vtc and θ < ηb, Equation (12) can be transformed into Equation (28):

dθ

dx
= (θ − ηb)

f
′
b(v)
v

+ θ
w
′
o(v)
v

+
λ1

v3

=
1
v3

[
v2(θ − ηb) f

′
b(v) + θϕ(v)− ηb ϕ(Vbc)

]
=

1
v3 {θ[φ(v) + ϕ(v)]− ηb[ϕ(Vbc) + φ(v)]}.

(28)

Similar to Case 1, we assume that there is one θx5, which leads to the zero derivative of θ and
we have

θx5 = ηb
ϕ(Vbc) + φ(v)
ϕ(v) + φ(v)

. (29)

As shown in Figure 6, we find that θx5 > ηb and with a given v, it is guaranteed that dθ
dx < 0.

As a result, we demonstrate that, if θ < ηb, v < Vtc, we have dθ
dx < 0. The optimal θ and v will keep

decreasing until it reaches a final speed.
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dθ/dx

θ
θX5ηb

Figure 6. dθ
dx of Case 7.

2.3.2. Case 8: v < Vtc, ηb < θ < 1
ηt

We consider a case with v < Vtc and ηb < θ < 1
ηt

. Equation (12) can be transformed into

dθ

dx
= θ

w
′
o(v)
v

+
λ1

v3

=
1
v3

[
θϕ(v)− 1

ηt
ϕ(Vtc)

]
.

(30)

With ηb < θ < 1
ηt

, v > Vtc and ϕ(v) being a monotonously increasing function of v, we have
dθ
dx < 0.

As a result, we demonstrate that in Case 8, dθ
dx < 0. The optimal θ will be decreasing and v will be

decreasing until it reaches the condition θ = ηb.

2.3.3. Case 9: v < Vtc, θ > 1
ηt

In Case 9, we consider a case with a constant cruising speed Vtc, v < Vtc, and θ > 1
ηt

. Equation (12)
can be transformed into Equation (31):

dθ

dx
=

1/ηt − θ

v
f
′
t (v) + θ

w
′
o(v)
v

+
λ1

v3

=
1
v3

[
v2(1/ηt − θ) f

′
t (v) + θϕ(v)− 1

ηt
ϕ(Vtc)

]
=

1
v3 {θ[φ(v)− ϕ(v)]− 1

ηt
[φ(v)− ϕ(Vtc)]}.

(31)

Similar to Case 1, we assume that there is one θx6 leading to the zero derivative of θ, so we have
Equation (32).

θx6 =
1
ηt

φ(v)− ϕ(Vtc)

φ(v)− ϕ(v)
. (32)

Using a similar deduction as in Case 1 by considering the characteristics of both φ(v) and ϕ(v),
it can be shown that θx5 > 1

ηt
. With a given positive v, the relationship between dθ

dx and θ is positively

linear as shown in Figure 7. With v < Vtc and θ > 1
ηt

, we make the following two remarks.

• Case 9.1: If θ > θx6, dθ
dx > 0, the optimal θ and v will be increasing via acceleration until it reaches

the final speed.
• Case 9.2: If θ < θx6, dθ

dx < 0, the optimal θ will be decreasing and v will be increase until it reaches
the condition v = Vtc and θ = 1

ηt
.
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dθ/dx

θ
θX61/ηt 

Figure 7. dθ
dx of Case 9.1 and Case 9.2.

2.4. Summary of Optimality Analysis and the Developed Numerical Algorithms

Based on the above discussions, we can summarize the trend of θ and the corresponding train
operations from different values in respect to ηb, 1

ηt
, Vtc, and Vbc. The information is summarized in Table 3.

Table 3. Summary of dθ
dx and the corresponding optimal train operations.

Case v θ dθ
dx Optimal Train Operation

1.1 v > Vbc θx1 < θ < ηb
dθ
dx > 0 Full Braking→ Partial Braking or Full Braking→ Coasting

1.2 v > Vbc θ < θx1
dθ
dx < 0 Full Braking

2 v > Vbc ηb < θ < 1
ηt

dθ
dx > 0 Coasting→ Full Traction or Partial Traction

3 v > Vbc θ > 1
ηt

dθ
dx > 0 Full Traction

4 Vtc < v < Vbc θ < ηb
dθ
dx < 0 Full Braking

5.1 Vtc < v < Vbc ηb < θ < θx3
dθ
dx < 0 Coasting→ Partial Braking

5.2 Vtc < v < Vbc θx3 < θ < 1
ηt

dθ
dx > 0 Coasting→ Partial Traction

6 Vtc < v < Vbc θ > 1
ηt

dθ
dx > 0 Full Traction

7 v < Vtc θ < ηb
dθ
dx < 0 Full Braking

8 v < Vtc ηb < θ < 1
ηt

dθ
dx < 0 Coasting→ Full Braking

9.1 v < Vtc θ > θx6
dθ
dx > 0 Full Traction

9.2 v < Vtc θx6 > θ > 1
ηt

dθ
dx < 0 Full Traction→ Partial Traction

In this paper, we propose two numerical algorithms based on the PMP to find the optimal speed
trajectory. The obtained results will be compared and contrasted with the one obtained using the MILP
mathematical programming method. In our proposed numerical algorithms, we are to apply linear
iteration using the corresponding co-state equations in each case and use a simple intuitive search
method to search for the initial and final co-state variable values, or the initial and final distances.
The linear iteration is based on a sufficiently small distance step ∆d ([52]).

We propose Algorithm 1 to link the initial speed v0 and the final speed vt to the cruising speeds
vtc or vbc. Once the initial and final co-state variable is located, the entire speed trajectory can be
determined. A schematic for the scenario setup is shown in Figure 8.
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Algorithm 1 To achieve the optimal speed trajectory between a given initial speed v0 and final speed
vt to cruising speeds

Initialize the initial θ1 based on Table 3 and the initial train speed v1 with v0 or vt
Allocate θN and sN with a value of zero
Define a sufficiently small number ε

while |θN − ηb| > ε for cruising cases using braking or |θN − 1/ηt| > ε for cruising cases using

traction or sN is outside the cruising section range do

Re-allocate θN and sN with a value of zero
repeat

Based on the current value of co-state variable θ, speed v and distance s, referring to Table 3 and

Equation (12) to calculate the value of v and θ for the next step within a small distance interval

∆d. Apply backwards calculations for vt case.
Update the current distance with a small distance interval

until The train speed v arrives at the cruising speed; the current corresponding θ to be assigned to

θN and the current distance to be assigned to sN
Generate a new θ1 by θ1 = θ1 + ∆θ where ∆θ is the search step.

end while

Cruising Speed 

Initial speed 0v

Final speed tv

Distance 

Speed 

Figure 8. Schematic for the scenario setup in Algorithm 1.

On the other hand, if there exists two cruising speeds that need to be joined together. In this case, the
initial θ0 and final θt are both known, and we propose Algorithm 2 as below to obtain the initial and final
locations for the joining process. A schematic for the scenario setup has been shown in Figure 9.

In the proposed case studies in this paper, Algorithm 1 is applied to achieve the results in Scenarios
1–3, and Algorithm 2 is applied to achieve the results in Scenario 4 in Section 4. According to optimal
train control theory ([7,11,12]), as long as these two algorithms are able to connect the initial speed,
the final speed, and all cruising speeds, the obtained speed trajectory can be considered as the speed
trajectory satisfying the necessary conditions of optimal speed trajectory. The next section will verify
the optimality based on the optimized results using the MILP algorithm.
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Algorithm 2 To achieve the optimal speed trajectory and its initial location and final locations between
two cruising speeds

Initialize the initial location s1 of train within the first section with an initial value of θ1 with a small

variable from ηb or 1/ηt to ensure a valid evolution;
Allocate θN with a value of zero
Define a sufficiently small number ε

while |θN − ηb| > ε or |θN − 1/ηt| > ε or sN is outside the range of the next cruising section do

Re-allocate θN and sN with a value of zero.
repeat

Based on the current value of co-state variable θ, speed v and distance s, referring to Table 3 and

Equation (12) to calculate the value of v and θ for the next step within a small distance interval

∆d
Update the current distance with the additional small distance interval

until The train speed v arrives at the next cruising speed or the train location has gone beyond the

next cruising section
The current corresponding θ to be assigned to θN and the current distance to be assigned to sN
Generate a new beginning location s1 by s1 = s1 + ∆s where ∆s is the search step.

end while

Cruising 

speed 1 

Distance 

Speed 

Cruising 

speed 2 

Figure 9. Schematic for the scenario setup in Algorithm 2.

3. Distance-Based Partial Speed Trajectory Optimization Model Using Mixed Integer
Linear Programming

In the MILP model, the entire journey is divided into a series of distance sections. Compared to
other methods, MILP takes advantage in shorter calculation time by giving a reasonable sacrifice in
model precision. On the other hand, MILP also has the high flexibility and efficiency in simulation
and modeling as a programming method. In the previous studies on this area proposed by [6,46,47],
the MILP model could obtain the optimal partial speed trajectory with high efficiency and robustness.

However, there are still some limitations for the previously proposed MILP models ([6,47]).
One of the main limitations is due to the fundamental assumption on the monotonicity of the speed
trajectory during braking or acceleration processes. This issue can be addressed by proposing a
distance-based model where the speed of train is not necessarily monotonous. The determinant
variable will be changed from the distance interval to the speed/kinetic energy at each designated
location, i.e., v0, v1, · · · , vN , as shown in Figure 10. The proposed MILP model can deal with more
practical scenarios between any two arbitrary speed points with a given distance and traveling time.
The result obtained by the MILP model can be verified by the optimality analysis of PMP. The speed
trajectory is discretized into a series of sections. Therefore, each section can represent a part of the
speed trajectory, and the whole speed trajectory could be obtained by connecting each section together.
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In this model, maximum power, traction/braking efforts and acceleration, and motor efficiency are
taken into account by incorporating a set of linear constraints.

Speed 

Distance 

0Initial speed v

1v

iv

1iv +

1Nv −

1,d t∆ ∆ , id t∆ ∆ 1, Nd t −∆ ∆

Travel direction 

Final speed Nv

Figure 10. Discretized speed trajectory model solved by mixed-integer linear programming (MILP).

In Figure 10, the whole speed trajectory is discretized into a series of sections with a distance of
∆d. ∆d should be sufficiently small to ensure high calculation precision. Each section could represent a
part of the trajectory which contains the traveled distance, elapsed time, and consumed energy. N is
assumed to represent the number of sections. The distance for each section is ∆d, and the electrical
energy for each section are referred to as E1, E2, · · · , Ei, · · · , EN , the objective function of the model is
the sum of the electrical energy input/output from the motor in each section as shown in Equation (33).
The speed points are represented by the square of speed as v2

0, v2
2, · · · , v2

i , · · · , v2
N , which are the

determinant variables. Some non-linear constraints such as traveling time will be represented using a
piecewise linear (PWL) relationship between time and speed point. The reason for using the square of
speed as the determinant variable itself is to reduce the number of non-linear variables in the model.

f =
N−1

∑
i=1

Ei. (33)

In each section of the model, the vehicle is regarded moving with a constant acceleration ai
between two adjacent speed points vi and vi+1. In practice, there are many constraints about each
variable in the model. If the maximum acceleration or deceleration rate for the vehicle is assumed as
Amax, the square of speed for each section should satisfy the constraint in Equation (34).

−Amax ≤
vi+1

2 − vi
2

2∆d
≤ Amax. (34)

In order to obtain the drag force applied to the vehicle, the Davis equation is demonstrated in a
quadratic form as shown in Equation (35). The vi,ave is referred to as the average speed of the train for
each section.

Fi,drag = A + Bvi,ave + Cv2
i,ave (35)

where A, B, and C are the Davis coefficients.
Because the optimal variables are assumed to be vi

2, the vi,ave could be obtained by PWL as
shown in Equations (36)–(40). PWL is a kind of method to represent the nonlinear variable in a linear
relationship. α is special ordered set Type 2 (SOS2) ([53]). By definition, SOS2 is a set of variables
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where at most two variables may be nonzero. If two variables are nonzero, they must be adjacent in
the set. In this model, it will consider the vehicle operating on a speed level ranging from 1 to 50 m/s.

1 =αi,1 + αi,2 + · · ·+ αi,j + · · ·+ αi,50 (36)

0 ≤αi,j ≤ 1 j = 1, 2, · · · , 50 (37)

v′i
2
= 502αi,1 + (51− 2)2αi,2 + · · ·+ (51− j)2αi,j + · · ·+ 12αi,50 (38)

vi = 50αi,1 + 49αi,2 + · · ·+ (51− j)αi,j + · · ·+ 1αi,50 (39)

vi,ave =
vi + vi+1

2
. (40)

According to Equation (36), the sum of the set is equal to 1. If there are two nonzero variables, they
should be adjacent and have a sum of 1. Here, v′i

2 is a close approximation of v2
i and is used to directly

present v2
i in the model. This explicitly defines a piecewise linear relationship between v2

i and vi.
The maximum effort limited for the vehicle is Fmax during traction and −F′max during braking.

The maximum power is Pmax during traction and −P′max during braking. ηt and ηb are the motor
efficiency of the rail vehicle during traction and braking procedures. The model has the following
constraints as in Equations (41) and (42).

−ηbF′max∆d ≤ Ei ≤
1
ηt

Fmax∆d (41)

−P′max
∆d

vi,ave
ηb ≤ Ei ≤ Pmax

∆d
ηtvi,ave

. (42)

Because 1/vi,ave and v2
i,ave are both non-linear term in the model, another set of SOS2 variables

denoted by βi for vi,ave are used to present 1/vi,ave and v2
i,ave by vi,ave. Details are shown in Equations

(43)–(47)

1 = βi,1 + βi,2 + · · ·+ βi,j + · · ·+ βi,50 (43)

0 ≤ βi,j ≤ 1 j = 1, 2, · · · , 50 (44)

vi,ave = 50βi,1 + 49βi,2 + · · ·+ (51− j)βi,j + · · ·+ 1βi,50 (45)
1

v′i,ave
=

1
50

βi,1 +
1

49
βi,2 + · · ·+

1
51− j

βi,j + · · ·+
1
1

βi,50 (46)

v′i,ave
2
= 502βi,1 + 492βi,2 + · · ·+ (51− j)2βi,j + · · ·+ 12βi,50. (47)

There are other practical factors such as traveling time, gradient, and speed limit, which could
influence the optimal trajectory. We note that v′i,ave

2 is a close approximation of vi,ave
2 and is used to

directly present vi,ave
2 where appropriate in the model. In the meantime, 1

v′i,ave
is a close approximation

of 1
vi,ave

and is used to calculate relevant time information. If the maximum traveling time is Tmax,
the model imposes the constraint for the whole process, as shown in Equation (48).

Tmax ≥
N−1

∑
i=1

∆ti =
N−1

∑
i=1

∆d
v′i,ave

. (48)

To obtain the optimal result in this MILP model with the consideration of motor efficiency,
Equations (49)–(50) are imposed as constraints. Different from previous studies by [6,46], the efficiency
of the motor is incorporated in this model. When the vehicle is braking, the electrical energy from
the motor is assumed as a positive number. Alternatively, the electrical energy from the motor is a
negative number when the vehicle is in traction. If Ei ≥ 0, Ei

ηb
is larger than Eiηt, Equation (49) will

be applied while Equation (50) is relaxed. The calculated Ei will be minimized while the efficiency
ηt is taken into account to represent the reduction rate when the electrical energy is transformed into
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the kinetic energy, heat, and potential energy. If Ei ≤ 0, Ei
ηb

is smaller than Eiηt, Equation (50) will be
applied while Equation (49) is relaxed. The kinetic energy will be transformed into electrical energy,
potential energy, and heat. ∆hi is the altitude change in each section.

Eiηt − Fi,drag∆d−Mg∆hi −
1
2

M(v′i+1
2 − v′i

2
) ≥ 0 (49)

Ei
ηb
− Fi,drag∆d−Mg∆hi −

1
2

M(v′i+1
2 − v′i

2
) ≥ 0. (50)

In order to ensure all of the braking and traction effort are constrained by the motor characteristics,
Equations (51)–(54) are imposed. Equation (51) ensures the maximum kinetic energy reduction is
no more than the one caused by the maximum braking effort. Equation (52) guarantees that the
maximum kinetic energy increase is no more than the one caused by the maximum tractive effort.
In such a way, the first two equations ensure the maximum tractive/braking efforts are not exceeded.
Similarly, Equations (53) and (54) ensure the constraints of maximum tractive and braking powers are
not violated.

−Fi,drag∆d−Mg∆hi −
1
2

M(v′i+1
2 − v′i

2
) ≤ Fb,max∆d (51)

Fi,drag∆d + Mg∆hi +
1
2

M(v′i+1
2 − v′i

2
) ≤ Ft,max∆d (52)

−Fi,drag∆d−Mg∆hi −
1
2

M(v′i+1
2 − v′i

2
) ≤ Pb,max∆ti (53)

Fi,drag∆d + Mg∆hi +
1
2

M(v′i+1
2 − v′i

2
) ≤ Pt,max∆ti. (54)

Based on the discussions in this section, we propose an MILP model, in which
v′20 , v′21 , · · · , v′2i , · · · , v′2N are the determining variables and the objective function is to minimize the
total net energy consumption from the electrical motor as defined in Equation (33). We consider that
no mechanical braking effort to enable a comparison with the method based on the PMP but other
means of braking can be incorporated in the model by updating the constraints during braking in
Equations (52) and Equation (54) using the maximum braking rate ([6,46]).

4. Results and Discussion

In this section, there are several different scenarios used to demonstrate the optimal speed
trajectory under different constraints. The vehicle parameters are shown in Table 4. v0 is the
initial speed, and vt is the final speed. Without losing generality, v0 is assumed to be larger than
vt. Four scenarios are used to demonstrate the optimal trajectory under different conditions. In these
four scenarios, the traveling distance is assumed to be 18 km and the efficiency for traction and braking
are assumed to be 60%, which could be updated for different traction systems. Similar efficiency data
was proposed by [54]. The constant interval for the MILP method is selected to be 180 m, resulting in
100 intervals for the modeling.

Table 4. Modeling parameters for a typical urban rail vehicle.

M(t) Pmax(kW) Fmax or F′
max(kN) Amax(m/s2) Vmax(m/s) A(kN) B(kN/m/s) C(kN/(m/s)2)

178 5000 200 1.2 45 3.6449 0.001710 0.01134

In the first three scenarios, we demonstrate the optimal partial speed trajectory on a flat track
where only Vtc is considered. Vtc in the first scenario is based on the condition of Vtc > v0, Vtc in the
second scenario is based on the condition of v0 > Vtc > vt, and the third scenario is based on the
condition of Vtc < vt. In addition, taking both Vtc and Vbc into consideration, in Scenario 4, we assume
there are two different slope rates, which are uphill and downhill in the entire trajectory.
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In the following sections, Figures 11–14 demonstrate the results for these four cases using MILP;
Figures 15–18 show the results based on the PMP. Each scenario is selected based on different set
average speed based on the set total journey time and journey length. The final results in all MILP
cases include the optimal speed trajectory, efforts applied, net energy, the total time in theory and the
actual total time. The net energy indicates the electrical energy consumption including traction energy
and regenerative energy. The total time in theory is the total travel time calculated by the MILP model.
The actual total time is the traveling time calculated using a post-process calculation after the trajectory
has been obtained using small distance step iteration. The small difference between these two time
values well reflect the accuracy of the currently used MILP model. Similar to the results obtained by
MILP, the ones using PMP will additionally provide the evolution curves of co-state variable θ.
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Figure 11. Optimal speed trajectory for Scenario 1 based on MILP.
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Figure 13. Optimal speed trajectory for Scenario 3 based on MILP.
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Figure 15. Optimal speed trajectory for Scenario 1 based on the PMP.

Figure 16. Optimal speed trajectory for Scenario 2 based on the PMP.
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Figure 17. Optimal speed trajectory for Scenario 3 based on the PMP.
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4.1. Scenario 1: With a Set Average Speed of 36 m/s, Vtc > v0, v0 = 35 m/s, vt = 1 m/s

Figures 11 and 15 demonstrate the optimal speed trajectory using methods based on MILP and
the PMP respectively for a scenario with an initial speed of 35 m/s, a final speed of 1 m/s, and a
trip time of 500 s. In Figure 11, according to the applied electrical effort, there are four operations
existing in this trajectory, i.e., traction, cruising, coasting, and full braking operations. As shown in
Figure 11, we can easily spot the cruising speed at 40 m/s, and this can be regarded as Vtc. The initial
state of the vehicle could be considered as v < Vtc and θ > 1

ηt
, which corresponds to the deduction

of Case 9.2, where the vehicle will perform the full traction with the increase in speed and decrease
of θ until v = Vtc and θ = 1

ηt
, and takes the cruising operation as the subsequent operation in the

optimal speed trajectory. Because the final speed vt < Vtc, the vehicle will perform the operations in
Case 8, which includes the coasting and full braking. θ will keep decreasing until it goes below ηb,
and the optimal operation of train can be analyzed as in Case 7, in which the train will conduct full
braking toward the speed vt. Similar observations can be made for the results from the PMP as shown
in Figure 15 with four operations coexisting in the trajectory. In Figure 15, we are able to know the
detailed trajectory of the co-state variable. The main challenge for the method based on the PMP is
that the algorithm needs to search for the corresponding Vtc to obtain the final trajectory, while the one
based on MILP needs not. Another interesting observation is that results obtained from the method
based on the PMP have continuous characteristics, while the ones obtained from the method based on
MILP shows discrete characteristics.

4.2. Scenario 2: With a Set Average Speed of 27.7 m/s, vt < Vtc < v0, v0 = 40 m/s, vt = 1 m/s

Figures 12 and 16 demonstrate the optimal speed trajectory using methods based on MILP and
the PMP respectively in Scenario 2 with an initial speed of 40 m/s, a final speed of 1 m/s, and a
trip time of 650 s. In Figure 12, according to the applied electrical effort, there are four operations
performed in the speed trajectory which are coasting, cruising, coasting, and full braking. Therefore,
the cruising speed of the optimal speed trajectory is 29 m/s in this scenario, which can be regarded
as Vtc. During the first and second operations, which are from around 0 to 4200 m and from 4200 to
13,800 m, the vehicle conducts the operations as reflected by the deduction of Case 5 with v > Vtc and
ηb < θ < 1

ηt
. After cruising, the vehicle will coast and decrease the speed, which is in line with the

deduction in Case 8. Since the final speed vt is less than Vtc and due to the continuity of θ, the deduction
of Case 7 will be applicable for the optimal operation of train, and the vehicle will conduct full braking
operation to the final speed vt.

4.3. Scenario 3: With a Set Average Train Speed of 18.0 m/s , Vtc < vt, v0 = 45 m/s, vt = 30 m/s

Figures 13 and 17 demonstrate the optimal speed trajectory using methods based on MILP and
the PMP respectively for Scenario 3 with an initial speed of 45 m/s, a final speed of 30 m/s, and a
traveling time of 1000 s. According to the applied electrical effort, there are four operations which
are full braking, coasting, cruising, and full traction. Since the traveling time is relatively long, Vtc is
lower than the initial and final speed. With this traveling time for the whole trajectory, optimal results
show that the cruising speed is 13 m/s, which could be taken as Vtc. At the beginning of the trajectory,
v > Vtc, and the vehicle is performing the full braking operation. Therefore, θ > 1

ηt
and dθ

dx < 0 could
be obtained according to the deduction of Case 4. With the decreasing of θ, the operation of the vehicle
will turn to coasting and than cruise as the deduction of Case 5.1 with θ coming to ηb < θ < 1

ηt
and

dθ
dx > 0, which matches the trajectory between around 500 to 16,500 m in the optimal speed trajectory
from MILP.

After the cruising operation, the vehicle takes a short coasting between 16,500 and 17,500 m
before it conducts the full traction operation to reach the final speed. This short coasting operation is
considered to be mainly due to the discretization of search space and operation constraints of the model.
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Similar observation can be made on the braking effort imposed at the beginning of the journey. During
the full traction operation when v > Vtc, θ > 1

ηt
could be obtained from the deduction of Case 6.

4.4. Scenario 4: With Uphill and Downhill Slopes, v0 = 1 m/s, vt = 1 m/s

Figures 14 and 18 demonstrate the optimization result using methods based on MILP and the
PMP respectively from Scenario 4, which contains an uphill slope between 0 and 9000 m and an
downhill slope between 9001 and 18,000 m. The forces imposed on the vehicle due to gravities have
been shown in the figures. Based on the MILP optimization result, the speed of cruising operation
under partial traction and partial braking effort are applied, which are 25 and 35 m/s, respectively.
We regard these two values as Vtc and Vbc during the uphill and downhill sections in the optimal speed
trajectory. The cruising speed in this scenario should satisfy vt < Vtc < v0 and vt < Vbc < v0. For the
beginning of the uphill section, the vehicle will perform the full traction operation and then cruising.
v ≤ Vtc will be satisfied. According to the deduction of Case 9.2, θ > 1

ηt
and dθ

dx < 0 should be satisfied
at the same time. The operation will turn to coasting as the deduction of Case 8 with the decreasing of
θ, which is in accordance with the coasting operation in optimal speed trajectory from around 8500
to 9000 m. At the beginning of the downhill section, the vehicle performs the coasting operation and
v < Vtc which matches the deduction of Case 5.1. According to Case 5.1, the vehicle will perform
coasting operation and then cruising with ηb < θ < 1

ηt
and dθ

dx < 0. The deduction of Case 5.1 could
also match the operation from optimal speed trajectory between 9000 and 17,000 m. The full braking
operation will be performed toward the end of trajectory, which could be matched with the deduction
in Case 4. It could also be observed that the motor of the vehicle is working under different modes
when the vehicle is doing cruising operation during uphill and downhill. As is shown in Figure 14,
the motor outputs braking effort when the vehicle is going downhill and outputs traction effort when
it is going uphill. Similarly, the result shown in Figure 18 provides a verification on the ones obtained
from MILP, and it is with smoother curves due to the modeling characteristics of PMP.

4.5. A Summary of Optimization Results

We will now present Table 5 to summarize the optimization results for the four cases. For each
case, we show the total energy for optimized speed trajectory using both methods, the computational
time, and the journey time for both methods. It can be observed that in general the algorithms based
on the PMP have a longer computational time compared to the MILP algorithm.

Table 5. Optimization results for the four cases.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

E(MJ) T1(s) T2(s) E(MJ) T1(s) T2(s) E(MJ) T1(s) T2(s) E(MJ) T1(s) T2(s)

PMP 507 490 40.75 191 664 52.03 166 970 56.16 1133 664 80.68

MILP 519 499 4.30 192 648 1.02 157 995 3.25 1027 698 0.66

Note: E: Energy consumption T1: Journey time T2: Computation time.

4.6. A Critical Analysis of the Results from Both Methods

It is observed that many underlying factors can potentially lead to the difference between the
optimization results obtained from MILP and the PMP. The difference of the results includes different
operation switch locations, different traction and braking efforts during train operation, and different
total journey time and energy consumptions. For example, in Scenario 1, it can be seen from Figures 11
and 15 that the location for the start of coasting is substantially different: around 12.3 km for MILP and
around 13.1 km for the PMP. These underlying factors leading to this phenomenon are not normally
available for direct observations as it is related to the algorithm solver and the fundamental algorithm
design, but can be indirectly reflected by the final results.
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We may argue that the difference is partly caused by the different algorithm design of both
methods, i.e., one indirect and the other direct, in optimal control. In the PMP method, we need to first
determine the constant cruising speed and then obtain the entire trajectory using the search methods
as proposed in the paper. After we evaluate the journey time, we adjust the constant cruising speed to
update the solution. This is a key reason that it is not as easy as it is for the MILP method to achieve an
exact journey time. On the other hand, the results obtained from MILP is relatively straightforward.
We include a time constraint in the model, and the result will automatically provide the final optimal
solution obtained by the solver. In summary, a different algorithm design may unavoidably lead to
different optimization outputs.

Another important underling factor leading to result discrepancy is the modeling discretization
and precision of the MILP model. In the MILP method, we assume that the train is running with a
constant tractive or braking effort within one distance interval. Due to the distance discretization,
the algorithm sometimes is not able to obtain the maximum braking effort in a short distance. Take
Figure 13 as an example. Based on the PMP optimality analysis as shown in Case 4 in Table 3, the initial
co-state variable leads to a full braking and the value of co-state variable will be further reduced due
to a negative derivative. Such a reduction subsequently gives rise to coasting and cruising operations
afterward. As a result, at the beginning, the train is supposed to conduct a full braking operation.
However, the actual braking effort obtained by the model is the average braking effort, not the changing
maximum braking effort. With a reduction of ∆d, this situation can be improved as average efforts will
be closer to the maximum braking efforts. Similarly in the same case, during the full acceleration at the
end of the journey, we are able to demonstrate stair-type tractive efforts reaching a maximum effort of
around 200 kN.

5. Real-World Case Study—Dutch Railway Corridor

Here, we use the the real-world railway system to validate our MILP model. The case study is
based on the real schedule and field data of Dutch railway corridor from Utrecht (Ut) to Houten (Htn),
where the Utrecht Lunetten (Utl) is the intermediate station, see Figure 19. The field data for rolling
stock and the running schedule are shown in Tables 6 and 7.

maximum braking force as shown in Fig. 3(c). If vðsiÞ is lower than 80 km/h then this step can be skipped. The second step is
to calculate the optimal curve over the remaining sections, from the end point of the decelerating curve (or the train’s cur-
rent position if there is none) to the next signal siþ1;signal. This curve assumes that the maximum operation speed over the
remaining section may not exceed 80 km/h, that is, the speed limit of each phase and point should be lower or equal to
80 km/h. With this new speed limit the optimal train trajectory is calculated using the Pseudospectral method.

When the signal aspect at si is Red, the stop curve calculated after the yellow signal aspect at si�1 is followed until stand-
still. The train keeps waiting in rear of the signal until the signal aspect improves.

If the signal at si is Green, the train can proceed if the planned train trajectory covers train operation in the section
between si and siþ1. The green signal may also appear after yellow or red signals. In that case, a new trajectory is calculated.
si;end is set as the closest next stop point. A multiple phase train trajectory model is generated with the method in Section 2.3
and solved with the Pseudospectral method with (33) as the objective function for each phase to minimize delay and energy
consumption.

3.4. Green wave policy

The signal response policy above has a proper response to the different signal aspects. But this also means that the train
has to decelerate to a lower speed when meeting yellow signal aspects and sometimes needs to re-accelerate when the sig-
nal aspect improves, energy-efficiency and riding comfort are not guaranteed. In practice, we like to avoid frequent decel-
eration and re-acceleration, and have the train operate in a more smooth way. The green wave policy is a train operation
strategy which avoids yellow signals and has the train operate under green signals for energy-efficient operation. The green
wave policy makes the trains only encounter green signals and ultimately the railway network achieves smoother operations
and as additional benefits, reduced energy consumption and reduced risk of signals passed at danger (Caimi et al., 2012;
Corman et al., 2009).

It is based on the assumption that the states of the upcoming signals along the running track can be predicted. Signalling
states include the changes of signal aspects and corresponding changing times. Take one signal ps along the train journey as
an example, and denote the predicted time that the signal aspect changes to green as Tps ;min. A green wave means that the
train will only pass through the signal with a green aspect. So Tps ;min is the earliest possible time for the train to pass through
signal ps. That is

tðpsÞ P Tps ;min; ð34Þ
where tðpsÞ is the time for the train to pass through signal ps.

Every signal along the train journey has such a time constraint in the green wave policy. Those constraints are included in
the train path envelope. In other words, the train path envelope not only consists of the time and speed constraints at time-
table points but also the time constraints at signals.

For the train trajectory calculation with green wave policy, the train journey is partitioned into multiple phases by critical
points of speed limits or gradients and curves and target positions of the TPE, including signal positions. The target windows
(34) are the boundary conditions at the phases that start or end at a signal. (33) is adopted as the cost function for each phase
since the train is delayed. The optimal model is then solved using a Pseudospectral method.
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Table 6. Parameters for a dutch railway vehicle.

M(t) Pmax(kW) Fmax(kN) Amax(m/s2) ∆d(m) A(kN) B(kN/m/s) C(kN/(m/s)2)

233.2 1918 170 0.8 300 2.2601 0.00125 0.00006
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Table 7. Track length and running time from Utrecht (Ut) to Houten (Ht).

Track Length (m) Scheduled Running Time (s)

Ut–Utl 4330 240

Utl–Htn 3619 180

The maximum mechanical power and traction force are given and the maximum braking rate is
the only accessible parameters to measure the train acceleration and deceleration motions. Due to the
flexibility of our proposed model, the values for each distance interval ∆di are not strictly the same and
can be changed to fit the different route length, the borders of speed limit switch points, and the gradient
switch points. Since we only consider the minimization of the mechanical energy in this case and there is
no regenerative braking in this railway corridor, the motor efficiency ηt is set to be 1, and ηb 0.

The speed limit and the route gradient of this corridor are shown in Figure 20. The same corridor
is studied in [4] using the pseudospectral method (PSOPT), and the speed trajectories of it is also put
together with the results of our model. In Figures 21 and 22, we show the optimal speed trajectories
and the corresponding traction/braking curves yielded by our MILP method and the PSOPT method.
The two speed profiles are similar and the MILP model brings about a more smooth trajectory,
while PSOPT brings about more fluctuating ones. The traction and braking curves for two methods
remain similar.

The results including the energy consumption and the computation time are shown in Table 8.
The energy consumption and the computation time of this railway corridor obtained by the two
methods are not significantly different. The comparison shows that the proposed MILP method is
flexible and robust in dealing with the real-world case even with complex route constraints.
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Figure 21. Optimal speed trajectory for real case based on MILP and the pseudospectral method (PSOPT).
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Figure 22. Optimal traction/braking curves for real case based on MILP and PSOPT.

Table 8. Results of the train speed trajectories optimization.

Energy Consumption (MJ) Computation Time (s)

MILP PSOPT MILP PSOPT

Ut–Utl 70.86 70.92 7.55 3.80

Utl–Htn 87.95 85.82 2.00 2.20
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6. Conclusions and Future Work

This paper is focused on an adaptive partial speed trajectory optimization problem with
considerations of motor efficiency for both traction and regenerative braking. Different from previous
studies, the adaptive partial speed trajectory optimization is targeted on cases with non-zero initial
and final speed states and has completely removed the assumption of speed monotonicity as proposed
in previous papers [6,47], leading to its flexibility on various engineering cases. In particular,
motor efficiency for both traction and regenerative braking as a key influencing factor for energy
consumptions has been considered in this paper. With explicit discussions on the optimality analysis
for the optimal train operation between two non-zero speed points, two methods based on the PMP
and MILP are applied to obtain the optimal partial speed trajectory respectively.

We draw the following conclusions.

• The PMP is used to provide a theoretical analysis, and a numerical algorithm can be developed
to obtain the optimal speed trajectory. In the meantime, the PMP could be used to derive
theoretical deductions for different situations and verify the results obtained from mathematical
programming, as has been done in this paper.

• Mathematical programming such as MILP provides a handy tool to optimize the train speed
trajectory. This method is based on the mathematical programming method and can be easily
modified and improved to incorporate other engineering constraints. For example, based on
the proposed MILP model, we can take into account the route information, motor efficiency,
and on-board energy storage devices as shown in the real case study, compared and contrasted in
another methods proposed in other papers [4].

• Discretization introduced in mathematical programming will inevitably introduce modeling
errors and reduce the result precisions, though the requirement for speed control precision in
large inertial systems such as rail transportation is usually not very high. On the other hand,
the search space for the model based on mathematical programming will largely affect the
calculation results and demand more delicate design of the model, sometimes with a sacrifice on
the modeling precision.

In the theoretical analysis, we make a strong assumption with no gradients and speed limits, which
limits the generality of our discussions. The detailed case studies on different scenarios demonstrate the
robustness of the proposed methods based on the PMP and MILP, but further studies are still needed
by implementing more constraints to reflect more complicated engineering operations. The discretized
modeling in the MILP-based method takes the average tractive/braking effort within a discretized
distance and is unable to reach the changing maximum effort during acceleration. This will lead to
sub-optimal solutions. A detailed critical discussion on the results from both methods can be found in
Section 4.6.

Future work needs to address issues arising from emerging traction technologies such as on-board
energy storage devices, three-dimensional motor efficiency maps, and multiple train energy interactions
within an electrical network. The proposed MILP model can be well extended for more complex
integrated optimization by considering multi-train interactions and real-time signaling constraints.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
PMP Pontryagin’s maximum principle
ATO automatic train operation
MILP mixed-integer linear programming
ACO ant colony algorithm
GA genetic algorithm
SQP sequential quadratic programming
PSOPT pseudospectral method

References

1. Waters, C.; Farrell, M.; Grainger, R.; Leahy, P.; Mellitt, B. Dublin area rapid transit. IEE Proc. B Electr.
Power Appl. 1988, 135, 134–150. [CrossRef]

2. Adinolfi, A.; Lamedica, R.; Modesto, C.; Prudenzi, A.; Vimercati, S. Experimental assessment of energy
saving due to trains regenerative braking in an electrified subway line. IEEE Trans. Power Deliv. 1998, 13,
1536–1542. [CrossRef]

3. Lu, S.; Yang, J.; Xue, F.; Ting, T.O.; Zhu, H. Partial Speed Trajectory Optimization for Urban Rail Vehicles
with Considerations on Motor Efficiency. In Proceedings of the 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6.

4. Wang, P.; Goverde, R.M. Multiple-phase train trajectory optimization with signalling and operational
constraints. Transp. Res. Part C Emerg. Technol. 2016, 69, 255–275. [CrossRef]

5. Ye, H.; Liu, R. Nonlinear programming methods based on closed-form expressions for optimal train control.
Transp. Res. Part C Emerg. Technol. 2017, 82, 102–123. [CrossRef]

6. Lu, S.; Wang, M.Q.; Weston, P.; Chen, S.; Yang, J. Partial Train Speed Trajectory Optimization Using
Mixed-Integer Linear Programming. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2911–2920. [CrossRef]

7. Khmelnitsky, E. On an optimal control problem of train operation. IEEE Trans. Automatic Control 2000, 45,
1257–1266. [CrossRef]

8. Liang, Z.; Wang, Q.; Lin, X. Energy-efficient handling of electric multiple unit based on maximum principle.
In Proceedings of the 2014 33rd Chinese Control Conference (CCC), Nanjing, China, 28–30 July 2014; pp.
3415–3422.

9. Howlett, P. The Optimal Control of a Train. Ann. Oper. Res. 2000, 98, 65–87. [CrossRef]
10. Liu, R.R.; Golovitcher, I.M. Energy-efficient operation of rail vehicles. Transp. Res. Part A Policy Pract. 2003,

37, 917–932. [CrossRef]
11. Albrecht, A.; Howlett, P.; Pudney, P.; Xuan, V.; Zhou, P. The key principles of optimal train control—Part

1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching
points. Transp. Res. Part B Methodol. 2016, 94, 482–508.

12. Albrecht, A.; Howlett, P.; Pudney, P.; Xuan, V.; Zhou, P. The key principles of optimal train control—Part
2: The key principles of optimal train control—Part 2: Existence of an optimal strategy, the local energy
minimization principle, uniqueness, computational techniques. Transp. Res. Part B Methodol. 2016, 94,
509–538. [CrossRef]

13. Bocharnikov, Y.V.; Tobias, A.M.; Roberts, C.; Hillmansen, S.; Goodman, C.J. Optimal driving strategy for
traction energy saving on DC suburban railways. IET Electr. Power Appl. 2007, 1, 675–682. [CrossRef]

14. Lu, S.; Hillmansen, S.; Ho, T.K.; Roberts, C. Single-train trajectory optimization. IEEE Trans. Intell.
Transp. Syst. 2013, 14, 743–750. [CrossRef]

15. Li, X.; Lo, H.K. An energy-efficient scheduling and speed control approach for metro rail operations.
Transp. Res. Part B Methodol. 2014, 64, 73–89. [CrossRef]

16. Zhao, N.; Roberts, C.; Hillmansen, S.; Nicholson, G. A multiple train trajectory optimization to minimize
energy consumption and delay. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2363–2372. [CrossRef]

http://dx.doi.org/10.1049/ip-b.1988.0016
http://dx.doi.org/10.1109/61.714859
http://dx.doi.org/10.1016/j.trc.2016.06.008
http://dx.doi.org/10.1016/j.trc.2017.06.011
http://dx.doi.org/10.1109/TITS.2016.2535399
http://dx.doi.org/10.1109/9.867018
http://dx.doi.org/10.1023/A:1019235819716
http://dx.doi.org/10.1016/j.tra.2003.07.001
http://dx.doi.org/10.1016/j.trb.2015.07.024
http://dx.doi.org/10.1049/iet-epa:20070005
http://dx.doi.org/10.1109/TITS.2012.2234118
http://dx.doi.org/10.1016/j.trb.2014.03.006
http://dx.doi.org/10.1109/TITS.2014.2388356


Energies 2018, 11, 3302 32 of 33

17. Yang, X.; Chen, A.; Ning, B.; Tang, T. A stochastic model for the integrated optimization on metro timetable
and speed profile with uncertain train mass. Transp. Res. Part B Methodol. 2016, 91, 424–445. [CrossRef]

18. Liu, F.; Xun, J.; Bin, N. An optimization method for train driving trajectory in urban rail systems.
In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation
(YAC), Wuhan, China, 11–13 November 2016; pp. 413–418.

19. Masafumi, M.; Kunihiko, M. Energy Saving Speed and Charge/Discharge Control of a Railway Vehicle with
On-board Energy Storage by Means of an Optimization Model. IEEJ Trans. Electr. Electron. Eng. 2010, 4,
771–778.

20. Wang, Y.; Schutter, B.D.; van den Boom, T.J.; Ning, B. Optimal trajectory planning for trains—A
pseudospectral method and a mixed integer linear programming approach. Transp. Res. Part C Emerg. Technol.
2013, 29, 97–114. [CrossRef]

21. Li, X.; Lo, H.K. Energy minimization in dynamic train scheduling and control for metro rail operations.
Transp. Res. Part B Methodol. 2014, 70, 269–284. [CrossRef]

22. Lu, S.; Weston, P.; Hillmansen, S.; Gooi, H.B.; Roberts, C. Increasing the Regenerative Braking Energy for
Railway Vehicles. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2506–2515. [CrossRef]

23. Haahr, J.T.; Pisinger, D.; Sabbaghian, M. A dynamic programming approach for optimizing train speed
profiles with speed restrictions and passage points. Transp. Res. Part B Methodol. 2017, 99, 167–182. [CrossRef]

24. Wang, P.; Goverde, R.M. Multi-train trajectory optimization for energy efficiency and delay recovery on
single-track railway lines. Transp. Res. Part B Methodol. 2017, 105, 340–361. [CrossRef]

25. Zhao, N.; Roberts, C.; Hillmansen, S.; Tian, Z.; Weston, P.; Chen, L. An integrated metro operation
optimization to minimize energy consumption. Transp. Res. Part C Emerg. Technol. 2017, 75, 168–182.
[CrossRef]

26. Tian, Z.; Weston, P.; Zhao, N.; Hillmansen, S.; Roberts, C.; Chen, L. System energy optimisation strategies for
metros with regeneration. Transp. Res. Part C Emerg. Technol. 2017, 75, 120–135. [CrossRef]

27. Ichikawa, K. Application of optimization theory for bounded state variable problems to the operation of
train. Bull. Jpn. Soc. Mech. Eng. 1968, 11, 857–865. [CrossRef]

28. Maksimov, V. Optimal control of automatic subway trains. Proc. Mosc. Railw. Eng. Inst. 1971, 388, 103–114.
29. Strobel, H.; Horn, P. On energy-optimum control of train movement with phase constraints. Electr. Inform.

Energy Tech. J. 1973, 6, 304–308.
30. Milroy, I. Aspects of Automatic Train Control. Ph.D. Thesis, Loughborough University, Loughborough, UK, 1980.
31. Golovitcher, I. An analytical method for optimum train control computation. Izvestiya Vuzov Seriya

Electrome Chanica 1986, 3, 59–66.
32. Howlett, P. An optimal strategy for the control of a train. ANZIAM J. 1990, 31, 454–471. [CrossRef]
33. Cheng, J.; Howlett, P. Application of critical velocities to the minimisation of fuel consumption in the control

of trains. Automatica 1992, 28, 165–169.
34. Cheng, J.; Howlett, P. A note on the calculation of optimal strategies for the minimization of fuel consumption

in the control of trains. IEEE Trans. Automatic Control 1993, 38, 1730–1734.
35. Howlett, P.; Pudney, P. Energy Efficient Train Control; Advances in Industrial Control; Springer: Berlin,

Germany, 1995.
36. Howlett, P. Optimal strategies for the control of a train. Automatica 1996, 32, 519–532. [CrossRef]
37. Howlett, P.G.; Cheng, J. Optimal driving strategies for a train on a track with continuously varying gradient.

ANZIAM J. 1997, 38, 388–410. [CrossRef]
38. Cheng, J.; Davydova, Y.; Howlett, P.; Pudney, P. Optimal driving strategies for a train journey with non-zero

track gradient and speed limits. IMA J. Manag. Math. 1999, 10, 89–115. [CrossRef]
39. Howlett, P.; Pudney, P.; Vu, X. Local energy minimization in optimal train control. Automatica 2009, 45,

2692–2698. [CrossRef]
40. Albrecht, A.R.; Howlett, P.G.; Pudney, P.J.; Vu, X. Energy-efficiency train control: From local convexity to

global optimization and uniqueness. Automatica 2013, 49, 3072–3078. [CrossRef]
41. Scheepmaker, G.M.; Goverde, R.M.P. Energy-efficient train control including regenerative braking

with catenary efficiency. In Proceedings of the 2016 IEEE International Conference on Intelligent Rail
Transportation (ICIRT), Birmingham, UK, 23–25 August 2016; pp. 116–122.

42. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; Massachusetts
Institute of Technology Press: Cambridge, MA, USA, 2009.

http://dx.doi.org/10.1016/j.trb.2016.06.006
http://dx.doi.org/10.1016/j.trc.2013.01.007
http://dx.doi.org/10.1016/j.trb.2014.09.009
http://dx.doi.org/10.1109/TITS.2014.2319233
http://dx.doi.org/10.1016/j.trb.2016.12.016
http://dx.doi.org/10.1016/j.trb.2017.09.012
http://dx.doi.org/10.1016/j.trc.2016.12.013
http://dx.doi.org/10.1016/j.trc.2016.12.004
http://dx.doi.org/10.1299/jsme1958.11.857
http://dx.doi.org/10.1017/S0334270000006780
http://dx.doi.org/10.1016/0005-1098(95)00184-0
http://dx.doi.org/10.1017/S0334270000000746
http://dx.doi.org/10.1093/imaman/10.2.89
http://dx.doi.org/10.1016/j.automatica.2009.07.028
http://dx.doi.org/10.1016/j.automatica.2013.07.008


Energies 2018, 11, 3302 33 of 33

43. Hamid, H.A.; Nicholson, G.L.; Douglas, H.; Zhao, N.; Roberts, C. Investigation into train positioning systems
for saving energy with optimised train trajectories. In Proceedings of the 2016 IEEE International Conference
on Intelligent Rail Transportation (ICIRT), Birmingham, UK, 23–25 August 2016; pp. 460–468.

44. Zhou, L.; Tong, L.C.; Chen, J.; Tang, J.; Zhou, X. Joint optimization of high-speed train timetables and speed
profiles: A unified modeling approach using space-time-speed grid networks. Transp. Res. Part B Methodol.
2017, 97, 157–181. [CrossRef]

45. Yin, J.; Tang, T.; Yang, L.; Gao, Z.; Ran, B. Energy-efficient metro train rescheduling with uncertain time-
variant passenger demands: An approximate dynamic programming approach. Transp. Res. Part B Methodol.
2016, 91, 178 – 210.

46. Lu, S.; Weston, P.; Zhao, N. Maximise the regenerative braking energy using linear programming.
In Proceedings of the 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC),
Qingdao, China, 8–11 October 2014; pp. 2499–2504.

47. Lu, S.; Xue, F.; Ting, T.O.; Du, Y. Speed trajectory optimisation for electric vehicles in eco-approach and
departure using linear programming. In Proceedings of the IET International Conference on Intelligent and
Connected Vehicles (ICV 2016), Chongqing, China, 22–23 September 2016; pp. 1–6.

48. Tan, Z.; Lu, S.; Xue, F.; Bao, K. A Speed Trajectory Optimization Model for Rail Vehicles Using Mixed
Integer Linear Pragramming. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6.

49. Scheepmaker, G.M.; Goverde, R.M.; Kroon, L.G. Review of energy-efficient train control and timetabling.
Eur. J. Oper. Res. 2017, 257, 355 – 376. [CrossRef]

50. Yang, X.; Li, X.; Ning, B.; Tang, T. A Survey on Energy-Efficient Train Operation for Urban Rail Transit.
IEEE Trans. Intell. Transp. Syst. 2016, 17, 2–13. [CrossRef]

51. Meng, L.; Corman, F.; Zhou, X.; Tang, T. Special issue on Integrated optimization models and algorithms in
rail planning and control. Transp. Res. Part C Emerg. Technol. 2018, 88, 87–90. [CrossRef]

52. Bao, K.; Lu, S.; Xue, F.; Tan, Z. Optimization for Train Speed Trajectory Based on Pontryagin’s Maximum
Principle. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6.

53. IBM. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, Version 12 Release ed.; International
Business Machines Corporation: Armonk, NY, USA, 2014.

54. Huang, X.; Wang, J. Nonlinear model predictive control for improving energy recovery for electric vehicles
during regenerative braking. In Proceedings of the 2011 50th IEEE Conference on Decision and Control and
European Control Conference, Orlando, FL, USA, 12–15 December 2011; pp. 7458–7463.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.trb.2017.01.002
http://dx.doi.org/10.1016/j.ejor.2016.09.044
http://dx.doi.org/10.1109/TITS.2015.2447507
http://dx.doi.org/10.1016/j.trc.2018.01.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review

	Optimality Analysis Based on Pontryagin's Maximum Principle
	Optimality Analysis for High Train Speed
	Case 1: v>Vbc, <b 
	Case 2: v>Vbc, b<<1t
	Case 3: v>Vbc, >1t

	Optimality Analysis for Medium Train Speed
	Case 4: Vtc<v<Vbc, <b
	Case 5: Vtc<v<Vbc, b<<1t
	Case 6: Vtc<v<Vbc, >1t

	Optimality Analysis for Low Train Speed
	Case 7: v<Vtc, <b
	Case 8: v<Vtc, b<<1t
	Case 9: v<Vtc, >1t

	Summary of Optimality Analysis and the Developed Numerical Algorithms

	Distance-Based Partial Speed Trajectory Optimization Model Using Mixed Integer Linear Programming
	Results and Discussion
	 Scenario 1: With a Set Average Speed of 36 m/s, Vtc>v0, v0 = 35 m/s, vt = 1 m/s
	 Scenario 2: With a Set Average Speed of 27.7 m/s, vt<Vtc<v0, v0 = 40 m/s, vt = 1 m/s 
	Scenario 3: With a Set Average Train Speed of 18.0 m/s ,  Vtc<vt, v0 = 45 m/s, vt = 30 m/s 
	Scenario 4: With Uphill and Downhill Slopes, v0 = 1 m/s, vt = 1 m/s
	A Summary of Optimization Results
	A Critical Analysis of the Results from Both Methods

	Real-World Case Study—Dutch Railway Corridor
	Conclusions and Future Work
	References

