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Abstract: A two-step structural optimization method was proposed to select the transition section
of a composite bucket foundation (CBF). In the first step, based on the variable density method,
a solid isotropic microstructures with penalization (SIMP) interpolation model was established
under specific load conditions and boundary conditions. The solution of force transmission path
and the topology of the transition section in six forms (e.g., linear, arc-shaped, linear thin-walled,
and arc-shaped thin-walled) were optimized. Afterwards, finite element software ABAQUS was used
to verify this model. Results show that the utilization rate of the arc-shaped thin-walled structure
was the largest, and its basic transmission force was more straightforward together with smaller
cross-section size at the same height and smaller influence on spoiler flow. In the second step,
the detailed optimization of CBF was carried out using mathematical programming. Under the
premise of minimum total construction cost, the body shape parameters of each part were set as
design variables satisfying the corresponding strength, stiffness, and stability conditions; meanwhile,
the minimum total structure weight was set as the objective function. MATLAB was used to solve the
sequence quadratic programming (SQP) algorithm and hybrid genetic algorithm, and the optimal
body parameters were obtained.

Keywords: composite bucket foundation (CBF); transition; offshore wind

1. Introduction

Offshore wind power has a huge development potential. However, along with its applications,
a series of technical problems have also been encountered, among which the optimization design
of the lower part of a wind turbine tower is still not well solved. As the core part of the overall
wind turbine construction, the wind turbine foundation faces a complex working environment,
including wind, wave, and current, which places higher demands on its safety, reliability, and corrosion
resistance of various components [1]. In general, the cost of design, construction, installation, operation,
and maintenance of a wind turbine infrastructure accounts for more than 40% of the total cost. To make
the infrastructure more economical and reasonable, each part of the foundation should play a better
role in reducing the construction cost.

A series of studies on the response to force conditions of the bucket foundation were conducted in
China and other countries. In 1999, Bransby and Randolph [2] studied the failure envelope of bearing
capacity of a bucket foundation under different combinations of load components in different directions.
In the same year, Shi et al [3] carried out a horizontal bearing capacity model test of bucket foundation
in soft soils, analyzed the displacement of bucket body under horizontal load and its interaction with
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soils, and put forward a formula for calculating the horizontal bearing capacity of a single-bucket
foundation. In 2000, Liu et al. [4] obtained the distribution of earth pressure in the active and passive
zones of the bucket foundation through field model experiments and numerical simulations; using
the limit equilibrium method, a formula for calculating the horizontal ultimate bearing capacity of
a single-bucket foundation was also proposed. In 2002, Gourvenec and Randolph [5] determined the
failure modes of bucket foundations in heterogeneous soils through two- and three-dimensional finite
element analysis and model tests as well.

The optimization of the force of offshore wind turbines were also studied. In 2010, Zhai et al. [6]
introduced a multi-factor and multi-level fuzzy optimization theory into the design and selection of
wind turbine foundations, and made a multi-level fuzzy comprehensive optimization decision-making
on 13 factors affecting the basic design and 4 forms of pile foundation, thus providing a novel idea for
the design and selection of the wind turbine foundation. In 2012, Ding et al. [7] used the finite element
software ABAQUS to simulate the structural optimization degree of effective prestressed large-scale
bucket foundations subjected to ultimate loads, and applied effective prestress of different sizes to
the steel strands of arc-shaped transitional structures. In the same year, Lian et al. [8] numerically
analyzed the design of a 3 MW offshore wind turbine with a prestressed drum-type foundation
structure, and analyzed the influence of arc-shaped transition tower segment on the structural stress.
In 2017, Ding et al. [9] took the bucket foundation of an off-shore wind power project as the research
object, established a variety of trial calculation models for the initial bucket foundation structure, and
optimized the tension transition stress, as well as the numbers of prestressed holes and steel strands
using ABAQUS.

The optimization of the shape of offshore wind turbines was also extensively studied. To make
the foundation cost more economical, Tove et al. combined actual offshore wind engineering projects
in Europe to optimize the single-pile foundation [10]. Kang and Zhang [11] used ANSYS to optimize
the deterministic size, shape, and fuzzy dimensions for a three-fan foundation. Wu [12] proposed
a limit reaction method to estimate the bearing capacity of bucket foundations and optimized the
structural parameters. With an offshore wind power project as an example, Liu et al. [13] adopted
a numerical analysis method to study the influence of different characteristic parameters of size on
the transmission of the bucket foundation and its resistance to bending moment loads. In recent
years, more and more algorithms have been applied to fan-based optimization. By combining the pile
foundation and tower monitoring data of a wind turbine loacated in Xiangshui Wind Farm, Jiangsu
Province, China, Yang [14] analyzed the response of a foundation-tower structure under dynamic loads
(e.g., wind, waves, and earthquakes), and obtained the dynamic optimization design based on genetic
algorithm. Liu [15] applied the sequence quadratic programming (SQP) and the improved genetic
algorithm to the overall structural optimization design of the bucket foundation for the first time. By
combining the optimization method with the finite element method, Liu [16] optimized the design of
a 6 MW composite bucket foundation (CBF) with diagonal support. Based on the SQP optimization
theory, Sun [17] carried out deterministic size optimization of a composite pile foundation.

At present, the research on bucket foundations mainly focuses on optimization using finite element
software; however, the member of optimization algorithms is limited. The traditional algorithms
can only optimize the overall structure, but they cannot find the optimal force transmission path.
The main methods for solving the optimal force transmission path include the analytical method
based on Michell theory [16,18], the method of quantifying the force transmission path based on the
bearing factor, and the numerical method based on topology optimization. Based on the quantification
method of load-bearing path [16,18,19], differential method is used to derive the differential equation
of the shortest transmission path in the structure. However, for complex heteromorphic structures,
differential equations are too complex to solve. Fortunately, topology optimization can solve the
problem of shortest force path; its design variables are not specific dimensions or node coordinates as
usual, but indicate the existence of sub-regions with independent levels. According to Kirsch [20–26],
topology optimization is the most difficult task in structural optimization. In recent years, with
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the development of computer technology, optimization design for structural topology has been
improved substantially.

In this paper, the design of an offshore bucket foundation is optimized through topology
optimization and mathematical programming. First, the optimal force transfer path in the structure and
the economical and practical optimal structural scheme are determined according to constraints, load
conditions, and optimization objectives. The topology of the transition section in six forms is optimized
to search for the best transfer path. At the same time, finite element software ABAQUS is used to verify
the six models. Then, the bucket type is selected, and mathematical programming method is used to
analyze the optimization of CBF. With the minimum total weight of the structure as the objective and
the shape parameters of each part as design variables, the SQP quadratic programming algorithm and
hybrid genetic algorithm are used. Finally, the optimization objective function based on the offshore
wind turbine type prototype is established, and the optimal parameters are obtained; the feasibility of
mathematical programming in the optimization design of a complex structure is thus verified.

2. Mechanical Characteristics of CBF

Bucket foundation is a new type of offshore structure appearing first in the 1980s. Nowadays, it is
mainly applied to the construction of offshore oil platforms, seawalls, and other man-made islands in
the form of suction anchor offshore [27]. In 2010, China’s first 2.5 MW large-scale CBF was installed
in Qidong City (Jiangsu Province), marking a substantial progress in the development of bucket
foundations, as shown in Figure 1. In 2017, the one-step installation of a 3 MW prototype was carried
out at the Xiangshui Wind Farm in Jiangsu Province, which was the beginning of a batch test of CBF,
as shown in Figure 2. At present, there are 13 composite bucket foundations under construction in
Jiangsu Dafeng Wind Farm, of which 11 are of capacity 3.3 MW and two are of 6.45 MW.
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As a kind of foundation with closed upper end and open bottom, it is similar to an inverted cup,
mainly consisting of a steel cylinder body, a concrete ceiling, and a bucket cap beam structure [9]. To
meet the requirements of float-sink-leveling and provide strength reserves for the bucket foundation,
a honeycomb-shaped partition plate structure is arranged in the cylinder body, thus dividing the
foundation into separate compartments (see Figure 3).
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In the design of bucket foundation, the key is to solve the transfer of bending moments and
horizontal forces. By designing a reasonable transition section, including its wall thickness, variation
range of upper and lower opening diameters, prestressing force, and reinforcement, the coordination
of the transition section (through which the bending moments and horizontal forces are transmitted
from the tower to the top of the transition section), connecting ring beam, radial bucket top cap beam
system, composite drum, and inner deck, is realized. Finally, the bending moments and horizontal
forces can be effectively transferred and dispersed into the seabed soil. At the same time, through
the optimized design of the transition section, the load can be transformed into the structure’s own
limited tensile and compressive stress, thus the corrosion caused by the cracking in concrete can be
avoided. In this way, the economic efficiency, durability, and reliability of the combined structural
system (i.e., prestressed steel strand-steel plate-concrete) is guaranteed. The difficulty in the design of
pre-stressed reinforced concrete composite structures comes from two aspects: (1) the force transfer
mode of the entire structure is not clear; (2) and there is no relevant norm or experience for the design
and calculation of the basic structure.

3. Topology Optimization of CBF

From the perspective of engineering design, the optimization of structural selection can be divided
into three steps: the first is topology optimization, which determines the optimal topology of the
structure under specific load and boundary conditions through calculations; the second is shape
optimization, which determines a reasonable boundary shape to avoid stress concentration; and the
third is size optimization, in which the specific dimensions of each part are determined based on
the results of the previous two steps. In general, topology optimization consists of two steps, i.e.,
the construction of an optimization model, and the selection of a solving method.

3.1. Construction of Optimization Model

The eigenfunction of a structure can be used to parameterize various parts in the topology
optimization process, as shown in Equation (1). Figure 4 illustrates the expressions of the eigenfunction
for the bucket foundation and transition section, as well as their domain [28]:

χ(x) = 1, x ∈ Ωmat

χ(x) = 0, x ∈ Ωvoid
(1)
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where Ω is the design domain Ωmat; Ωmat is the optimal material subset; and Ωvoid is the cavity set
after softening.
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From the parameterized structure shown in Figure 4, it can be seen that the structure density
in the optimized area is 1 when x = 1, indicating that the structure is a solid structure; when x = 0
(i.e., the structure in the optimized domain has a material density of 0), the element is softened and
removed, thus becoming a hole. Therefore, the eigenfunction of a structure is also referred to the
eigenfunction of a structural material, through which the material properties at each point in the
design domain can be mathematically expressed to define any structural shape therein [28]. Through
the above analysis, the topology optimization model of the structure can be obtained, as shown in
Equations (2) and (3):

min
χ(x)

f (χ(x)) (2)

s.t. : V
χ(x)

(χ(x)) ≤ V (3)

where f (χ(x)) is objective function; χ(x) is structural volume; and V is the overall volume of the
structure before optimization. According to different optimization objectives, can be arbitrarily set as
structural properties, such as structural rigidity and frequency.

To find all the possible topological forms of the structure, Dorn et al. [29] proposed the concept of
base structure to describe the topology of a continuum structure. The base structure method is used to
determine the design area and design variables at first. The design area is also called a base structure
under load and boundary conditions [28].

The expression of the internal force virtual work for an elastic body is:

a(u, v) =
∫

Ω
Eijkl(x)εu(u)εv(v) dΩ (4)

where Ω is structural design domain; Eijkl is design variable; u is actual displacement; and v is virtual
displacement. Then, the line strain can be expressed as:

εij(u) =
1
2

(
∂ui
∂xi

+
∂uj

∂xj

)
(5)

The linear form of load (i.e., potential of external force) is calculated as:

l(u) =
∫

Ω
f udΩ +

∫
t
tuds (6)
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where f is physical strength; and t is boundary traction.
From the principle of virtual work, the following equation can be applied to an elastomer:

a(u, v) = l(v) (7)

The key to the topology optimization of a continuum structure [30] is to find the best topology
represented by the optimization objectives under external load. According to the previous research
results, the structure with the minimum structural deformation energy is considered as topologically
optimal. In this paper, the minimum deformation energy of the transition section (i.e., the minimum
compliance) is selected as the objective function. The model of structural design problem is
expressed as:

min
u⊂U,E

l(u) (8)

s.t. : aE(u, v) = l(v), v ⊂ U (9)

3.2. Optimization Method for Structural Topology

According to the difference in the structural material parameter E, there are usually two different
topological optimization design methods, i.e., homogenization method and variable density method.
Since the second one is most widely used, it will be used in this paper [31–33]. There are two common
density stiffness interpolation models: one is solid isotropic microstructures with penalization (SIMP),
and the other is rational approximation of material properties (RAMP) [24].

(1) SIMP interpolation model
The SIMP interpolation model [18,28] mainly establishes a nonlinear correspondence between

the elastic modulus of the material and the relative density of the element by introducing a penalty
factor P, whose effect is to punish the intermediate density value when the value of the design variable
is between (0,1), so that the intermediate density value gradually converges to 0/1, which can make
the topological optimization model of continuous variables well approximate the original 0-1 discrete
variable optimization model. Here, the intermediate density element is corresponding to a very small
elastic modulus, and its influence on the structural stiffness matrix will become very small and even
negligible [31,32].

The functional expression of the elastic modulus penalized by the penalty factor P is:

EP(ρ)= Emin + ρP
(

E0 − Emin
)

(10)

where E0 and Emin are the elastic models of the entity and void, respectively. The influence of different
values of P on the relationship between material design variables and elastic modulus is shown in
Figure 5. According to the principle of material mechanics, the flexibility of the structure must be
minimized (or the stiffness maximized and the strain capacity minimized) to ensure that the structure
is optimized under the given boundary conditions and load conditions. Therefore, under the constraint
condition (i.e., the model volume), the topology optimization model is:

Min C(X) = {U}T [K]{U} (11)

s.t. :

(
n

∑
i=1

(ViXi)−V

)
≤ 0, 0.001 ≤ Xi ≤ 1 (12)

where [K] is structural stiffness matrix; {U} is structural displacement matrix; and C(X) is structural
flexibility matrix. The stiffness matrix, flexibility matrix, and sensitivity matrix functions are as follows:

[K] = ∑ n
i=1

(
Emin+Xp

i ∆E
)
[Ki] (13)



Energies 2018, 11, 3230 7 of 24

C(X) =
n

∑
i=1

(
Emin+Xp

i ∆E
)
{Ui}T [Ki]{Ui} (14)

C′(X) = −
n

∑
i=1

pXp−1
i ∆E{Ui}T [Ki]{Ui} (15)

where Ki is the unit stiffness matrix of the ith element; ∆E = E0 − Emin is the sensitivity matrix of
structural flexibility; and Xi is the design variable of the element. To ensure that the stiffness matrix
will not produce any singular moment, the minimum value of Xi is set as 0.001.
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(2) RAMP interpolation model
In Reference [18], the continuation algorithm is studied to solve the topology optimization problem

of local extremum, and it is found that with the increase of P, the discontinuity of the trace of the
global optimal solution may occur, which leads to the fact that the final result will not converge under
any values of P. Accordingly, a model that approximates the interpolated relationship of materials is
proposed in the form of a rational function:

1
E(ρ)

=
1

Emin + ρ

(
1

E0 −
1

Emin

)
(16)

The above equation can be expressed in a way similar to that used for the SIMP material
interpolation model:

Eq(ρ)= Emin +
ρ

1 + q(1− ρ)

(
E0−Emin

)
(17)

The control parameters of the elastic modulus of the structural element [30] are the relative density
ρ and weight coefficient q. When different values of q are taken, different densities of the middle
element material ρ will cause the unit modulus and other performance parameters to approach 0 or E0,
as shown in Figure 6.

The stiffness matrix, flexibility matrix, and sensitivity matrix functions are as follows:

[K] =
n

∑
i=1

(
Emin +

Xi
1 + q(1− Xi)

∆E
)
[Ki] (18)
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C(X) =
n

∑
i=1

(
Emin +

Xi

1 + q(1− Xi)
∆E
)
{Ui}T [Ki]{Ui} (19)

C′(X) = −
n

∑
i=1

1
1 + q(1− Xi)

Xi∆E{Ui}T[Ki]{Ui} (20)
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From Figures 5 and 6, it can be seen that both SIMP and RAMP models can effectively suppress
the occurrence of intermediate density elements. When a proper penalty factor P is used, the attribute
coefficients of the middle element’s density can be as close to 0 or 1 as possible. In this paper, the SIMP
interpolation model is used.

3.3. Topology Optimization Model for CBF

3.3.1. Model Overview

The transition section and cap of CBF are made of C50 concrete, and the lower part is a steel
composite bucket made of Q345 with diameter of 30 m and height of 12 m. The material parameters
of concrete are shown in Table 1. The upper part of the steel cylinder is a concrete top plate and
a transitional section. The top of the transition section is connected to the tower of the wind turbine,
thus the upper load can be transmitted to the top surface of the transition section. The hydrological
conditions of a 3 MW unit are used as simulation conditions: the water depth is 13.34 m in the extreme
condition, and the wave elements are the design elements for a 50-year event: the effective wave height
H = 4.87 m, the average period T = 8.62 s, and the wave length L = 85.7 m. The maximum flow rate
(downward current speed) is 2.31 m/s, the maximum wind speed is 15 m/s, and the average mean
wind speed is 3 m/s.

Table 1. Concrete parameters of bucket foundation.

Modulus of
Elasticity/MPa Poisson’s Ratio Density/(kg·m−3)

Design Value of
Compressive
Strength/MPa

Design Value of
Tensile

Strength/MPa

34,500 0.167 2500 23.1 1.89
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3.3.2. Load Calculation

The offshore wind turbine mainly bears wind, wave, and current loads. The specific calculation
methods for each load are as follows:

(1) Wind load
The wind load acting on the wind turbine is calculated according to the API specification, i.e.:

F = 0.5CdρDHU2 (21)

where Cd is shape factor; ρ is air density; D and H are diameter and height of the tower, respectively;
and U is wind speed.

(2) Wave load
The wave load acting on the transition section of the bucket foundation can be calculated according

to the JTS 145-2015 “Code of Hydrology for Harbour and Waterway” [34,35]. For small piles with D/L
≤ 0.2, when H/d ≤ 0.2 and d/L ≥ 0.2 or H/d > 0.2 and d/L ≥ 0.35, the positive force acting on the
horizontal directions of the pile at height Z above water surface is composed of velocity component
and inertia component, i.e.:

p = pD + pI = 0.5ρCDDu|u|+ρCM
πD2

4
∂u
∂t

(22)

u =
πH
T

ch 2π(d+z)
L

sh 2πd
L

cos ωt (23)

∂u
∂t

= −2π2H
T2

ch 2π(d+z)
L

sh 2πd
L

sin ωt (24)

where PD is the velocity component of wave force (kN/m); PI is the force component of wave force
(kN/m); D is the diameter of cylinder (m), and it will become b in the case of a rectangular section;
CD is the coefficient of velocity force, which is taken as 1.2 for a circular section; CM is the coefficient
of inertia force, which is taken as 2.0 for a circular section; u and ∂u/∂t are the horizontal speed
(m/s) and horizontal acceleration (m/s2) of the water quality point orbit, respectively.ch is hyperbolic
cosine function and sh is hyperbolic sine function; z is the depth below still water and it is measured
negatively downward (m); d is still water depth (m); T is wave period (s) and L is wavelength (m); ω is
circular frequency (s−1), ω = 2π/T; t is time (s), and when t = 0, the peak passes through the centerline
of the cylinder.

The maximum values of PDmax and PImax for PD and PI occur when ωt equals 0◦ and 270◦,
respectively. When H/d ≤ 0.2 and d/L < 0.2 or H/d > 0.2 and d/L < 0.35, PDmax and MDmax should be
multiplied by coefficients α and β, respectively. The value of α and β is 1.40, 1.50. When 0.04 ≤ d/L ≤
0.2, PImax and MImax should be multiplied by coefficients γP and γM, respectively. The value of γP
and γM, is 1.01, 1.05 [34,35].

(3) Current load
Current load is mainly calculated according to the specification of JTS 145-2015 “Code of

Hydrology for Harbour and Waterway” [35], i.e.:

Fw= Cw
ρ

2
V2 A (25)

where Fw is standard value of water flow force (kN); V is the design value of flow rate (m/s); Cw is
flow resistance coefficient; ρ is the density of water (t/m3), which is set as 1.0 and 1.025 for freshwater
and seawater, respectively; and A is the projected area of the component in the flow to the vertical
plane (m2).

(4) Weight of upper structure
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The weight of each component is listed in Table 2.

Table 2. Weight of each part of the wind turbine Unit: t.

Tower Cabin Assembly Generator Impeller System

224 32.8 68 68.3

The load transmitted from the tower and upper structure to the top surface of the transition
section is listed in Table 3. The horizontal load and moment load adopt a structural safety factor of
1.35 and a structural importance factor of 1.1.

Table 3. Cases of load.

Condition Acting Position Vertical load /kN Horizontal Load
/kN

Moment Load
/(kN·m)

Normal operation Top of transition section 7144.2 868.7 61,663.4
Ultimate load Top of transition section 7011 1523 109,368

Therefore, the load combination of the 3 MW wind turbine is calculated, as listed in Table 4.

Table 4. Cases of load combination.

Condition Load type Vertical load/kN Horizontal /kN Moment load
/(kN·m)

Operating load

Upper transfer load 7144.2 868.7 61,663.4
Wave force - 450.56 -

Current - 47.45 -
Combination 7144.2 1366.71 77,079.25

Ultimate load

Upper transfer
Load 7011 1523 109,368

Wave force - 608.17 -
Current - 64.06 -

Combination 7011 2195.23 136,710

3.3.3. Construction of Model and Its Parameterization

The foundation structure of an offshore wind turbine bucket is mainly divided into an upper
transition section and a lower steel cylinder. Two types of bucket foundation, i.e., linear and arc type,
are designed, and two topological optimization models are established, respectively. The diameters of
the upper and lower parts of the transitional section, and the barrel base are D1, D2, and D, respectively;
and the height is H. The boundary constraints, loads and contact conditions of the two types are the
same in the calculation process. The optimization area is the top cover and the transition section.
The optimization objective is the minimum strain energy of the structure, and the constraint condition
is the material volume. The quality after optimization should be maintained. The basic types and
dimensions of each type are listed in Table 5.

Variable weight method is used to optimize the bucket foundation. Since the optimization region
is continuous, the continuous variable X and the penalty factor P are introduced, thus the 0-1 discrete
variable problem can be transformed into a continuous body optimization problem. Here, X takes the
value in [0, 1], and a natural number satisfying 5 ≤ P ≤ 20 is used for trial calculation according to the
literature. By taking strain energy and volume as response, the minimum strain energy is set as the
optimal objective and the volume as the constraint condition, and the initial optimized volumes are
50% and 24%, respectively. Different values of P are set, and the transition section is optimized based
on the RAMP interpolation model. Figure 7 shows the convergence curve of the iterative process.
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The optimization objective tends to be stable after 10 iterations, indicating that the algorithm has
good convergence.

Table 5. Dimensions of different bucket foundations.

Classification Dimensions

Foundation A Linear, D1 = 4.5 m, D2 = 30 m, D = 30 m, H = 12 m
Foundation B Linear, D1 = 4.5 m, D2 = 30 m, D = 30 m, H = 12 m
Foundation C Arc-shaped, D1 = 4.5 m, D2 = 18 m, D = 30 m, H = 12 m
Foundation D Arc-shaped, D1 = 4.5 m, D2 = 18 m, D = 30 m, H = 12 m
Foundation E Linear thin-walled, D1 = 4.5 m, D2 = 18 m, D = 30 m, H = 12 m
Foundation F Arc-shaped thin-walled, D1 = 4.5 m, D2 = 18 m, D = 30 m, H = 12 m
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3.4. Analysis of Calculation Result

3.4.1. Transmission Path in Infrastructure

Figure 8 shows the topology diagrams for four bucket foundations after optimization. The gray
part is the concrete transition section and top plate, while the blue part is the composite bucket.
The void is the removed element after softening. It can be seen that the bottom diameter of the
transitional section has a greater influence on the transmission force. Whether the transition section is
of arc- or linear-type, the force transfer effect of the concrete top cover gradually weakens when the
bottom edge of the transition section extends to the edge of the barrel wall.
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C; (d) Foundation D.

The load is transmitted to the top of the transition section, then to the edge of the composite bucket
wall, and finally to the foundation soil. The role of linear-type foundation top cap in transmitting
forces is smaller than that of arc-type one.

When the bottom edge of the transition section does not extend to the cylinder wall, the upper
load will be first transferred to the concrete top cap through the transition section, and then to the
edge of the cylinder wall through the top cap. The utilization ratio of the top cap of the linear-type
foundation is larger than that of the arc-type one, indicating that the top cap is more involved in load
bearing; the arc-type foundation takes the advantages of its arc structure, and transmits more loads
to the wall; the section size of the linear-type transition section is larger at the same height, which
increases the influence of spoilage. The straight transition section requires a thicker top cap to transmit
the force, and this shape is more in line with the design concept of a top-support bucket foundation;
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since the composite bucket’s height to diameter ratio is relatively smaller, CBF has a broad and shallow
base, thus the cap can transfer more load.

From the above analysis, it can be seen that the upper transition section of the bucket foundation
has a large number of softened regions (i.e., the structural elements do not contribute to force
transmission or load-carrying) in both linear- and arc-type structures, therefore, thin-wall hollows can
be adopted in the design. Figure 9 shows the topological structure of two types of designs with a wall
thickness of 600 mm.
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From Figure 9, it can be seen that the two optimized foundations have only a few scattered
softening elements in the transition section, indicating that the thin-walled structures are more
reasonable in the force transmission path; the upper load is transferred to the concrete in the
circumferential range, thus more structural elements are involved in loading; the utilization rate
of arc-type structure is larger than that of the linear-type, showing that the transmission force in the
arc-type section is more straightforward by taking the advantage of the arc-type structure to transmit
force, and the arc-type foundation has a smaller cross-sectional size at the same height, thus the
corresponding influence on the spoilage is also smaller; the linear-type transition section requires
a thicker top cover to transmit the force, which conforms to the design concept of a top-support
barrel-type foundation.

Figure 10a–d show the relative density of structures after normalization under load. The four
types of foundations have a large number of elements in the transitional section with a density close
to 0 (marked by blue color). Combined with the topological analysis shown in Figure 7, the internal
elements of the upper transition section contribute less to the load-bearing capacity of the structure,
thus the structure type can be further optimized. Therefore, a hollow thin-wall transition section
structure is used. Figure 10e,f show the relative density of the arc- and linear-type thin-walled
transitional structures; the density of most elements in the structure is close to 1, showing a better
load-bearing performance.
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3.4.2. Finite Element Calculation

To prove the rationality of the topology optimization model of CBF, finite element method is
used. This ABAQUS model adopts an explicit linear integral element form (C3D8R), the steel yield
strength is 345MPa, the elastic modulus is 200 GPa, and the Poisson’s ratio is 0.3. The concrete
adopts C50 grade, the elastic modulus is 34.5 GPa, and Poisson’s ratio is 0.167. The soil is defined as
an elasto-plastic material using the Mohr-Coulomb yield criterion. The concrete and steel are defined
as elastic materials, the contact between the cylindrical wall and the cap is of friction type, the friction
coefficient is 0.25, and the prestress is 1320 MPa.

Figures 11–14 show the distribution curves of internal forces at the cross-section of different types
of transitional section within the structural height range under extreme load conditions. As shown in
Figures 11 and 12, the section forces and section bearing moments of three kinds of linear transition
section decrease with the increasing section height, and the changing trends are basically linearly. It
can be seen that the optimized A-type structure is superior to others.
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Figures 15 and 16 show the distributions of the maximum and minimum principal stress fields of
the optimized model under working load conditions, respectively. The tensile stress of the optimized
linear- and arc-type structures under the working load do not exceed the ultimate strength of the
concrete. The structural high-stress regions expand along the section height and in the circumferential
direction, indicating that more concrete participates in bearing. This is consistent with the basic
topological model.
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Figures 17 and 18 show the maximum and minimum principal stress field distributions for the
optimized model under extreme load conditions. The optimized linear- and arc-type structures do
not exceed the ultimate strength of the concrete. The structural high-stress regions expand along
the section height and in the circumferential direction, indicating that more concrete participates in
bearing. This is consistent with the basic topological model. Under ultimate load, the stress of both
foundations exceeds the limit value; the stress concentration area is at the top cap of the transition
section, which is related to the arc curvature and inclination of the straight line.
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From the optimization results shown in Figures 17 and 18, it can be found that under the condition
of equal quality, the structural flexibility after optimization, showing that this method is still effective
for the topology optimization of the bucket foundation as well as the transition section.
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4. Shape Optimization for CBF

4.1. Construction of Optimization Model of Transition Section

The essence of the optimization of the transition section is to seek the optimal solution of each
design variable at the minimum total construction cost. Thus, the shape parameters of each part
are selected as design variables, all of which should meet the constraints of strength, rigidity, and
stability; and the minimum total weight of the structure is taken as the objective function. Accordingly,
the optimal model of a bucket foundation structure is:

F(X) = min f (X)

gi(X) ≤ 0
hi(X) = 0

(26)

where F(X) is the objective function related to the basic body shape parameters, which can represent
the total cost; variable X represent the body shape design parameters of different parts; and hi(X) and
gi(X) are constraint functions, representing the requirements under geometric construction conditions,
overall and local strengths, stiffness, and stability of the bucket foundation structure.

4.1.1. Design variables

The relevant design variables are factors affecting the strength and load-carrying capacity of the
bucket foundation, including nine variables, i.e., height of transition section (X5), thickness of top cover
(X6), diameters of upper opening (X1 and X2), diameters of lower opening (X3 and X4), diameters of
steel cylinder (X8 and X9), and height of cylinder (X7), as shown in Figure 19.Energies 2018, 11, x FOR PEER REVIEW  19 of 24 
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Xi = (Xi1, Xi2, Xi3, · · ·, Xi9)
T (27)

where i denotes the ith scheme. The values of X1 and X2 are determined by the upper tower size,
and X5 is determined based on hydrological conditions. The value of X7 is determined in accordance
with the required depth of soil penetration into the wall of the drum. Considering that the cylindrical
wall of bucket foundation all sink below the soil surface, the concrete transition section is a hollow
thin-walled structure, and the thickness of the transition section is held constant from top to bottom,
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we have X2 − X1 = X4 − X3. With reference to all of the above design conditions, the number of all
variables can be reduced to five.

4.1.2. Objective function

The purpose of the optimization of the offshore wind turbine is to find the most reasonable
type and structural parameters for each part, while satisfying the requirements of various operating
conditions and engineering safety design requirements. Meanwhile, simple construction, relatively
low cost, and overall economic benefits should also be taken into account. Therefore, the objective
function of optimization design is to select the overall weight of the concrete transition section. Let
M1(X), M2(X), and M3(X) represent the weights of concrete transition section, concrete top cover, and
steel cylinder, respectively, then the expression of F(X) is as follows:

F(X)= M1(X)+M2(X)+M3(X) (28)

The formulas for the total weight are as follows:

M2(X)= ρc
πX2

9X6

4
(29)

M3(X) =
ρsπX7

4

(
X2

9−X2
8

)
(30)

It should be pointed out that the curvature of the arc-type transition section is related to the height
of the transition section (X5), the inner and outer diameters (X1 and X2) of the upper section, and the
inner and outer diameters (X3 and X4) of the lower section. After the above variables are determined,
the size of the arc-type transition section will also be determined. Therefore, the volume of the arc-type
transition section can be approximately calculated according to the volumetric formula of a circular
table of the same size. Accordingly, the formula for M1(X) is:

M1(X)= ρc
πX5

12

(
X2

4+X2X4+X2
2−X2

3−X1X3−X2
1

)
(31)

4.1.3. Constraint conditions

For the bucket foundation, its constraint conditions mainly include the strength constraint and
the deformation constraint, i.e., each part of the concrete and the steel should meet the strength limits
given in specifications, and the base slope should satisfy the specification of FD 003-2007. In addition,
the size of the steel cylinder wall should meet the requirements of the structure to resist buckling
deformation. For the transition section structure with prestressed reinforcement, the influence of
prestressing tendons must also be considered.

(1) Strength constraints
The stress on each section of the transition section structure should meet:

σ =
N
A
± M

W
≤ [σ] (32)

The section stress on the top of the transition section should meet:

σ =
M

π
32X2

(
X4

2−X4
1

) ± FV
π
4

(
X2

2−X2
1

) ≤ [σ] (33)

The stress on the bottom of the transition section should satisfy:

σ1 =
M1

W1
=

M1
π
32 D3

1

(
1− α4

) = [σ] (34)
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where:
M1= M + FH · X5−Mq (35)

D1 =
X5 · (X4−X2)+X5X2

X5
(36)

α =
X5(X4−X2)+X2X5 − (X2−X1)X5

X5(X4−X2) + X5X2
(37)

The stress at the joint between the transition tower section and top cover should satisfy:

σ =
M′3y

I
=

[
M3+FV3 ·

X2
4 X7

2X4X7

]
· X4

X3
4 X7

3(X1+X2)

≤ [σ] (38)

(2) Stability constraints
The inclination of the concrete top cap is:

∆s/x9 ≤ tan θ (39)

where ∆s is the displacement difference of the bucket foundation cover along the force direction;
and tan θ is the allowable value of the inclination rate. Here, ∆s = s1 − s2, and s1 and s2 are the final
settlement of the two edges in the actual pressure-carrying area in the tilt direction.

According to soil mechanics, the basic foundation deformation can be obtained using the method
of additional stress. Although the cylindrical foundation is circular, it can be approximated as
a rectangle in the calculation process, as shown in Figure 20 [16]:

Aeff = 2
[

R2arccos
( e

R

)
− e
√

R2 − e2
]

(30)

be = 2(R− e) (41)

le = 2R

√
1−

(
1− be

2R

)2
(42)

leff =

√
Aeff

le
be

, beff =
leff

le
be (43)



Energies 2018, 11, 3230 21 of 24

Energies 2018, 11, x FOR PEER REVIEW  21 of 24 

 

le = 2R 1- 1-
be

2R

2

 (42) 

leff = Aeff
le
be

, beff = leff

le
be (43) 

 

Figure 20. Effective area of circular foundation base. 

In addition, the bucket foundation also needs to meet requirements of vertical bearing capacity, 
anti-slide, and anti-dump, i.e.: 

QU/QV ≥ 2，FR/FS ≥ 1.3，MR/MS ≥ 1.6 (44) 

(3) Buckling constraints 

To meet the structural strength and flexion requirements, the wall thickness of the composite 
bucket should be reduced as much as possible to facilitate the settlement of construction. 

The wall buckling constraint is as follows: 

σ ≤ σxe = 0.061E
t
R (44) 

(4) Calculation of prestressed reinforcement: 
In consideration of the cost and durability, the transition section of the bucket foundation is 

designed as a concrete structure. Due to the large moment and horizontal force transmitted from the 
upper part to the top surface of the transition section, the stress of the concrete transition section 
usually cannot meet the strength limit. Therefore, to reduce its size and total weight, it is configured 
with arc prestressing tendons in the height direction to control cracking in the structure and adjust 
the force balance. The number of prestressed bars and the corresponding arrangement are mainly 
estimated according to load on the top of the structure. The number of unbonded prestressed bars is 
determined by: 

Ap = Npe

σcon − σl,tot
 (45) 

where Npe is the total effective pre-force; σl,tot is the estimated total loss; σcon is the tension control stress; 
and Ap is the cross-section area: 

Figure 20. Effective area of circular foundation base.

In addition, the bucket foundation also needs to meet requirements of vertical bearing capacity,
anti-slide, and anti-dump, i.e.:

QU/QV ≥ 2, FR/FS ≥ 1.3, MR/MS ≥ 1.6 (44)

(3) Buckling constraints
To meet the structural strength and flexion requirements, the wall thickness of the composite

bucket should be reduced as much as possible to facilitate the settlement of construction.
The wall buckling constraint is as follows:

σ ≤ σxe = 0.061E
t
R

(44)

(4) Calculation of prestressed reinforcement:
In consideration of the cost and durability, the transition section of the bucket foundation is

designed as a concrete structure. Due to the large moment and horizontal force transmitted from
the upper part to the top surface of the transition section, the stress of the concrete transition section
usually cannot meet the strength limit. Therefore, to reduce its size and total weight, it is configured
with arc prestressing tendons in the height direction to control cracking in the structure and adjust
the force balance. The number of prestressed bars and the corresponding arrangement are mainly
estimated according to load on the top of the structure. The number of unbonded prestressed bars is
determined by:

Ap =
Npe

σcon − σl,tot
(45)

where Npe is the total effective pre-force; σl,tot is the estimated total loss; σcon is the tension control
stress; and Ap is the cross-section area:

Npe =

βMq
W −

[
σctq,lim

]
1
A +

ep
W

(46)

where W is the elastic resistance moment on the tensile edge of the member cross-section; A is the
member’s cross-section; Mq is the design value of bending moment under quasi-permanent load
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combination, which is calculated according to formula (48); σctq,lim is the tensile stress limit of concrete
under the quasi-permanent load combination, and it takes the value of 0 for the offshore structure;
ep is the eccentricity distance from the center of gravity on the member’s cross-section to the center
of gravity of unbonded prestressed tendons; B is coefficient, and it takes 1.2 for the positive moment
section of a continuous member and 0.9 for the negative moment section:

Mq = M− [σ]
π

32X2

(
X4

2 − X4
1

)
(47)

4.2. Optimization example of CBF

SQP algorithm and hybrid genetic algorithm are used to perform the optimization calculation,
respectively. The parameters of each part of the bucket foundation obtained using these two algorithms
are listed in Tables 6 and 7, respectively.

Table 6. Calculation result obtained using hybrid genetic algorithm.

X1 (m) X2 (m) X3 (m) X4 (m) X5 (m) X6 (m) X7 (m) X8 (m) X9 (m) Total
mass (t)

3.199 4.026 19.305 20.132 14.989 1.763 11.463 22.108 22.786 2397.322

Table 7. Calculation results obtained using sequence quadratic programming (SQP).

X1 (m) X2 (m) X3 (m) X4 (m) X5 (m) X6 (m) X7 (m) X8 (m) X9 (m) Total
mass (t)

3.251 4.008 20.883 21.711 15.029 1.841 12.186 22.719 23.396 2406.64

From Tables 6 and 7, it can be seen that the results obtained using the two algorithms are similar,
indicating that this method can be used for the preliminary calculation of the selection and design of
CBF. The mass of the transition section and the bucket foundation satisfying the load and constraint
conditions is about 2400 t. The optimization results obtained using SQP are slightly larger than those
using hybrid genetic algorithm. Considering that the advantages of the hybrid genetic algorithm are
closely related to the size of population and the rule of iteration, the initial solution regenerated in
each iterative process is probably a local optima.

5. Conclusions

In this paper, based on topology optimization, the optimal topology of the transition section of
CBF is studied under several working conditions. The optimization models of the bucket foundation
and its transition section are established. SQP and hybrid genetic optimization algorithms are further
used to optimize the shape of the prestressed steel-mixed composite bucket foundation. The following
conclusions are obtained:

(1) Topology optimization method can better solve the selection problem of irregular and complex
structures. After the optimization of transition structure, there are only fewer and dispersive
softening elements. In the thin-walled structures of two types of foundation, the transfer path are
more reasonable; when the transition section transfers the upper load to the concrete ring, more
structural elements are involved in bearing.

(2) The type of CBF transition has a larger impact on the force transmission path. When the bottom
edge of the transition section extends to the edge of the barrel wall, the load can be transferred
directly to the barrel wall.

(3) Compared with the linear-type transition section, the structural transition of the arc-type
transition can transfer force in a more straightforward way; at the same height, the section
area is smaller, and the influence on spoilage is also smaller.
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In summary, mathematical programming provides an effective tool for the selection and
optimization of offshore wind turbines.
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