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Abstract: In this paper, an adaptive observer based data driven control scheme is proposed for
the voltage control of dispatchable distributed energy resource (DER) systems which work in
islanded operation. In the design procedure of the proposed control scheme, we utilize the novel
transformation and linearization technique for the islanded DER system dynamics, which is proper
for the proposed data driven control algorithm. Moreover, the pseudo partial derivative (PPD)
parameter matrix can be estimated online by multiple adaptive observers. Then, the adaptive
constrained controller is designed only based on the online identification results derived from the
input/output (I/O) data of the controlled DER system. It is theoretically proven that all the signals in
the closed-loop control system are uniformly ultimately bounded based on the Lyapunov stability
analysis approach. In addition, the results of the simulation comparison are given to verify the
voltage control effect of the proposed control scheme.

Keywords: data-driven control, distributed energy resource (DER), islanded operation, dynamic
linearization technique, multi adaptive observer

1. Introduction

Solar energy is clean, without pollution, and inexhaustible, so the application of solar energy
has been a wide concern of the academic and industrial circles. In general, many remote areas and
islands around the world are rich in solar energy. Therefore, it is conducive to build a micro-grid
by forming a dispatchable photovoltaic (PV) distributed energy resource (DER) system. When the
micro-grid works in islanded operation mode, the DER system can be used as the main power supply
for micro-grid to provide voltage and frequency support which can sufficiently exert the advantage of
the fast response of the DER system. However, one of the main challenges, is to keep the stability of the
amplitude and frequency of micro-grid‘s ac voltage under the unbalanced network conditions [1,2].

In general, islanded operation is not permitted under the present utility standards [3]. However,
under the precondition that the DER system has the capacity to supply the total power of the local loads,
the stand-alone islanded system can be applied [4–6]. In recent years, there has been much research on
how to realize the fine control of the islanded DER system. In [6], the stability of voltage and frequency
of the stand-alone DER system was maintained by adopting the proposed linear quadratic Gaussian
controller which utilizes the technique of robust control. However, the response of the system
output voltage was very slow, and the frequency of the output voltage was unstable. In [7], a novel
unified controller was proposed for regulating the output voltage ofthe multibus micro-grid system.
In addition, simulation by using the real-time digital simulator (RTDS) can verify the effectiveness
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of the proposed voltage control scheme. However, from the experimental waveform, it can be seen
that the voltage waveform has great distortion and the output power of the system also has jitter.
In [8], a control strategywas proposed for multiple DER systems which both operate in islanded mode.
However, the systems obtained a favorable control effect only when the load had the characteristics
of being linear and balanced. In order to reduce the influence of the load on the performance of
the DER islanded system, the authors proposed a control method by adopting the techniques of
feed-forward and decoupling compensation in [5]. However, the control strategy designed in this
paper is based on PID control, and the output voltage of the system has a large static error when
tracking the reference voltage. In [9], a control scheme based on the repetitive and deadbeat control was
proposed for dispatchable electronically-interfaced DER islanded systems under the unbalanced load
condition. However, the fluctuation of the current in the system seemed to have a great influence on
the voltage, especially when the non-linear load was connected. Sliding mode control (SMC) has been
successfully applied in power systems [10–15]. In [13], a fractional-order SMC strategy with black-start
ability was designed to improve the quality of the output ac voltage of the host DER islanded systems.
In [14], a modified terminal sliding-mode control (TSMC) with integral compensation method was
proposed as a way of controlling the voltage-sourced converter (VSC) which drives varying loads.
In [15], an adaptive robust total sliding-mode control (ARTSMC) scheme was proposed to stabilize the
voltage and frequency of the micro-grid. Moreover, the proposed ARTSMC scheme has good control
performance between the two operation modes (grid-connected mode and off-grid mode). However,
most of the control strategies for DER systems studied at present are model-based control strategies
and their control effects depend on the accuracy of the dynamic model.

With the development of technology, the performance of control system has become increasingly
demanding. The excellent integrated control methods are getting more and more attention. Different
from traditional control, the new methods require little model information and can be computed
online easily. Therefore, control methods based on the data-driven approach were proposed in this
background [16–18]. Model-free adaptive control (MFAC), one of the data-driven control (DDC)
methods, has been studied by some scholars [17,19–22]. In [23], an improved MFAC algorithm was
proposed for the coordination design of a wide-area power system stabiliser (WAPSS) to ensure the
cooperation of the controllers under different operating conditions without tedious system modelling.
In [24], the authors proposed a distributed MFAC scheme for multi-agent systems to solve consensus
tracking problems only by using the input/output (I/O) data of each agent. Theoretical analysis,
simulation, and practical application proved that the MFAC method has the advantages of strong
robustness, small computational burden and easy implementation [19–21,25,26].

In this paper, we propose a novel data-driven MFAC method based on the multiple adaptive
observer technique to accommodate the multi-input multi-output (MIMO) DER system. The design of
the proposed method only depends on the I/O data of the MIMO controlled plant. Compared with
other control methods, the MFAC method does not depend on the information from an accurate
dynamic model, thus avoiding the control effect deterioration caused by an incomplete model.
Moreover, the pseudo partial derivative (PPD) parameter matrix can be estimated online by the
multiple adaptive observer. Then, the adaptive constrained controller is designed based on the online
identification of multiple observer to solve the control input rate constraint problem of DER system.
The simulation and comparison results are given to verify the superiority of the proposed method.
The major contributions and innovations of this paper are displayed as follows.

1. The model-free control method is applied to the voltage control of the DER system, which reduces
the dependence of the controller on model information.

2. The PPD parameter estimation algorithm is designed based on the multiple observer technique,
which can guarantee the errors of observation converge to 0.

3. We utilize the novel transformation and linearization technique for the islanded DER system
dynamics. The main advantage of this method is that the dynamics of the MIMO DER system are
transformed and linearized properly for the proposed MFAC algorithm.
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4. By constructing the Lyapunov function, it is theoretically proven that all the signals in the
closed-loop control system are bounded.

The rest of this paper is organized as follows. In Section 2, the mathematical model of the DER
islanded system is given. Then, we utilize the novel transformation and linearization technique for
the islanded DER system dynamics, which is proper for the following proposed MFAC algorithm.
In Section 3, the multiple observer-based data-driven model-free adaptive constrained control scheme
and the proof of stability for control system are presented. In Section 4, simulation results and
comparisons are given to demonstrate the effectiveness of the proposed MFAC scheme. Finally,
we summarize the conclusions in Section 5.

2. Dynamics Transformation and Linearization of Islanded DER System

2.1. Mathematic Model of the Islanded DER System

As shown in Figure 1, the dynamics of the islanded DER system can be expressed as the
space-phasor equations, as follows [13]:

C
d~Ux

dt
= ~I −~Ix (1)

Ls
d~I
dt

= ~Uv − ~Ux − R~I (2)

where ~Ux, ~I, ~Ix and ~Uv are defined as the space phasor corresponding to Uxabc, Iabc, Ixabc and Uvabc,
respectively.

Load

Proposed
Controller

   abc
dq

   abc
dq
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C
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Cdc
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VSC

Ls
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Figure 1. Schematic diagram of an islanded DER system.

In view of (1), (2) and Equation ~Uv = (Udc/2)~τ, which is related to the PWM modulating signals
(τabc) of the VSC, we can obtain

d2~Ux

dt2 =
Udc~τ

2LsC
− R

Ls

d~Ux

dt
−

~Ux

LsC
− 1

C
d~Ix

dt
− R~Ix

LsC
. (3)

Express (3) in the case of its dq components. Then, Equation (3) can be split into (4) and (5),
where w denotes the frequency of all the abc-frame variables:

d2Uxd
dt2 = 2w

dUxq

dt
− R

Ls

dUxd
dt

+

(
w2 − 1

LsC

)
Uxd +

Rw
Ls

Uxq −
1
C

dIxd
dt

+
w
C

Ixq −
R

LsC
Ixd +

Udc
2LsC

τd (4)
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d2Uxq

dt2 = −2w
dUxd

dt
− R

Ls

dUxq

dt
+

(
w2 − 1

LsC

)
Uxq −

Rw
Ls

Uxd −
1
C

dIxq

dt
− w

C
Ixd −

R
LsC

Ixq +
Udc

2LsC
τq. (5)

2.2. Dynamics Transformation and Linearization Technique

This section presents the novel transformation and linearization method of the islanded DER
system dynamics, which is proper for the proposed MFAC scheme.

First, Equations (4) and (5) can be rewritten as the following state-space form:

Ü = MU̇ + Zτ + NU + Pİ + QI′ (6)

where U = (Uxd, Uxq)T , İ = ( İxd, İxq)T , I′ = (Ixq, Ixd)
T , τ = (τd, τq)T = (τ1, τ2)

T ,

M =

[
− R

Ls
2w

−2w − R
Ls

]
, Z = Udc

2LsC , N =

[
(w2 − 1

LsC )
Rw
Ls

(w2 − 1
LsC ) −

Rw
Ls

]
, P = − 1

C , Q =

[
w
C − R

LsC
−w

C − R
LsC

]
.

Then, the state-space form of DER system can be approximately transformed into the following
discrete form

Ü(k) = MU̇(k) + Zτ(k) + NU(k) + Pİ(k) + QI′(k). (7)

Define y(k) = U̇(k) = [y1(k), y2(k)]T . Thus, using the condition of ẏ(k) = (y(k + 1)− y(k)) /T,
the system discrete form (7) can be rewritten as

y(k + 1) = (1 + MT)y(k) + ZTτ(k) + NTU(k) + PTİ(k) + QTI′(k) (8)

where T denotes the sampling time.
In view of the discrete system (8), with

∥∥∥[∆y(k), ∆τ(k), ∆U(k), ∆İ(k), ∆I′(k)
]T
∥∥∥ 6= 0 for each

fixed k, there must exist Φ(k), called the PPD matrix. By combining the condition ∆y(k + 1) = y(k +
1)− y(k) = [∆y1(k + 1), ∆y2(k + 1)]T , we can transform (8) into the following dynamic linearization
data model:

∆y(k + 1) = φ1(k)∆y(k) + φ2(k)∆τ(k) + φ3(k)∆U(k)
+φ4(k)∆İ(k) + φ5(k)∆I′(k).

(9)

That is
∆y(k + 1) = Φ(k)∆x(k) (10)

where ∆x(k) =
[
∆y(k), ∆τ(k), ∆U(k), ∆İ(k), ∆I′(k)

]T , and Φ(k) = [φ1(k), φ2(k), φ3(k), φ4(k), φ5(k)] =
[Φ1(k), Φ2(k)]T , φ1(k), φ2(k), φ3(k), φ4(k), φ5(k) ∈ R2×2, Φ1, Φ2 ∈ R10×1,

φl(k) =

[
φl11(k) φl12(k)
φl21(k) φl22(k)

]
, l = 1, · · · , 5.

‖Φ(k)‖ ≤ c and ‖∆x(k)‖ ≤ ε. c and ε denote the positive constants.
The linearization model (10) can also be divided into the n MISO equations. The ith MISO

dynamic linearization data model is

∆yi(k + 1) = Φi(k)∆x(k)=∆xT(k)Φi
T(k), i = 1, 2. (11)

3. Multiple Observer-Based Model-Free Adaptive Control Design for DER System

In this section, we put forward a novel MFAC scheme based on the dynamic linearization data
model of the DER system. The major contributions include: (1) an unknown PPD parameter estimation
algorithm is designed based on the multiple observer technique; (2) the constrained MFAC scheme
design procedures are given; and (3) the Lyapunov function is constructed to prove the stabilization of
closed-loop systems.
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3.1. Multiple Observer-Based PPD Parameter Estimation Algorithm

Based on the above section, we know that the (10) can be transformed into the two MISO
models (11). For the ith (11), we propose the parameter identification observer which has the
following structure:

ŷi(k + 1) = ŷi(k) + ∆xT(k)Φ̂T
i (k) + Kiei(k) (12)

where ei(k) = yi(k)− ŷi(k) represents the estimation error of the output, Φ̂i(k) denotes the estimation
of the ith row parameter vector of PPD, and we choose the gain Ki by calculating Fi = 1− Ki in the
unit circle.

Therefore, by taking Equations (11) and (12) into account, the output dynamic estimation error
can be obtained by

ei(k + 1) = ∆xT(k)Φ̃T
i (k) + Fiei(k) (13)

where Φ̃i(k) = Φi(k) − Φ̂i(k) denotes the error of PPD parameter estimation. Then, the adaptive
update algorithm for the estimated parameter vector Φi(k) is given by

Φ̂T
i (k + 1) = Φ̂T

i (k) + ∆x(k)Hi(k)(ei(k + 1)− Fiei(k)). (14)

We define the gain Hi(k) as follows:

Hi(k) = 2
(
‖∆x(k)‖2 + νi

)−1
(15)

in which νi denotes a positive constant; therefore, Hi(k) is positive definite for all k. Notice that,
with the assumption that ‖∆x(k)‖ ≤ ε, Hi(k) can be lower bounded as

Hi(k) ≥
2

ε2 + νi
= κi > 0. (16)

In view of Equations (13) and (14) and with the condition of Φi(k+ 1) ≈ Φi(k), the error dynamics
are obtained as

ei(k + 1) = ∆xT(k)Φ̃T
i (k) + Fiei(k)

Φ̃i(k + 1) = ΓiΦ̃i(k)
(17)

where Γi is given by
Γi = Ii − ∆x(k)Hi(k)∆xT(k) (18)

and Ii represents the (2× 2) identity matrix.

Theorem 1. The equilibrium
[
ei, Φ̃T

i
]T

=
[
0, 0T

2×1
]T of the system (17) is globally uniformly stable. Moreover,

the estimated error ei(k) converges asymptotically to 0.

Proof. Construct the following Lyapunov function

V1(k) = Gei
2(k) + λΦ̃T

i (k)Φ̃i(k) (19)

where λ and B denote positive constants, and G can be calculated by G− Fi
2G = B. In view of (17),

we obtain
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V1(k + 1)−V1(k)
= −(G− Fi

2G)ei
2(k) + 2GFiei(k)∆xT(k)Φ̃T

i (k)
−Φ̃i(k)

[
λ(Ii − Γi

TΓi)− ∆x(k)G∆xT(k)
]

Φ̃T
i (k)

= −Bei
2(k) + 2GFiei(k)θi(k)− θi

T(k)(λνiHi
2 − G)θi(k)

≤ −Bei
2(k)−

[
νiλκi

2 − G
]

θi
2(k) + 2GFiei(k)θi(k)

≤ −a1ei
2(k)− a2θi

2(k)

(20)

where θi(k) = ∆xT(k)Φ̃T
i (k), a1 = B− (1/ς), and a2 = νiλκi

2−G− ςG2Fi
2. Therefore, ∆V1(k + 1) ≤ 0

in the case of ς, B and λ satisfy the following inequalities:

B >
1
ς

, νiλκi
2 − G− ςG2Fi

2 > 0. (21)

Notice that ∆V1(k) is negative definite with respect to variables ei(k) and θi(k). Since V1(k) is
a decreasing and non-negative function, it converges to a constant value V∞

1 ≥ 0 when k → ∞;
Therefore, ∆V1(k) → 0. This indicates that both ei(k) and Φ̃i(k) remain bounded for all k,
and limk→∞ei(k) = 0.

Corollary 1: For model (10), the multiple adaptive observers

1


ŷ1(k + 1) = ŷ1(k) + ∆xT(k)Φ̂T

1 (k) + K1e1(k)
∆Φ̂T

1 (k + 1) = ∆x(k)H1(k)(e1(k + 1)− F1e1(k))

H1(k) = 2
(
‖∆x(k)‖2 + ν1

)−1

2


ŷ2(k + 1) = ŷ2(k) + ∆xT(k)Φ̂T

2 (k) + K2e2(k)
∆Φ̂T

2 (k + 1) = ∆x(k)H2(k)(e2(k + 1)− F2e2(k))

H2(k) = 2
(
‖∆x(k)‖2 + ν2

)−1

(22)

can be designed to ensure that lim
k→∞

e(k) = 0, where e(k) = y(k)− ŷ(k) and

∆Φ̂T
i (k + 1) = Φ̂T

i (k + 1)− Φ̂T
i (k), i = 1, 2. (23)

Proof. Based on the analysis in the above section and Theorem 1, Corollary 1 is easily proved.

In order to ascertain the subject for further elaboration, we joined the multiple observers (12) as

ŷ(k + 1) = ŷ(k) + Φ̂(k)∆x(k) + Ke(k) (24)

where K = diag(K1, K2).

3.2. Controller Design and Stability Analysis

In practice, the control input of the controlled system (6) is subject to the rate constraint due to
the “inertia” of the actuator. Therefore, based on the multiobserver (24), we propose the constrained
MFAC method to limit the change the rate of the control input ø(k), which is computed as follows:

ø(k) = ø(k− 1) + φ̂T
2 (k)

(
φ̂2(k)φ̂T

2 (k) + σ
)−1 ‖∆ø(k)‖ ≤ δ

×[y∗(k + 1)− ŷ(k)−Ke(k)− φ̂1(k)∆y(k)
−φ̂3(k)∆U(k)− φ̂4(k)∆İ(k)− φ̂5(k)∆I′(k)],

ø(k) = ø(k− 1) + δsign(∆ø(k)), ‖∆ø(k)‖ > δ

(25)
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where y∗(k) denotes the reference trajectory, that is, the voltage reference value. σ = diag(σ1, σ2)

with σ1 and σ2 are given finite positive numbers to ensure that matrix φ̂2(k)φ̂T
2 (k) + σ is invertible.

δ = [δ1, δ2]
T with δ1 and δ2 also have finite positive numbers. Furthermore, the actuator cannot change

too fast in many practical systems, so we can obtain the δ as the maximum change value for the control
input ø(k) by ‖ø(k)− ø(k− 1)‖ ≤ δ.

Define the tracking error of multiobserver as follows:

e1(k) = y∗(k)− ŷ(k). (26)

Then, we obtain

e1(k + 1) = y∗(k + 1)− ŷ(k + 1)
= y∗(k + 1)− ŷ(k)− Φ̂(k)∆x(k)−Ke(k)
= y∗(k + 1)− ŷ(k)− φ̂2(k)∆ø(k)− J(k)−Ke(k)

(27)

where J(k) = φ̂1(k)∆y(k) + φ̂3(k)∆U(k) + φ̂4(k)∆İ(k) + φ̂5(k)∆I′(k).
The analysis of convergence and tracking performance for the MFAC algorithm (25) are shown

in Theorem 2.

Theorem 2. Under the condition of
∣∣y∗i (k)− y∗i (k− 1)

∣∣ ≤ ∆y∗i , by using the MFAC algorithm (25),
the result of the observer close-loop error system (27) is uniformly ultimately bounded (UUB) for all k, that is,
lim
k→∞
‖e1(k)‖ ≤ (b2/(1− b1))

where ∆y∗i is the given positive constant, and

b1 = 1− D̄(k) + D̄(k)
∥∥∥σ(λ̄Im + σ)

−1
∥∥∥

b2 = b1 ‖∆y∗‖+ b1 ‖Ke(k) + J(k)‖
(28)

∆y∗ = [∆y∗1 , ∆y∗2 ]
T , D̄(k) = min{d1(k), d2(k)}, λ̄ represents the minimum eigenvalue of φ̂2(k)φ̂T

2 (k).

Proof. The MFAC algorithm (25) can be equivalently described as

∆ø(k) = D(k)φ̂T
2 (k)

(
φ̂2(k)φ̂T

2 (k) + σ
)−1

(y∗(k + 1)− ŷ(k)−Ke(k)− J(k)) (29)

where

dj(k) = 1, for |∆τj(k)| ≤ δj
0 ≤ dj(k) < 1, for |∆τj(k)| > δj, j = 1, 2.

(30)

By substituting (29) into (27), we obtain (31) after rearranging

e1(k + 1) =
[

Im − φ̂2(k)D(k)φ̂T
2 (k)

(
φ̂2(k)φ̂T

2 (k) + σ
)−1
]

× [y∗(k + 1)− ŷ(k)−Ke(k)− J(k)]
=
[
φ̂2(k) (Im − D(k)) φ̂T

2 (k) + σ
] (

φ̂2(k)φ̂T
2 (k) + σ

)−1

× [y∗(k + 1)− ŷ(k)−Ke(k)− J(k)]
≤
[
(1− D̄(k))Im + D̄(k)σ(λ̄Im + σ)

−1
]
[y∗(k + 1)− ŷ(k)−Ke(k)− J(k)] .

(31)

Then, (31) becomes
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‖e1(k + 1)‖ ≤
[
1− D̄(k) + D̄(k)

∥∥∥σ(λ̄Im + σ)
−1
∥∥∥] ‖y∗(k + 1)− ŷ(k)−Ke(k)− J(k)‖

=
[
1− D̄(k) + D̄(k)

∥∥∥σ(λ̄Im + σ)
−1
∥∥∥]

×‖y∗(k + 1)− y∗(k) + y∗(k)− ŷ(k)−Ke(k)− J(k)‖
≤
[
1− D̄(k) + D̄(k)

∥∥∥σ(λ̄Im + σ)
−1
∥∥∥] ‖e1(k)‖

+
[
1− D̄(k) + D̄(k)

∥∥∥σ(λ̄Im + σ)
−1
∥∥∥] [‖∆y∗‖+ ‖Ke(k) + J(k)‖]

= b1 ‖e1(k)‖+ b2

. (32)

By constructing the Lyapunov function as V2(k) = ‖e1(k)‖, from Equation (32), we obtain

∆V2(k + 1) = ‖e1(k + 1)‖ − ‖e1(k)‖ = (1− b1)V2(k) + b2. (33)

Since 0 ≤ b1 < 1 and b2 are bounded, in view of the MFAC algorithm (25), combined with the
lemma in [27], we know that the solution of the observer close-loop error system (27) is UUB for all k
with ultimate bound lim

k→∞
‖e1(k)‖ ≤ (b2/(1− b1)).

Corollary 2: Based on the controller (25), combined with the parameter adaptive algorithm (14)
and the observer (24), we can ensure that the system (6) tracking error e2(k) = y∗(k)− y(k) is UUB
with ultimate bound lim

k→∞
‖e2(k)‖ ≤ (b2/(1− b1)).

Proof. Since
e2(k)=e1(k)− e(k), (34)

by considering the absolute value and limiting on both sides of Eqaution (34), we get

lim
k→∞
‖e2(k)‖ ≤ lim

k→∞
‖e1(k)‖+ lim

k→∞
‖e(k)‖

= b2
1−b1

.
(35)

Hence, the tracking error e2(k) = y∗(k)− y(k) is UUB with the ultimate bound lim
k→∞
‖e2(k)‖ ≤

(b2/(1− b1)).

4. Simulation Results

In this section, two detailed types of load (a balanced linear load and an unbalanced linear load)
are chosen for the islanded DER system to verify the effectiveness of the proposed voltage control
scheme. Moreover, the superiority of the proposed control scheme is compared to the traditional PID
control method [28] and fractional-order sliding-mode control (FSMC) [13]. Since the balanced load and
unbalanced load are 675 V and 210 V, respectively, the corresponding network-side transformer is used
to connect each load. The basic parameters of the two different types of load and the corresponding
step-down transformer are given in Table 1. The detailed parameters of the DER system are shown in
Tables 2.

As for the proposed control scheme, we choose the initial values of the estimated PPD

parameter matrix Φ̂(k) as φ̂1(1) =

[
1.9999 0.00754
−1.00754 0.9999

]
, φ̂2(1) =

[
6200 5500
5000 6000

]
, φ̂3(1) =[

−65 0.0377
−55 −0.0677

]
, φ̂4(1) =

[
−0.025 −0.02
−0.02 −0.03

]
, φ̂5(1) =

[
7.54 −0.2
−7.54 −0.25

]
.

Other parameter settings of the proposed control algorithm are K = diag(0.85, 0.85), ν1 = ν2 =

2× 104, σ = diag(0.05, 0.45). Furthermore, the rate constraints of control input ø(k) are
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[
−1
−1

]
≤ ∆ø(k+1) ≤

[
1
1

]
. (36)

In the simulation study, Uxdre f is initially set to 0 while the balanced load is connected to the DER
system. At t = 0 s, the controllers begin to work and the VSC starts receiving gate signals. Then, Uxdre f
is ramped up to 380 V and kept constant from t = 0.5 s onwards. At t = 1.5 s, the balanced load is
switched off and the unbalanced load is switched on. At t = 2 s, Uxdre f is changed stepwise from 380 V
to 400 V.

Table 1. Load Parameters.

Load Types Characteristics Transformer

Balanced three star-connected Tr1
Load series RL circuits with 4.13/0.675

R = 155 mΩ and kVrms
L = 200 µH

Unbalanced series RL between each phase Tr2
Load and neutral with 4.13/0.21

Ra = 65 mΩ, La = 43 µH kVrms
Rb = 18 mΩ, Lb = 22 µH
Rc = 25 mΩ, Lc = 30 µH

Table 2. The Parameters of the Distributed Energy Resource (DER) System Circuit.

Parameters Value Description

Ls 295 µH
C 500 µF
R 3.2 mΩ

Udc 1800 V dc-link voltage
w 314 rad/s nominal angular frequency
Tr 4.13/0.675 kVrms leakage reactance 8%

In the simulation of the system, we compared the control effect of the designed MFAC controller
with that of the FSMC controller and the traditional PI controller (see in Figure 2). As can be seen
from Figure 2, when the reference voltage of the d-axis rises slowly, the d-axis voltage of the DER
system under the three control methods begins to track the reference voltage. However, the response
of PI controlled system is slow. When t = 0.5 s, the reference voltage of the d-axis no longer rises and
stays at 380 V. At this time, the system response of PI controller is still very slow when the voltage
trend changes, and there is a static error between the d-axis voltage controlled by FSMC and the
reference voltage. When t = 2 s, the reference voltage changes from 380 V to 400 V. The d-axis voltage
controlled by PI reaches 400 V through 0.05 s, and its change is relatively slow. The d-axis voltage
under FSMC control has a small overshoot. Thus, their control effects in the d-axis are not as good
as MFAC. Similarly, in the tracking process of q-axis voltage, MFAC control is also superior to the
other two control methods. Throughout the whole simulation process, the reference voltage of the
q-axis is defined as 0. At the beginning of simulation, the q-axis voltage under FSMC control does
not keep up with the reference voltage quickly. When t = 2 s, the q-axis voltage under FSMC control
also deviates greatly from the reference voltage. In summary, compared with FSMC and traditional PI
control, MFAC has a better control effect during voltage control of the island DER system.

In addition, in Figures 3–7, the parameter estimation response curves of φ1(k)–φ5(k) are displayed
respectively. Figure 8 shows the output voltage waveform at t = 1.9 s − 2.1 s. It can be seen that when
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the reference voltage suddenly changes, the three-phase output voltage of the system changes in time
without distortion. Moreover, Figure 2 shows the output current waveform of the system. Compared
with Figures 2 and 9, it can be seen that the system voltage under MFAC control remains stable when
the current is distorted due to load changes.
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Figure 2. The tracking effect on the reference voltage.
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Figure 3. Parameter estimation response curve of φ1(k).
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Figure 5. Parameter estimation response curve of φ3(k).
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Figure 8. Waveforms of Uxabc under the unbalanced load condition when the proposed control scheme is employed.
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Figure 9. Waveforms of Ixabc under the unbalanced load condition when the proposed control scheme is employed.

5. Conclusions

In this paper, based on the novel transformation and linearization technique for the islanded
MIMO DER system dynamics, a multiple observer-based data-driven model free adaptive constrained
control scheme was proposed for the voltage control of dispatchable DER system under an unbalanced
load condition. Moreover, the proposed control algorithm only depends on the I/O data of the
controlled plant and has the advantages of having a small computational burden and strong robustness,
which allows easy engineering popularization. In addition, the detailed Lyapunov-based analysis
method was presented to guarantee the stability of the closed-loop control system. The simulation
model of the DER system was built in MATLAB, and the control effect of MFAC controller was
compared with the FSMC and the PI controller, which verifies the advancement of the MFAC controller.
In future work, the voltage regulation algorithms for multi-DER systems under the balanced nonlinear
load will be the focus of our research.
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