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Abstract: Data-loss from wide-area measurement systems (WAMS) is a stochastic event and
eigenvalues of power systems containing data-loss cannot be calculated directly. This paper proposes
a unified model of WAMS data containing time-delay and data-loss according to its mathematical
expectation. Based on Pade approximation, the model is incorporated into a system linearized model
with WAMS. Thus, an eigen-analysis can be conducted to analyze the impacts of data corruption and
to calculate the system stability time-delay margin. Then, the unified model is applied to damping
torque analysis (DTA) to derive the damping torque index (DTI) with WAMS. The DTI can be used to
select feedback signals and conduct the parameter design of a wide-area damping controller (WADC).
Finally, the 2-area 4-machine (2A4M) Kundur system and Eastern China power grid (ECPG) are
simulated to validate the feasibility of the model and its application. The results demonstrate the
impacts of data corruption on system dynamic performance and the ability of the method to improve
the small-signal stability of interconnected power grids.

Keywords: eigen-analysis; small-signal stability; inter-area oscillation; damping torque analysis;
time-delay; data-loss

1. Introduction

As large-scale and inter-connected power grids are developing rapidly, inter-area oscillations
have posed a great threat to power transmission and system operation [1–3]. With local signals and
measurements, the conventional controller has limited ability to damp oscillations between areas [4].
Applications of the phasor measurement unit (PMU) and power system stabilizer (PSS) adopting
remote signals make it possible and practicable to inhibit inter-area oscillations [5–7]. A salient
characteristic of wide-area measurement systems (WAMS) is data corruption, including time-delay,
data-loss, and disordering, which can prominently jeopardize a system’s dynamic stability [8–10].
As a result, it is crucial to accurately analyze the influence of data corruption on the dynamic
characteristics of power grids so as to damp inter-area oscillations.

Investigations on the data corruption effect in power systems have mainly focused on two issues:
mechanism analysis and controller design to compensate for the negative impacts brought about by
time-delay and data-loss. Many scholars have carried out in-depth research to deal with these factors.
Yang [11] presented the damping control model of a power grid with delay and proposed a new delay
margin calculation method based on the damping factor by using Lyapunov–Krasovskii functional
and integral inequality. The major innovation of this paper is the delay margin calculation method
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which can evaluate the impact of delay and apply it to the design of a wide-area damping controller
(WADC) with a faster calculation speed. Cai [12] deduced a low-order linearized model containing
time-delay by using the subspace identification technique. Inter-area modes can be identified to obtain
participation factors. A novel adaptive WADC scheme was proposed based on the residue method.
In the scheme, an algorithm is implemented to deal with the time-delay of each feedback signal and
thus eliminate the negative influences caused by delay. The method proposed by this paper can be
applied to conduct adaptive WADC parameter online tuning. Li [13] extended the research to deal
with a power system containing multiple delays. Firstly, this paper established a model containing
multiple delays. By using the Lyapunov theorem and the linear matrix inequality (LMI) theory,
controllers were designed to damp oscillations in power grids with multiple delays. As for data-loss,
Jungers [14] added data loss into the conventional LMPC controller in optimization problem and
controller implementation. The controller considers a clear description of the stability region and can
ensure system stability under data losses.

Eigen-analysis is a fundamental method for small-signal stability analysis and some research has
been devoted to the eigen-analysis of power systems containing time-delay. Li [15] adopted a Newton
method to derive eigenvalues for a time-delay power system. An analytical method was proposed to
calculate the eigenvalue sensibility and to analyze the impact of delay. Data-loss is a stochastic factor
of a power system, which causes difficulties in modeling and eigenvalue calculation.

Damping torque analysis is an important method that analyzes small-signal dynamics. If models
of eigenvalue calculation and the damping torque index (DTI) that consider both time-delay and
data-loss can be obtained, they will be helpful in wide-area damping analysis and controller design.
This paper proposes a unified mathematical model of WAMS data containing time-delay and data-loss
and applies it to eigen-analysis and damping torque analysis (DTA) to investigate their impacts on
small-signal dynamic performance and controller design. The main contributions of this paper are
as follows:

• A unified mathematical model of WAMS signal is proposed according to the mathematical
expectation of sampling data and transformed to the frequency domain based on the Pade rational
polynomial approximation.

• By applying the model to the linearized equations, the eigenvalue calculation model containing
time-delay and data-loss is derived. This model can analyze the impact of data corruption on
system dynamic performance and calculate the system stability time-delay margin.

• On the basis of DTA theory, the damping torque index considering data corruption is obtained.
The DTI can reflect the sensitivity of eigenvalues impacted by the WADC transfer function and
thus, can be applied to execute wide-area signals selection and parameter tuning.

The rest of this paper is organized as follows. Section 2 illustrates the closed-loop linearized model
with WAMS and proposes the unified model of data corruption. Combined with the second-order Pade
approximation, the eigenvalue calculation model containing data-loss is derived. Section 3 deduces the
DTI model containing data corruption and illustrates the method of WADC design. Section 4 validates
the proposed model and method in the 2-area 4-machine (2A4M) system and Eastern China power
grid (ECPG). Finally, Section 5 summarizes the conclusions of this paper.

2. Eigen-Analysis Model Considering Time-Delay and Data-Loss

2.1. Closed-Loop Linearized Model with WAMS

The open-loop linearized model of power system is shown below [16]:{
∆

.
X = A∆X + B∆V

0 = C∆X + D∆V
(1)

∆
.

X = A′∆X (2)
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where X ∈ <n is the vector consisting of system state variables; V is the voltage vector; and A, B, C,
and D are corresponding coefficient matrixes. By eliminating the terminal voltages in (1), (2) can be
derived. A′ is the deduced coefficient matrix, whose equation is given in (3):

A′ = A− BD−1C. (3)

An illustrative diagram of the power system with WAMS is depicted in Figure 1, where y f is
the output signal of power system, and u is the feedback signal. The PMU collects data from the
power system and transfers it to the WADC. The input signal y of WADC contains time-delay and
data-loss characteristics.
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x

y

X A X B V E u
C X D V E u

u G y

Δ = Δ + Δ + Δ
 = Δ + Δ + Δ
 Δ = Δ



0

. 

(4)
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Figure 1. Illustrative diagram of the power system with a wide-area measurement system (WAMS).
WADC: wide-area damping controller.

The closed-looped model with WAMS is presented in (4), where ∆u is the linearized quantity of
u. Ex and Ey are the corresponding coefficient matrices. G(s) is the transfer function of the WADC.
Because the feedback signal containing wide-area characteristics, the power system model with WAMS
consists of transcendental equations [17] and is more complicated:

∆
.

X = A∆X + B∆V + Ex∆u
0 = C∆X + D∆V + Ey∆u

∆u = G(s)∆y
. (4)

2.2. Unified Mathematical Model of Time-Delay and Data-Loss

In contrast to the delay, data-loss is a probabilistic event. The data-loss ratio is the possibility that
data-loss happens. The PMU collects data and transmits it to controllers discretely. Each sampling is
an independent probability event. If data-loss does not happen, WADC can receive the newest data
at this moment, i.e., Xi(t− τi). If the data is missing, WADC has to adopt the data received at the
previous moment, i.e., Xi(t− τi − τs). We assume that the input of WADC is comprised of L signals,
and the equations are summarized as follows:

y(t) =


L
∑

i=1
CiXi(t− τi − τs), data- loss happens

L
∑

i=1
CiXi(t− τi), data- loss donesn’t happens

(5)

where Ci and τi are the respective signal coefficients and time-delay of the ith signal. τs is the time
taken for the PMU sampling interval.
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Obviously, the data collected by WADC are stochastic and thus, power system eigenvalues
considering data-loss cannot be calculated directly. According to the mathematical expectation of
data-loss, the equation can be transformed into

y(t) =
L

∑
i=1

Ci(γiXi(t− τi − τs) + (1− γi)Xi(t− τi)) (6)

where γi is the data-loss ratio of the ith signal. Equation (6) can be converted to the frequency domain
to obtain

y(s) =
L

∑
i=1

Ci(γie−(τi+τs)s + (1− γi)e−τis)Xi(s). (7)

2.3. Pade Approximation

In the Laplace domain, time-delay can be represented by e−τs, where τ is the time of delay.
Pade approximation is an efficient rational polynomial method that is used to approach e−τs [18,19].
It is assumed that the numerator is an lth polynomial and the denominator is a kth one, and the
approximation equation can be written as follows:

e−τs ≈ R(s) =
Nl(s)
Nk(s)

=
a0 + a1τs + · · · al(τs)l

b0 + b1τs + · · · bk(τs)k (8)

where aj and bj are coefficients, and their equations are presented as follows:

aj = (−1)j (l + k− j)!l!
(l + k)!j!(l − j)!

(9)

bj =
(l + k− j)!k!

(l + k)!j!(k− j)!
. (10)

In practical applications, normally l = k, the order of Pade approximation. Hwang [20] indicates
that second-order Pade approximation can achieve sufficient accuracy and efficiency. Thus, this paper
adopts the second-order model of Pade approximation which is shown in (11).

e−τs ≈=
1− 1

2 τs + 1
12 (τs)2

1 + 1
2 τs + 1

12 (τs)2 . (11)

2.4. Linearized Model of Controller with Wide-Area Signals

Based on the proposed model of data corruption and second-order Pade approximation,
the equation of sampling data can be transformed as shown below

∆y(s) =
L
∑

i=1
Ci∆vi(s) =

L
∑

i=1
Ci(γie−(τi+τs)s + (1− γi)e−τis)∆ωi(s)

=
L
∑

i=1
Ci(γi

1− 1
2 (τi+τs)s+ 1

12 ((τi+τs)s)
2

1+ 1
2 (τi+τs)s+ 1

12 ((τi+τs)s)
2 + (1− γi)

1− 1
2 τis+ 1

12 (τis)
2

1+ 1
2 τis+ 1

12 (τis)
2 )∆ωi(s)

(12)

where ∆ωi is the feedback signal that the PMU transmits to the WADC, and ∆vi is the signal
containing data corruption. In accordance with (12), the illustrative diagram of its linearized model is
displayed in Figure 2, where x1 to x4 are additional state variables. zi1, zo1, zi2, and zo2 are additional
algebraic variables.
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Detailed equations are given as follows:

x2 =
.
x1 = dx1

dt

zi1 = ∆ωi(1− γi)

zi1 = 1
12 τ2

i
.
x2 +

1
2 τjx2 + x1

zo1 = 1
12 τ2

i
.
x2 − 1

2 τjx2 + x1

(13)



x4 =
.
x3 = dx3

dt

zi2 = ∆ωiγi

zi2 = 1
12 (τi + τs)

2 .
x4 +

1
2 (τi + τs)x4 + x3

zo2 = 1
12 (τi + τs)

2 .
x4 − 1

2 (τi + τs)x4 + x3

. (14)

After transformation and reduction, we can obtain

.
x1 = x2
.
x2 = 12

τ2
i

∆ωi(1− γi)− 12
τ2

i
x1 − 6

τi
x2

.
x3 = x4
.
x4 = 12

(τi+τs)
2 ∆ωiγi − 12

(τi+τs)
2 x3 − 6

(τi+τs)
x4

(15)

 zo1 = ∆ωi(1− γi)− τix2

zo2 = ∆ωiγi − (τi + τs)x4
. (16)

The detailed sections of PSS are shown below, where upss is the output of PSS to the excitation
system, i.e., u in Figure 1. K, Ts, T1, and T2 are corresponding parameters.

For demonstration purposes, this paper takes a WADC with two feedback signals as an example.
x5 to x8, and zi3, zi4, and zo3, zo4 are the corresponding variables of signal ∆ωj. In accordance with
Figure 3, the linearized model of WADC is derived in Figure 4.Energies 2018, 11, x FOR PEER REVIEW  6 of 16 
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y1, y2, and y3 are the auxiliary state variables of WADC and a1 = T1/T2. The differential equations
of WADC are presented as follows:

dy1
dt = 1

Tp
(−y1 + Ky0)

dy2
dt = 1

T2
[−y2 + (1− a1)(Ky0 − y1)]

dy3
dt = 1

T2
[−y3 + (1− a1)y2 + a1(1− a1)(Ky0 − y1)]

y0 = Ci(∆wi − τix2 − (τi + τs)x4) + Cj(∆wj − τjx6 − (τj + τs)x8)

∆Upss = y3 + a1y2 − a2
1y1 + a2

1Ky0

. (17)

The above equations are added into the conventional power system state-space model, i.e., (4), to
derive the eigenvalue calculation model of the power system containing time-delay and data-loss.

3. Wide-Area Damping Controller Design Based on the Damping Torque Index

3.1. Damping Torque Index Considering Time-Delay and Data-Loss

In DTA theory, DTI is defined to indicate the sensitivity of one eigenvalue, λi, to Gpss(s).
As depicted in Figure 3, the equation is as follows:

Gpss(s) = K
Tss

1 + Tss
(

1 + T1s
1 + T2s

)
2
. (18)

DTI can clearly demonstrate how PSS and its parameters affect the oscillation mode. The equations
are presented below [21–23]:

Si
DTA =

∆λi
∆Gpss(λi)

=
N

∑
j=1

Sij Mj Hij∠ϕij (19)

where Sij is the sensitivity of the oscillation mode to the damping torque coefficient on the jth generator,
TDij, as presented in (20). Mj is the inertia parameter of the jth generator. Hij∠ϕij is the damping
torque that PSS contributes to the jth generator, and the equation is given in (21).

Sij =
∂λi

∂TDij
(20)

Hij∠ϕij = Bs(λi)γj(λi) = Bs(λi)
CkiVi
Vi2j

(21)

where Bs(λi) is the transfer function from PSS to the jth generator electromechanical oscillation loop.
γj(λi) is the coefficient matrix of the PSS output after signal reconstruction. Its single signal equation
is presented in (22):

γj(λi) =
∆y

∆ωj
=

X(λi)

∆ωj
=

CkiVi
Vi2j

(22)
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where Cki is the coefficient of the reconstruction signal. Vi is the right eigenvector of λi. The detailed
mechanism and derivation process are available in [22–24]. Therefore, the conventional equation of
DTI of single signal is derived by

Si
DTA =

N

∑
j=1

Sij MjBs(λi)
CkiVi
Vi2j

. (23)

Obviously, the characteristics of data corruption are embodied at the signal reconstruction matrix,
γj(λi). For the WADC input consisting of multiple signals, according to (7), we have

γj(λi) =
∆y

∆ωj
=

L
∑

p=1
Cp(γpe−(τp+τs)λi + (1− γp)e−τpλi )Xp(λi)

∆ωj
=

L

∑
p=1

Cp(γpe−(τp+τs)λi + (1− γp)e−τpλi )CkiVi

Vi2j
. (24)

Thus, the DTI containing time-delay and data-loss is derived:

Si
DTA =

N

∑
j=1

Sij MjBs(λi)
L

∑
p=1

Cp(γpe−(τp+τs)λi + (1− γp)e−τpλi )CkiVi

Vi2j
. (25)

3.2. Wide-Area Damping Controller Design

WADC design includes the selection of feedback signals and controller parameter tuning.
According to DTA theory, DTI is defined to evaluate the impact of the controller transfer function on
one objective mode and thus can reflect the influence of WADC with different feedback signals on
eigenvalues. This means that the WADC adopting the feedback signal with the biggest DTI can exert
the biggest impact on the objective mode.

For a WADC installed at the jth generator, the variation of the ith mode is calculated as below:

∆λi = Si
DTA∆Gpss(λi). (26)

As shown in Figure 5, the most efficient method to damp the mode is to move the ith mode
horizontally to the left side with its frequency constant [25]. Therefore, the phase compensation of
controller can be derived by

angle(Gpss(λi)) = 180◦ − angle(Si
DTA). (27)
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3.2. Wide-Area Damping Controller Design 

WADC design includes the selection of feedback signals and controller parameter tuning. 
According to DTA theory, DTI is defined to evaluate the impact of the controller transfer function on 
one objective mode and thus can reflect the influence of WADC with different feedback signals on 
eigenvalues. This means that the WADC adopting the feedback signal with the biggest DTI can exert 
the biggest impact on the objective mode. 

For a WADC installed at the jth generator, the variation of the ith mode is calculated as below: 

( )i
i DTA pss iS Gλ λΔ = Δ . (26)

As shown in Figure 5, the most efficient method to damp the mode is to move the ith mode 
horizontally to the left side with its frequency constant [25]. Therefore, the phase compensation of 
controller can be derived by 

( ( )) 180 ( )i
pss i DTAangle G angle Sλ = − . (27)
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Figure 5. Effect of phase compensation of the PSS.

The phase adjustment of PSS mainly depends on the phase compensation section, including T1

and T2. In conventional applications of signal selection and WADC parameter tuning, the open-loop
eigenvalues are used to approximate the close-loop values and are not very precise. By using the
proposed eigenvalue and DTI calculation model containing time-delay and data-loss, the process is
more accurate and effective for WADC design.
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4. Case Study

4.1. Simulations of Different Models of Data-Loss

Firstly, the 2A4M Kundur system (Figure 6) was simulated to verify the proposed model.
The detailed parameters are available in [26]. There are three electromechanical oscillation modes in
this system. Among them, the inter-area mode, λ1, exerts a great impact on the system’s stability.
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Figure 6. Network of the 2-area 4-machine (2A4M) system.

The WADC was installed at G1 and the feedback signal was ∆δ1 − ∆δ3, where δ is the generator
power angle and K = 10, Ts = 5, T1 = 0.5, and T2 = 0.05. In order to validate the unified model of
data corruption, data-loss was simulated respectively using the physical model and mathematical
model. For the physical model, one random number was generated between 0 and 1. If it was more
than the data-loss ratio, the controller received the updated data. Otherwise, the data of the previous
moment was adopted. As for the mathematical model, the input of WADC was directly calculated
according to (6). A three-phase, short-circuit fault occurred at B8 and was cleared 0.01 s later. Figure 7
presents the comparative simulation curves of the G1–G3 angle difference according to the different
models of data-loss.
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models of data-loss.

Figure 7 shows there was no prominent difference between the two curves associated with two
different models, which demonstrates the correctness of the unified mathematic model in (6).

4.2. Impact Mechanism

Firstly, to investigate the impact of time-delay, τ1 = τ3 was kept and their values were assigned to
be 0 s to 0.4 s and γ1 = γ3 = 0.1. Time-domain simulations and eigenvalue calculation were carried
out with different time-delays. The simulation curves and the modal trajectory of λ1 are displayed in
Figures 8 and 9.
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According to Figure 9, when time-delay was from 0 s to 0.24 s, the variation of λ1 was very small.
With an increase in the delay, the real part moved first to the left and then to the right. This means that
the increase in time-delay did not exert a negative impact on the stability at first. Once time-delay was
over 0.28 s, the real part rapidly grew to greater than 0 which meant that the system was no longer
stable. Obviously, a time-delay margin existed near 0.28 s. The simulation curves in Figure 8 are
consistent with the modal trajectory.
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The time-delay constant was maintained at τ1 = τ3 = 0.2 s. The simulations and modal trajectory
analysis were conducted with different data-loss ratios, from 0 to 0.2, and the results are shown in
Figures 10 and 11.

It is revealed in the figures that data-loss also has a negative influence on system stability and the
curve presents a monotonous characteristic. However, the modal variation was not very significant
compared with the time-delay. This is consistent with the unified model of data corruption for data-loss,
which generates a time-delay of γiτs, which is smaller than τi. The simulation curves in Figure 10 show
this characteristic as well.
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4.3. Controller Signal Selection and Parameter Tuning

The WADC was installed at G1 to damp the inter-area mode, λ1. Four feedback signals were
considered including differences in G1–G3 angular velocities, power angles, and active powers and
B7–B9 active powers. Their characteristics and the DTI calculation results are presented in Table 1.

Table 1 shows that every signal has the effect of damping the objective mode. Among them,
the signal, ∆PG1 − ∆PG3, showed the best effect followed by ∆PB7 − ∆PB9. Thus, ∆PG1 − ∆PG3 was
selected to be the input signal of WADC.
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Table 1. Characteristics and DTI results of different feedback signals.

Feedback Signal Time-Delay/s Data-Loss Ratio Time-Delay/s Data-Loss Ratio Abs (DTI)/p.u. Angle (DTI)/◦

∆ω1 − ∆ω3 0.08 (∆ω1) 0.1 (∆ω1) 0.08 (∆ω3) 0.1 (∆ω3) 0.0006 −62.35
∆δ1 − ∆δ3 0.08 (∆δ1) 0.1 (∆δ1) 0.08 (∆δ3) 0.1 (∆δ3) 0.0042 −157.54

∆PG1 − ∆PG3 0.08 (∆PG1) 0.1 (∆PG1) 0.08 (∆PG3) 0.1 (∆PG3) 0.1856 −145.32
∆PB7 − ∆PB9 0.06 (∆PB7) 0.1 (∆PB7) 0.06 (∆PB9) 0.1 (∆PB9) 0.1058 −150.97

T1, the parameter of the phase compensation element, exerts great impacts on the system’s
dynamic stability and needs to be tuned. The other parameters—PSS, K, Ts, and T2—are usually set
according to experience.

K = 10, Ts = 5, T2 = 0.05, and the closed-loop eigenvalues were calculated. According to the DTI
and the eigenvalue, T1 was calculated to be 0.45381 by using the phase compensation method. Then,
the method was conducted according to the conventional DTI. The obtained value was T1 = 0.16938.
The two parameters were applied to the WADC, an eigen-analysis and simulations were conducted.
The results are presented in Table 2 and Figure 12. As shown in Figure 12, the proposed tuning method
more efficiently inhibited the inter-area mode and improved the system’s small-signal stability.

Table 2. Objective mode tuned by different models.

Model Real Part/Rad/s Imaginary Part/Rad/s Frequency/Hz Damping Ratio

The conventional model −0.19421 5.9067 0.9401 0.03278
The proposed model −0.34402 2.8285 0.4502 0.1193

Energies 2018, 11, x FOR PEER REVIEW  12 of 16 

 

Table 1. Characteristics and DTI results of different feedback signals. 

Feedback 
Signal 

Time-
Delay/s 

Data-Loss 
Ratio 

Time-
Delay/s 

Data-Loss 
Ratio 

Abs 
(DTI)/p.u. 

Angle (DTI)/
°  

ω ωΔ − Δ1 3  0.08 ( ωΔ 1 ) 0.1 ( ωΔ 1 ) 0.08 ( ωΔ 3 ) 0.1 ( ωΔ 3 ) 0.0006 −62.35 
δ δΔ − Δ1 3  0.08 ( δΔ 1 ) 0.1 ( δΔ 1 ) 0.08 ( δΔ 3 ) 0.1 ( δΔ 3 ) 0.0042 −157.54 
G GP PΔ − Δ1 3  0.08 ( GPΔ 1 ) 0.1 ( GPΔ 1 ) 0.08 ( GPΔ 3 ) 0.1 ( GPΔ 3 ) 0.1856 −145.32 
B BP PΔ − Δ7 9  0.06 ( BPΔ 7 ) 0.1 ( BPΔ 7 ) 0.06 ( BPΔ 9 ) 0.1 ( BPΔ 9 ) 0.1058 −150.97 

T1 , the parameter of the phase compensation element, exerts great impacts on the system’s 
dynamic stability and needs to be tuned. The other parameters—PSS, K , sT , and T2 —are usually 
set according to experience.  

K = 10 , sT = 5 , .T =2 0 05 , and the closed-loop eigenvalues were calculated. According to the DTI 
and the eigenvalue, T1  was calculated to be 0.45381 by using the phase compensation method. Then, 
the method was conducted according to the conventional DTI. The obtained value was .T =1 0 16938 . 
The two parameters were applied to the WADC, an eigen-analysis and simulations were conducted. 
The results are presented in Table 2 and Figure 12. As shown in Figure 12, the proposed tuning 
method more efficiently inhibited the inter-area mode and improved the system’s small-signal 
stability. 

Table 2. Objective mode tuned by different models. 

Model 
Real 

Part/Rad/s 
Imaginary 
Part/Rad/s Frequency/Hz Damping Ratio 

The conventional model −0.19421 5.9067 0.9401 0.03278 
The proposed model −0.34402 2.8285 0.4502 0.1193 

 
Figure 12. Plots of power angle differences between G1 and G3 tuned by different models. 

In this study, WADC was tuned to damp the objective oscillation mode in power systems 
containing data-loss. It has a clearer physical meaning and damping objective compared to the 
controller in [14], which was designed to compensate the negative influence of data-loss in the process 
of data sampling and transmission. 

Figure 12. Plots of power angle differences between G1 and G3 tuned by different models.

In this study, WADC was tuned to damp the objective oscillation mode in power systems
containing data-loss. It has a clearer physical meaning and damping objective compared to the
controller in [14], which was designed to compensate the negative influence of data-loss in the process
of data sampling and transmission.

4.4. System Stability Time-Delay Margin Calculation

When the WADC was at G1, the feedback signal was ∆δ1 − ∆δ3 and K = 10, Ts = 5, T1 = 0.5,
and T2 = 0.05. The time-delay was increased and the eigenvalue of λ1 was calculated. When the real
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part is 0, the delay obtained is the stability margin, which means the system is asymptotically stable.
In this case, the margin value obtained was 0.2736 s. Simulations were carried out with time-delays
of 0.27 s and 0.28 s (Figure 13). Obviously, the system lost its dynamic stability when the time-delay
reached 0.28 s.
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Then, WADC parameter tuning was conducted and T1 = 0.3126 was derived. Simulations were
conducted with this parameter, and Figure 14 displays the comparative curves. It was revealed that the
tuned parameter made the system resume its stability which demonstrates that the proposed method
can extend the system’s delay margin and thus enhance its dynamic stability.
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Then, the WADC was installed at G3 with the signal ∆δ3 − ∆δ1 and the same parameters as the
controller in G1. The margin was calculated to be 0.2537 s, which means that the WADC located at G1
had a better damping effect compared to that at G3. Thus, the margin can be an index for selecting the
WADC location and feedback signals.
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4.5. WADC Parameter Tuning in ECPG

Then, the method was applied in a real, large-scale system, the ECPG. This system consists of
64 generators, 294 nodes, and 628 lines. There are 63 modes in this system, among them, Mode FJ,
which has a frequency 0.477 Hz, is an important mode and is poorly damped. The detailed parameters
of ECPG are available in [27].

In accordance with the results of participation factors and controllability, WADC was installed at
HS#D (G54). The feedback signal was selected to be the difference in power angle between GYC_D1
and GYC_D2, namely ∆ω23 − ∆ω24. τ23 = 0.1 s, γ23 = 0.2, τ24 = 0.12 s, and γ24 = 0.1

WADC was tuned by the conventional and proposed methods. The results were 0.3157 and
0.5124 respectively. The eigen-analysis and simulations were carried out and are displayed in Table 3
and Figure 15. The results demonstrate the proposed method effectively dampened the inter-area
oscillation in ECPG as well.

Then, the time-delay margin calculation was conducted in this system. The WADC was at G54
with the signal ∆ω23 − ∆ω24 and γ23 = γ24 = 0. The margin was 0.3067 s, which means it had a better
tolerance to time-delay in ECPG than the 2A4M system. Thus, the ECPG is was shown to be more
stable than the 2A4M system with the above WADC locations and parameters. Therefore, to some
extent, the margin can be considered as a parameter to assess the stability of different systems.

Table 3. Objective mode tuned by different models in the Eastern China power grid (ECPG).

Mode Real Part/Rad/s Imaginary Part/Rad/s Frequency/Hz Damping Ratio

The conventional model −0.18688 4.4643 0.7105 0.04183
The proposed model −0.25484 4.8136 0.7661 0.05287
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5. Conclusions

The current investigation mainly focused on the impact brought about by data-loss and controller
design to eliminate the negative impact based on some control methods of the nonlinear system,
for example, the Lyapunov-based controller which has a better robustness and effect. These investigations
showed that the proposed method in our paper can calculate the eigenvalues and DTI considering
data-loss, which has a clear physical meaning and allows the analysis of the detailed impact mechanism.
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It can also the calculate system delay margin and be applied to design the WADC to suppress inter-area
oscillations. Some conclusions from the model analysis and case study are as follows:

(1) The impact mechanism of the time-delay on small-signal dynamics is complicated. An increase
in the time-delay may increase the damping of one oscillation mode when it is relatively small.
However, when the time-delay is over the stability margin, system stability will get worse rapidly.

(2) Data-loss can reduce the delay margin and system stability. However, the impact is relatively
small as it generates an equivalent time-delay of γiτs. Therefore, in practical applications,
more attention should be paid to the negative impact brought about by time-delay than data-loss.

(3) The system delay margin can be derived by using the proposed eigenvalue calculation model. It is
an important parameter of the power system and is helpful for wide-area device improvement
and signal selection. The parameter tuning method of WADC based on DTI can extend the
system’s time-delay margin and thus enhance system dynamic performance.

In this paper, the WADC was designed to deal with fixed time-delay and data-loss. In practical
applications, both time-delay and data-loss may be time-varying and stochastic. In addition, different
types of delay, such as single data-loss or continuous data-loss, may exist and these deserve further
research. Therefore, the time-varying and stochastic characteristics of data corruption and different
delay types will be one of our future research directions.
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