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Abstract: In this study, we intend to present the dynamics of a system based on the model of
convective heat and mass transfer in magnetohydrodynamics (MHD) flow past a moving vertical
thin needle in nanofluid. The problem is formulated in mathematical form by using Buongiorno’s
model with the modified boundary condition. The transformed boundary layer ordinary differential
equations are solved numerically using the bvp4c function in MATLAB software. The effects of the
involved parameters, including, Brownian motion, thermophoresis, magnetic field, mixed convection,
needle size and velocity ratio parameter on the flow, heat and mass transfer coefficients are analyzed.
The numerical results obtained for the skin friction coefficients, local Nusselt number and local
Sherwood number, as well as the velocity, temperature and concentration profiles are graphically
presented and have been discussed in detail. The study reveals that the dual solutions appear when
the needle and the buoyancy forces oppose the direction of the fluid motion, and the range of the
dual solutions existing depends largely on the needle size and magnetic parameter. The presence of
the magnetic field in this model reduces the coefficient of the skin friction and heat transfer, while it
increases the coefficient of the mass transfer on the needle surface. A stability analysis has been
performed to identify which of the solutions obtained are linearly stable and physically relevant. It is
noticed that the upper branch solutions are stable, while the lower branch solutions are not.

Keywords: stability analysis; dual solutions; MHD; mixed convection; thin needle; nanofluid

1. Introduction

In recent times, the study of the boundary layer flow and heat transfer in the presence of the
magnetic field has important applications in industries, especially in physics, engineering and medicine.
Some examples of the applications are MHD generators, bearing sand boundary layer control and
pumps. Physically, the applied magnetic field plays a significant role in controlling momentum
and heat transfer in the boundary layer flow past a stretching and shrinking sheet of different
fluids. The intensity and orientation of the applied magnetic field are two factors that influenced
the characteristics of the flow. It is worth mentioning that the exerted magnetic field has strongly
changed the performance of the heat transfer in the flow by manipulating the suspended particles
and also rearranged their concentration in the fluid. Chakrabarti and Gupta [1] is the first author who
considered the hydromagnetic flow and heat transfer over a stretching sheet. Inspired by the work of
Chakrabarti and Gupta [1], Mahapatra and Gupta [2] performed the steady two-dimensional MHD
stagnation-point flow of viscous electrically conducting fluid toward a stretching surface. Motivated
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from the previous works, many researchers have considered the magnetic field effects on the fluid
flow in various geometry problems [3–9].

Thin needle is described as a parabolic revolution about its axes direction in addition to the
variable thickness. It is considered “thin” when its thicknesses do not exceed the boundary on it or
smaller. The consideration of the thin needle in the boundary layer flow is first studied by Lee [10]. It is
important to know that the motion of the thin needle in the flow disturbs the free stream direction and
this phenomenon is the main focus to measure the velocity and temperature profiles of the flow field
in experimental studies. The usage of the thin needle is an increasingly important aspect of medicine
and engineering industries. Some examples are the blood flow problem, transportation, hot wire
anemometer for measuring wind’s velocity, lubrication and coating of wires.

Over the last few decades, the consideration on the topic of thin needle has gained a vast number of
researchers due to its contribution to the industries. Extension to Lee [10] work, Narain and Uberoi [11]
considered the forced heat transfer over a thin needle in viscous fluid. The problem of steady laminar
forced convection flow over a non-isothermal thin needle is analytically studied by Chen and Smith [12].
Since the pioneering work of Lee [10], the problems related to the thin needle in viscous fluid have
increased greatly in recent years [13–16]. Due to the existence of nanofluid that enhances the thermal
conductivity of the base fluid, some authors used this as an opportunity to perform the boundary layer
flow of a thin needle immersed in nanofluid. Grosan and Pop [17] presented the classical problem
of forced convection flow and heat transfer past a needle with variable wall temperature. On the
other hand, Hayat et al. [18] analyzed the effect of variable surface heat flux on the heat transfer
phenomenon by using water-carbon nanofluid. Krishna et al. [19] and Soid et al. [20] investigated the
flow and heat transfer past a moving thin needle with the magnetohydrodynamic radiative nanofluid,
and stability analysis, respectively. Moreover, Ahmad et al. [21] attempted to consider the Buongiorno
nanofluid flow past a moving thin needle. However, all the studies mentioned above are restricted
to the horizontal surface of the needle. It has been found in the existing literature that the study of
the vertical thin needle is less concerned. Trimbitas et al. [22] are the first authors who studied such
problems by considering the mixed convection flow past a stationary thin needle in nanofluid. Finally,
we mention also the recently published paper by Salleh et al. [23] on the stability analysis of mixed
convection flow towards a moving thin needle in a nanofluid.

In fluid mechanics, many researches and development processes are being done for enhancing heat
transport properties of conventional heat transfer fluid. The thermal conductivity of heat transfer fluid
plays a major role in the development of energy efficient heat transfer application. The conventional
heat transfer fluids such as water, ethylene glycol, oil and mixtures have met their thermal performance
limitations. To overcome these limitations and satisfy the cooling process requirement, Choi [24]
introduced a new heat transfer fluid, known as nanofluid. Nanofluid is a homogenous mixture of
the base fluid and nanoparticle with 10–100 nm diameter. Nanofluid is said to be the promising
way for enhancing the performance of heat transfer in fluid and it is expected to have superior
thermal conductivity compared to base fluid. Nanoparticles consist of different materials, for example,
ceramics, metals, alloys, semiconductors, nanotubes, and composite particles. For almost two decades,
nanofluid has been used as advanced heat transfer fluid, especially in power generation, transportation,
electronics cooling, chemical production and biomedical industries [25–27]. Physically, the tiny size of
the nanoelements leads to a better suspension stability, ability to flow smoothly without clogging the
system and providing enhanced thermal and physical properties.

There are two models that describe the transport behavior in nanofluid; one is a model proposed
by Buongiorno [28] and another is a model proposed by Tiwari and Das [29]. Buongiorno’s model is
a non-homogeneous (two components) model where the slip velocity of nanoparticles and the base
fluid are not equal to zero. This model consists of seven slip mechanisms; inertia, diffusiophoresis,
fluid drainage, Brownian motion, thermophoresis, gravity and Magnus effect. Different from
Buongiorno’s model, the Tiwari and Das model is a homogeneous (single component) model in
which the thermophysical properties of base fluid are enhanced with the nanoparticle influenced
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correlations of viscosity and thermal conductivity. This model considers the effect of solid nanoparticle
volume fractions. A few years later, Nield and Kuznetsov [30] and Kuznetsov and Nield [31] extended
the Buongiorno’s work by considering the new boundary condition that has the Brownian motion
and thermophoresis parameter in the energy and concentration equations. The fact that the presence
of the Brownian motion and thermophoresis is to produce their effects directly into these equations.
Therefore, the temperature and the particle density are coupled in a particular way, and this results in
the thermal and concentration buoyancy effects being coupled in the same way [32]. This proposed
model is also known as a revised model by which the nanofluid particle fraction on the boundary is
regulated passively rather than actively. A collection of recent investigations presents the boundary
layer flow and heat transfer in nanofluid with different physical conditions for both homogeneous and
non-homogeneous models [33–40].

The purpose of the present work is to study the steady magnetohydrodynamics flow of a nanofluid
past a moving vertical thin needle using the revised model proposed by Nield and Kuznetsov [30] and
Kuznetsov and Nield [31]. The governing partial differential equations are reduced into a nonlinear
ordinary differential equations using the similarity transformation. The system of equations is solved
numerically using the bvp4c function in MATLAB software (Matlab R2013a, Mathwork, Natick,
MA, USA). The stability of the dual solutions obtained are determined using a stability analysis.
The influence of the involved parameters is illustrated through graphs and exhaustively elaborated in
the next section.

2. Problem Description and Formulation

2.1. Governing Equations

Consider an incompressible laminar boundary layer flow of an electrically conducting nanofluid
past a moving vertical thin needle with constant ambient temperature T∞ and nanoparticle volume
fraction C∞. A schematic representation of the physical model and coordinate system is illustrated in
Figure 1. Here, x and r are the axial and radial coordinates, respectively, in which r = R(x) is the radius
of the needle. The x-axis measures the needle leading edge in the vertical direction; meanwhile, r is
always normal to the x-axis. Since the needle is considered thin, the effect of its transverse curvature is
important; however, the pressure gradient along the surface can be neglected [10]. We assumed that
the temperature of the needle surface is Tw, where Tw > T∞ corresponds to a heated needle (assisting
flow) and Tw < T∞ corresponds to a cooled needle (opposing flow) and the surface volume fraction
is Cw with Cw > C∞. The magnetic field B0 is imposed parallel to the direction of the flow and the
induced magnetic field can be ignored due to the smallest magnetic Reynold number. The needle
moves with a constant velocity Uw, in the same or the opposite direction of the free stream flow of
a constant velocity U∞. Under the above assumptions, the governing boundary layer equations for
mass, momentum, thermal energy and solid volume fraction can be written as:

∂
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We assume that the boundary conditions of Equations (1)–(4) are (see Kuznetsov and Nield [31]):

u = Uw, v = 0, T = Tw, DB
∂C
∂r

+
DT
T∞

∂T
∂r

= 0 at r = R(x),

u→ U∞, T → T∞, C → C∞ as r → ∞. (5)

Here, u and v are velocities in the axial and radial (x, r) directions, respectively, T and C are the
temperature and the concentration of the nanofluid, respectively, DB and DT represent the Brownian
diffusion and thermophoretic diffusion coefficients, g is the gravity acceleration, ν is the kinematic
viscosity, α is the thermal diffusivity, β is the volumetric expansion coefficient, κ = (ρc)p/(ρc) f is the
ratio of the effective heat capacity of nanofluid to that of the base fluid, ρ f and ρp are the densities of
the base fluid and of nanoparticles, respectively, ρ f∞ is the density of the ambient fluid and σ is the
electrical conductivity.

Figure 1. Physical model and coordinate system.

The following are the similarity transformations used to solve the Equations (1)–(4) under the
boundary restrictions Equation (5):

ψ = νx f (η), η =
Ur2

νx
, θ(η) =

T − T∞

Tw − T∞
, φ(η) =

C− C∞

C∞
, (6)

where ψ is a stream function that defined the velocity components, u = r−1∂ψ/∂r and v = −r−1∂ψ/∂x.
The continuity Equation (1) is identically satisfied and the Equations (2)–(4) are then reduced to the
following ordinary differential equations below:

2(η f ′′)′ + f f ′′ −M f ′ +
λ

4
θ − Nr

4
φ = 0, (7)

2
Pr

(ηθ′)′ + 2η
(

Ntθ′2 + Nbθ′φ′
)
+ f θ′ = 0, (8)

2(ηφ′)′ + 2
Nt
Nb

(
ηθ′
)′
+ Le f φ′ = 0. (9)
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The transformed boundary conditions become

f (c) =
ε

2
c, f ′(c) =

ε

2
, θ(c) = 1, Nbφ′(c) + Ntθ′(c) = 0,

f ′(η)→ 1− ε

2
, θ(η)→ 0, φ(η)→ 0 as η → ∞, (10)

where prime represents the differentiation with respect to similarity variable η. By assuming η = c,
which refers to the needle wall, Equation (6) prescribes the size and shape of the needle where its
surface can be expressed as:

R(x) =
(νcx

U

)1/2
. (11)

Note that Pr represents the Prandtl number, M refers to magnetic parameter, Nr stands for
buoyancy ratio parameter and Nt and Nb denote as the thermophoresis and Brownian motion
parameter, respectively. Le is the Lewis number and ε is the velocity ratio parameter between the
needle and the free stream with the composite velocity of U = Uw + U∞. In addition, λ represents
the mixed convection parameter, where λ > 0 corresponds to the assisting flow; meanwhile, λ < 0
corresponds to the opposing flow. All of these parameters can be defined as:
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where Grx = gβ(1− C∞)(Tw − T∞)x3/ν2 is the local Grashof number and Rex = Ux/ν is the local
Reynolds number.

The skin friction coefficients C f , local Nusselt number Nux and local Sherwood number Shx are
given by:
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2.2. Stability of Solutions

The study of the stability of the solutions has been proposed by Weidman et al. [41] and was
continued by Rosca and Pop [42]. In their work, they noticed that the lower branch solutions are not
physically relevant or said to be unstable; meanwhile, the reverse trend is observed for the upper
branch solutions. The first step to identify a stable solution is to consider the Equations (2)–(4) in
unsteady case by introducing the new dimensionless time variable τ = 2Ut/x:
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Interestingly, the presence of τ is associated with an initial value problem that is consistent with
the solution that will be gained in practice (physically relevant). The new similarity variables in terms
of η and τ are given by

ψ = νx f (η, τ), η =
Ur2

νx
, θ(η, τ) =

T − T∞

Tw − T∞
, φ(η, τ) =

C− C∞

C∞
, τ =

2Ut
x

. (19)

Substituting Equation (19) into Equations (16)–(18) yields the following:
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and the boundary conditions become

f (c, τ) =
ε

2
c,

∂ f
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ε

2
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2
, θ(η, τ)→ 0, φ(η, τ)→ 0 as η → ∞. (23)

Afterwards, to identify the stability of the solution f = f0(η), θ = θ0(η) and φ = φ0(η) that
satisfied the boundary value problems Equations (20)–(23), we let (see [41,42])

f (η, τ) = f0(η) + e−γτ F(η, τ), θ(η, τ) = θ0(η) + e−γτG(η, τ), φ(η, τ) = φ0(η) + e−γτ H(η, τ). (24)

Functions F(η, τ), G(η, τ) and H(η, τ) are small relative to f0(η), θ0(η) and φ0(η), respectively,
and γ is the unknown eigenvalue parameter.

By replacing Equation (24) into Equations (20)–(23), we will obtain the following linear
eigenvalue problems:

2
(
ηF′′0

)′
+ f0F′′0 + f ′′0 F0 +

λ
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4
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together with the conditions below:

F0(c) = 0, F′0(c) = 0, G0(c) = 0, NbH′0(c) + NtG′0(c) = 0,

F′0(η)→ 0, G0(η)→ 0, H0(η)→ 0 as η → ∞. (28)

To compute an initial growth or decay of the solution Equation (24), we have to assume τ = 0 for
the Equations (25)–(28) as suggested by Weidman et al. [41]. Thus, the functions F, G and H can be
written as F0(η), G0(η) and H0(η), respectively.

Following the previous study by Harris et al. [43], they stated that the range of possible
eigenvalues can be determined by relaxing the conditions on F0(η), G0(η) or H0(η). In the present
study, we choose to relax the condition F0(η) → 0 as η → ∞, and then solve the system of
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Equations (25)–(27) subject to Equation (28) together with the new condition F′′0 (0) = 1. It is worth
knowing that, if the smallest eigenvalue γ is positive, the flow will be stable and there is an initial
decay of disturbances. On the other hand, if the smallest eigenvalue γ is negative, the flow is unstable
and there exists an initial growth of disturbances in the system.

3. Results and Discussion

To provide a clear understanding into the present problem, the numerical computations are
carried out for several values of the involved parameters which include magnetic, mixed convection,
needle size, Brownian motion, thermophoresis and velocity ratio parameter. Validation of the present
code has been done by computing the numerical results of f ′′(c) for M = λ = Nr = ε = 0 and Pr = 1
for some values of needle size c. Table 1 shows the data produced by the present code and those of
Ahmad et al. [21]. As can be seen in Table 1, both pieces of data are found to be in excellent agreement,
hence, the present code can be used confidently. The system of highly nonlinear ordinary differential
Equations (7)–(9) together with the boundary conditions Equation (10) is solved numerically using the
bvp4c package in MATLAB software. The bvp4c package is one of the popular techniques for solving
the boundary value problems for ordinary differential equations. Furthermore, this package considers
the finite difference method, where the solution can be obtained using an initial guess supplied at
an initial mesh point and change step size to get the specified accuracy. It is necessary to reduce the
boundary value problems to a system of first order ordinary differential equations before being used.
The suitable finite value of η is considered from 10 to η∞ = 60, where η∞ refers to η → ∞ which lies
very well outside the momentum, thermal and concentration boundary layers. However, it should
be mentioned that the present solution is only non-similar because the parameters M and Nr are the
function of the independent variable x.

Table 1. Numerical values of f ′′(c) when M = λ = Nr = ε = 0 and Pr = 1 for some values of needle
size c.

c Ahmad et al. [21] Present Work

0.1 1.2888171 1.2888299
0.01 8.4924360 8.4924452

0.001 62.163672 62.163606

Figure 2a–c present the variation of the shear stress f ′′(c), local heat flux −θ′(c) and local mass
flux −φ′(c) with mixed convection parameter λ for different values of magnetic parameter M. It can
easily be observed that the values of f ′′(c) and −θ′(c) are noticed to decrease when the imposed
magnetic field is larger. Nevertheless, the reverse trend is noted for −φ′(c) as the parameter M
increases. The rising values of magnetic parameter offer large resistances on the fluid particles and
consequently, cause the heat to be generated in the fluid. Thus, a drag force known as a Lorentz
force is formed due to the imposition of vertical magnetic field. The presence of these forces may
resist and decelerate the motion of the nanofluid flow over the needle surface, which in turn reduces
the wall friction and temperature, respectively. Other than that, the stronger magnetic field faster
the boundary layer separation by which the upper and lower branch solutions intersect. The critical
values of λ, which given by λc are found to be increased as the values of magnetic parameter increases.
Moreover, it is possible for the Equations (7)–(9) to get dual solutions for the assisting flow (λ > 0)
compared to the opposing flow (λ < 0). For the opposing flow, the buoyancy forces oppose the
fluid motion, retarding the fluid in the boundary layer and also act as an adverse pressure gradient.
However, there are dual solutions only in the range λc < λ ≤ 0, a unique solution when λ > 0
(assisting flow) and no solution when λ < λc.
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Figure 2. Variation of (a) shear stress, (b) local heat flux and (c) local mass flux with mixed convection
parameter λ for different values of magnetic parameter M.

The influence of needle size c on the variation of the shear stress f ′′(c), local heat transfer −θ′(c)
and local mass transfer −φ′(c) are graphically presented in Figure 3a–c for various values of velocity
ratio parameter ε. As we can see, the dual solutions are more pronounced when the needle moves in
the opposite direction of the free stream flow (ε < 0). Obviously, only unique solutions exist when the
needle moves in the same direction with the free stream flow (ε > 0). The range of dual solutions that
exist is in between εc < ε ≤ 0, and beyond the critical value, no similarity solutions were reported.
It is observed that the increase in the needle size caused a decrement in the value of shear stress and
local heat transfer. However, the increment of local mass transfer is reported for higher values of c.
It is clear from the Figure 3b,c that the graph of the local mass transfer is a reflection of the graph of
local heat transfer, where the value of Nb = Nt. These three figures also indicate that the range of the
solutions is widely expanded for the thinner surface of the needle (c = 0.1).

The effect of the velocity ratio parameter ε on the skin friction coefficients for several values of
magnetic parameter M is shown in Figure 4. The magnitude of the skin friction coefficients decreases
for M = 0.0 to M = 0.1 with higher value of ε. This implies that the larger magnetic parameter leads
to decrease the momentum boundary layer thickness as well as the shear stress occurs on the needle
surface, and, consequently, decreases the skin friction coefficients.
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Figure 3. Variation of (a) shear stress, (b) local heat flux and (c) local mass flux with velocity ratio
parameter ε for different needle size c.
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Figure 4. Variation of skin friction coefficients with velocity ratio parameter ε for different values of
magnetic parameter M.

Figure 5a,b display the effect of Brownian motion parameter Nb and Lewis number on the local
Sherwood number or mass transfer with various values of thermophoresis parameter Nt. Interestingly,
the Lewis number represents the ratio of thermal diffusivity to mass diffusivity in the boundary layer
regime. In addition, it helps to explain the characteristics of the fluid flow where there are simultaneous
heat and mass transfer by convection. As can be seen in Figure 5a,b, the local Sherwood number
is higher for smaller value of Le (Le = 5) compared to a greater one (Le = 30). This follows the
above statement that the reduction of the Lewis number leads to increasing the mass diffusivity as
well as a mass transfer coefficient, by which these two functions are inversely proportional to each
other. Furthermore, the local Sherwood number is increasing with higher value of Nt. It is clear
that the higher value of mass transfer is obtained for Nb = 0.1 followed by Nb = 0.3 and Nb = 0.5.
This implies that the stronger rate of Brownian motion reduces the performance of mass transfer
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between the needle surface and the free stream flow. Such situation occurs due to random motion
of the particles suspended in the fluid caused by the continuous collision between the nanoparticles
and base fluid particles. Conspicuously, the Brownian motion parameter does not change the surface
temperature gradient as well as the rate of heat transfer (see [21]). Mathematically, when substituting
the condition φ′(c) + (Nt/Nb)θ′(c) = 0 directly into the energy Equation (3), one may observe that
the resulting equation does not contain the parameter Nb, and this is the reason why the graph for the
local Nusselt number is not presented here.
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Figure 5. Variation of local Sherwood number with thermophoresis parameter Nt when (a) Le = 5 and
(b) Le = 30 for different values of Brownian motion Nb.

The effects of needle size c on the skin friction coefficient, the local Nusselt number and local
Sherwood number are illustrated in Figure 6a–c, respectively, for different values of thermophoresis
parameter Nt. It is observed that reducing the needle size leads to increasing the skin friction
coefficients, heat transfer as well as the mass transfer rate of the needle. Physically, the surface
of the needle in contact with the fluid particles decreases when the size of the needle is getting smaller.
This causes the friction force that occurs on the needle surface and the fluid flow will be reduced
and this phenomenon leads to increasing the skin friction coefficients. Furthermore, the rate of heat
transfer between the nanofluid flow and the needle surface is higher for c = 0.1 compared to c = 0.2.
From the physical point of view, this occurs due to the thinner surface of the needle that allows the
heat to diffuse rapidly. Similar observations were obtained for the mass transfer coefficients when the
needle thickness decreases. In addition, the absolute value of the skin friction coefficients and the local
Sherwood number increase for higher values of Nt. Note that the presence of thermophoresis in the
flow is to influence the nanoparticle migration in the opposite direction of the temperature gradient
(warmer to colder region). Thus, the increase in the values of Nt helps the nanoparticles to penetrate
deeper in fluid and causes the reduction in the momentum, thermal and concentration boundary layer
thickness. This situation increases the coefficient of the skin friction, heat and also mass transfer on the
needle surface.

Figures 7 and 8 display the variation of the velocity, temperature and concentration profiles for
the influence of the magnetic field M and mixed convection parameter λ. As we can see, all of these
profiles approach the endpoint boundary conditions Equation (10) asymptotically with various shapes,
thus supporting the validity of the presents results obtained in this study. It is important to note that
the existence of the dual velocity, temperature as well as concentration profiles in these figures has
supported the dual nature of the solutions obtained in Figures 2 and 3. As expected, the thickness
of the hydrodynamic boundary layer for the lower branch solution is always thicker than the upper
branch solution.
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Figure 6. Variation of (a) skin friction coefficients; (b) local Nusselt number and (c) local Sherwood
number with thermophoresis parameter Nt for different values of needle size c.
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In this study, the determination of the stability of the solutions obtained is done using a stability
analysis. The fact is, to perform this analysis, we must have more than one solution. The main function
of this analysis is to identify which of the upper or lower branch solutions is linearly stable and
physically relevant by using the bvp4c package in MATLAB software. The stability of the solutions
depends on the sign of the smallest eigenvalues γ obtained. The unknown eigenvalue γ is given in
Equation (24) and, to obtain the value, we must solve the linear eigenvalue Equations (25)–(27) with the
respective boundary conditions Equation (28). Table 2 shows the smallest eigenvalues γ for different
values of magnetic field and mixed convection parameter. It is clear from Table 2 that the positive
value of γ represents an initial decay of disturbance in the boundary layer separation and the flow
is said to be stable. Meanwhile, the negative value of γ represents an initial growth of disturbance
that will interrupt the boundary layer separation, and, consequently, the flow will be unstable. It is
worth knowing that the stable solution always provides a good physical meaning that can be realized.
Table 2 also indicates that, as the values of λ are approaching λc, the smallest eigenvalue γ tends to
zero either from the negative or positive side.
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Table 2. Smallest eigenvalues γ for some values of magnetic field M and mixed convection λ when
c = Nb = 0.1, Nr = 0.01, Nt = 0.3, ε = −1.5, Pr = 7 and Le = 1.

M λ Upper Branch Lower Branch

0 −1.8986 0.0301 −0.0291
−1.898 0.0309 −0.0299
−1.89 0.0410 −0.0392

0.05 −1.0864 0.0173 −0.0169
−1.086 0.0184 −0.0179
−1.08 0.0299 −0.0286

0.1 −0.5448 0.0111 −0.0108
−0.544 0.0141 −0.0137
−0.54 0.0243 −0.0230

4. Conclusions

In the present paper, we have analyzed the boundary layer flow, heat and mass transfer of a
moving vertical thin needle in an electrically conducting nanofluid. By using an appropriate similarity
transformation, the governing equations are reduced to a system of coupled nonlinear ordinary
differential equations which are then solved numerically using the bvp4c function in MATLAB
software. The stability analysis is carried out to find the stable solutions. The findings of the present
study can be summarized as follows:

• The dual solutions are more pronounced when the needle and the buoyancy forces move in the
opposite direction of the free stream flow.

• The range of dual solutions is widely expanded for smaller values of magnetic parameter and the
needle size.

• Stability analysis shows that the upper branch solution is stable, while the lower branch solution
is unstable.

• The reduction in the magnetic parameter and the needle size will enhance the skin friction
coefficients occurring between the needle and the fluid flow.

• Increasing the value of magnetic parameter, needle size and also thermophoresis parameter will
definitely reduce the rate of heat transfer on the needle surface.

• The stronger rate of the Brownian motion leads to decreasing the local Sherwood number occurring
on the needle surface.
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