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Abstract: The model parameters of the lithium-ion battery are of great importance to model-based
battery state estimation methods. The fact that parameters change in different rates with operation
temperature, state of charge (SOC), state of health (SOH) and other factors calls for an online
parameter identification algorithm that can track different dynamic characters of the parameters.
In this paper, a novel multiple forgetting factor recursive least square (MFFRLS) algorithm was
proposed. Forgetting factors were assigned to each parameter, allowing the algorithm to capture the
different dynamics of the parameters. Particle swarm optimization (PSO) was utilized to determine
the optimal forgetting factors. A state of the art SOC estimator, known as the unscented Kalman filter
(UKF), was combined with the online parameter identification to create an accurate estimation of
SOC. The effectiveness of the proposed method was verified through a driving cycle under constant
temperature and three different driving cycles under varied temperature. The single forgetting factor
recursive least square (SFFRLS)-UKF and UKF with fixed parameter were also tested for comparison.
The proposed MFFRLS-UKF method obtained an accurate estimation of SOC especially when the
battery was running in an environment of changing temperature.

Keywords: battery management system; state of charge estimation; multiple forgetting factor;
recursive least square; online parameter identification

1. Introduction

Environmental crisis and fossil fuel depletion call for the implementation of new energy vehicles
(NEVs) in recent years [1]. The electric vehicle (EV) is a promising candidate among all kinds of
NEVs [2]. Lithium-ion batteries have been widely used in EVs for its advantages of high energy
density, high power density, long cycle life, no memory effect, and low self-discharging rate [3].
However, safety concerns arise as the lithium-ion batteries must be controlled to operate within specific
ranges of temperature and voltage [4], the thermal behavior regarding different load conditions should
be considered [5]. In addition, the state of the battery should be estimated, such as state of charge
(SOC), state of health (SOH) [6], etc. The battery management system (BMS) is required to provide
precise controls and an accurate state estimation of batteries.

Among those functions of BMS, SOC estimation is of great importance. An accurate SOC
estimation is critical for power distribution strategy and responsible for the prevention of over-charging
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and over-discharging [7]. However, SOC represents the ratio of remaining electricity to the nominal
capacity and cannot be measured directly. Researchers have been focusing on the improvement of
the accuracy of SOC estimation results by using measurable variables, including operation current,
terminal voltage, etc.

To date, numerous methods for SOC estimation have been proposed to achieve this purpose,
many of which are model-based methods. Compared with the non-model based counterparts
such as the coulomb counting and open circuit voltage (OCV)-SOC look-up table method [8,9],
model-based methods have the merit of overcoming input disturbances due to the close-loop
correction process. In addition, the accuracy and fast convergence of model-based estimation can
be realized when combined with state of the art observers or filters based on modern control theory.
The Kalman filter family is widely utilized to estimate the SOC, such as the extended Kalman filter
(EKF) [10,11], unscented Kalman filter (UKF) [12,13], or the cubature Kalman filter (CKF) [14,15],
and they successfully deal with the high nonlinearity of the battery. A particle filter is also investigated
and applied in SOC estimation [16]. Observer based methods have been employed for battery models,
such as the sliding mode observer [2,17], nonlinear observer [18], and H-infinity observer [19,20].
These model-based algorithms mentioned above use fixed parameters identified offline by specific
experiments. However, it should be noted that the values of the model parameters are not constant,
instead, they are affected by various factors depending on the cell chemistry, including the ambient
temperature, the current and voltage profiles, and the aging of the battery. For example, the aging state
plays a fundamental role in the parameters related to the hysteresis effect in lithium iron phosphate
batteries [21], while the model parameters of nickel manganese cobalt oxide batteries are greatly
influenced by temperatures [22]. The discrepancies between offline data and actual value of model
parameters may cause significant impact on the accuracy of model output. Therefore, an algorithm that
can update model parameters online according to the measurable variables is preferable to improve
the performance of SOC estimation.

Considering the above-mentioned circumstances, several approaches have been proposed to
counteract the effect of parameter variation. In [23], the online estimation of model parameters
is realized by H-infinity filter. Tang et al. [24] used a model migration method to compensate
model uncertainties caused by SOC, SOH, and temperature. He et al. [25] proposed a SOC and
internal resistance joint estimation algorithm based on UKF. Xiong et al. [26] used EKF to update
battery parameters. Based on the minimization of the sum of squared errors, the least squares (LS)
algorithm and its derivatives are easy to be applied to the auto regressive exogenous (ARX) model [27],
many of which are recursive versions, such as the recursive least square (RLS) [28]. In [29], a recursive
total least square (RTLS) algorithm is utilized to address the problem caused by unexpected noises.
Wei et al. [30] proposed a Frisch scheme based bias compensating RLS to attenuate the noise caused
bias. A moving-window LS scheme has been implemented in [31]. In Ref. [32], a recursive extended
least square (RELS) method, which includes a moving average noise, is applied to capture the battery
dynamics. In [33], the identification of slow dynamics and fast dynamics are executed separately
using the EKF and RLS respectively. The fast tracking ability of RLS can be improved by introducing
a forgetting factor which controls the influence of past data on the recent estimation. The SFFRLS
have been investigated in [34,35], where the impacts of different parameters vanish in the same rate.
However, the parameters of the battery have different dynamic characters. To address this conflicting
problem, MFFRLS algorithms have been introduced. In [36], the MFFRLS scheme is realized by
solving the governing function directly. In Refs. [37,38], the adaptive MFFRLS algorithm has been
implemented whose MFF scheme is developed by Vahidi et al. in Ref. [39], in which the covariance
error of each parameter is updated separately. Uosaki el al. [40] proposed a MFFRLS method in which
the parameter estimates are formulated as the weighted sum of the estimates obtained by multiple
SFFRLS methods operating in parallel with different forgetting factors. A method to realize MFF is
based on U-D factorization introduced by Hardier [41]. In Ref. [42], a vector-type forgetting factor is
employed to keep different parameters on track.
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In this paper, a novel MFF strategy is proposed and applied to improve the performance of RLS.
A first-order RC model is established and the parameters of which are identified by a novel MFFRLS
method whose forgetting factors are optimized by PSO. UKF is utilized to estimate the battery SOC
and combined with the online parameter identification scheme. A series of experiments conducted
under different temperature variations indicates that the proposed MFFRLS-UKF algorithm estimates
the SOC accurately. Compared with SFFRLS-UKF and UKF, it exhibits greater capability to track the
battery dynamics in situations where the ambient temperature of the battery changes significantly.

The rest of this paper is organized as follows: Section 2 introduces the details of battery modeling
and procedures of UKF estimator used for SOC prediction. In Section 3, the novel MFFRLS algorithm
is presented and applied to the battery model. The optimization of forgetting factors using the
PSO method is introduced. The joint algorithm of MFFRLS and UKF is shown. Section 4 presents
the experimental configuration and verification of the proposed method. Conclusions are drawn
in Section 5.

2. Battery Modeling and State of Charge Estimation Scheme

2.1. Model Selection of the Battery

It is a fundamental task to define the type of model in a model-based SOC estimation method.
A suitable model should be selected to obtain an accurate state estimation. Numerous models have
been devised to describe the characters of the battery, most of which can be classified into two groups:
the electrochemical model and the equivalent circuit model (ECM). The electrochemical models, based
on the theories of electrochemical reactions, provides a more accurate simulation of battery terminal
voltage as well as internal states [43]. However, the complex partial differential equations and large
number of parameters needed make it difficult to be embedded in a real BMS. The ECMs use circuit
components to simulate the electric characters of the battery. The commonly used ECMs include the
first-order resistor-capacitor (1-RC) model, also known as the Thevenin Model, in which the capacitor
simulates the transient voltage behavior with respect to time [44]; the second-order resistor-capacitor
(2-RC) model, known as the partnership for a new generation of vehicles (PNGV) Model; and other
higher-order ECM models. Typically, the higher the order of the ECM, the more accurate result it can
yield since there are more components that can simulate the dynamic and complex behavior of the
battery, but the complexity increases simultaneously. In [45], 12 different ECMs were studied and
comparison results suggest that the first order RC model is preferred for its capability to strike a balance
between model complexity and model accuracy. Therefore, the 1-RC model is chosen, as shown in
Figure 1. The resistor R0 stands for ohmic resistance, which is influenced by circle life and ambient
temperature. The parallel Rp and Cp simulate the polarization effect of the battery. The open-circuit
voltage Uoc is a monotonic function of SOC and the relationship can be determined by experiments
introduced in Section 4.2. Up and Ut represent the polarization voltage and the terminal voltage
respectively, and i is the load current whose positive value stands for discharging and negative value
denotes charging.

Energies 2018, 11, x FOR PEER REVIEW  3 of 21 

 

and combined with the online parameter identification scheme. A series of experiments conducted 
under different temperature variations indicates that the proposed MFFRLS-UKF algorithm 
estimates the SOC accurately. Compared with SFFRLS-UKF and UKF, it exhibits greater capability to 
track the battery dynamics in situations where the ambient temperature of the battery changes 
significantly. 

The rest of this paper is organized as follows: Section 2 introduces the details of battery modeling 
and procedures of UKF estimator used for SOC prediction. In Section 3, the novel MFFRLS algorithm 
is presented and applied to the battery model. The optimization of forgetting factors using the PSO 
method is introduced. The joint algorithm of MFFRLS and UKF is shown. Section 4 presents the 
experimental configuration and verification of the proposed method. Conclusions are drawn in 
Section 5. 

2. Battery Modeling and State of Charge Estimation Scheme 

2.1. Model Selection of the Battery 

It is a fundamental task to define the type of model in a model-based SOC estimation method. 
A suitable model should be selected to obtain an accurate state estimation. Numerous models have 
been devised to describe the characters of the battery, most of which can be classified into two groups: 
the electrochemical model and the equivalent circuit model (ECM). The electrochemical models, 
based on the theories of electrochemical reactions, provides a more accurate simulation of battery 
terminal voltage as well as internal states [43]. However, the complex partial differential equations 
and large number of parameters needed make it difficult to be embedded in a real BMS. The ECMs 
use circuit components to simulate the electric characters of the battery. The commonly used ECMs 
include the first-order resistor-capacitor (1-RC) model, also known as the Thevenin Model, in which 
the capacitor simulates the transient voltage behavior with respect to time [44]; the second-order 
resistor-capacitor (2-RC) model, known as the partnership for a new generation of vehicles (PNGV) 
Model; and other higher-order ECM models. Typically, the higher the order of the ECM, the more 
accurate result it can yield since there are more components that can simulate the dynamic and 
complex behavior of the battery, but the complexity increases simultaneously. In [45], 12 different 
ECMs were studied and comparison results suggest that the first order RC model is preferred for its 
capability to strike a balance between model complexity and model accuracy. Therefore, the 1-RC 
model is chosen, as shown in Figure 1. The resistor 0R  stands for ohmic resistance, which is 

influenced by circle life and ambient temperature. The parallel pR  and pC  simulate the 

polarization effect of the battery. The open-circuit voltage ocU  is a monotonic function of SOC and 

the relationship can be determined by experiments introduced in Section 4.2. pU  and tU  

represent the polarization voltage and the terminal voltage respectively, and i  is the load current 
whose positive value stands for discharging and negative value denotes charging. 

ocU

0R
pR

pC
i

+

-

tU
pU

+ -

 
Figure 1. Schematic diagram of a first-order RC model. Figure 1. Schematic diagram of a first-order RC model.
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The electrical characteristic of the model can be described as the equations below according to
Kirchhoff’s law.

Cp
dUp

dt
+

Up

Rp
= i (1)

Uoc = Ut + iR0 + Up (2)

2.2. Nonlinear Kalman Filter Based SOC Estimation

In this paper, UKF is utilized to estimate the SOC for its capability to deal with system nonlinearity.
SOC and polarization voltage Up are chosen as the state variable in the state-space model. The input
and output of the model are load current i and terminal voltage Ut, respectively. Using the coulomb
counting method, the derivative of SOC can be expressed in Equation (3):

S
.

OC = − 1
Cn

i (3)

where Cn is the nominal capacity. The discrete version of the model can be established for UKF
adoption in Equations (4) and (5), in which Ts is the sampling time.(

SOC(k)
Up(k)

)
=

(
1 0
0 1− Ts

CpRp

)(
SOC(k− 1)
Up(k− 1)

)
+

(
− Ts

Cn
Ts
Cp

)
i(k) (4)

Ut(k) = Uoc(k)− i(k)R0 −Up(k) (5)

The SOC estimation based on UKF is summarized in Table 1.

Table 1. Major steps of state of charge (SOC) estimation based on the unscented Kalman filter (UKF).

Initialization

Step 1: Initial value of x̂0, P0, Q and R, x ∈ Rn

x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

Step 2: Weight calculation 1
w0

(m) = λ
n+λ

w0
(c) = λ

n+λ + 1 + α2 + β

wi
(m) = wc

(m) = 1
2(n+λ)

, i = 1, 2, ..., 2n

Prediction

Step 3: Create sigma points 2

ξk−1 = [x̂k−1, x̂k−1 + (
√
(n + λ)Pk−1)i, x̂k−1 − (

√
(n + λ)Pk−1)i], i = 1, ..., n

Step 4: Time update for estimated system
Xk|k−1 = f (ξk−1)

x̂k|k−1 =
2n
∑

i=0
wi

(m)Xi,k|k−1

Pk|k−1 =
2n
∑

i=0
wi

(c)(Xi,k|k−1 − x̂k|k−1)(Xi,k|k−1 − x̂k|k−1)
T + Q

Correction

Step 5: Prior estimation of system output

ξk−1 = [x̂k|k−1, x̂k|k−1 + (
√
(n + λ)Pk|k−1)i

, x̂k|k−1 − (
√
(n + λ)Pk|k−1)i

], i = 1, ..., n

ẑk|k−1 =
2n
∑

i=0
wi

(m)h(ξi,k|k−1)

Step 6: UKF gain calculation

Pzz,k =
2n
∑

i=0
wi

(c)(h(ξi,k|k−1)− ẑk|k−1)(h(ξi,k|k−1)− ẑk|k−1)
T + R

Pxz,k =
2n
∑

i=0
wi

(c)(ξi,k|k−1 − x̂k|k−1)(h(ξi,k|k−1)− ẑk|k−1)
T

Gk = Pxz,kP−1
zz,k

Step 7: Update of system states and state covariance
x̂k = x̂k|k−1 + Gk(zk − ẑk|k−1)

Pk = Pk|k−1 − GkPzz,kGT
k

1 α is a constant between 0 and 1, β is set to 2 here for the Gaussian distribution hypothesis, and λ is a scalar
parameter determined by λ = α2(n + κ)− n, where κ is usually set to zero. 2 (

√
(n + λ)Pk−1)i represents the i-th

column vector of the square root of (n + λ)Pk−1.
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3. A Novel Multiple Forgetting Factor Recursive Least Square Method

The parameters of the ECM of the battery vary with numerous factors such as operation
temperature, SOC, SOH and so on, resulting in an unreliable state estimation result if constant
values are adopted, especially when the ambient environment of the battery is changing. The online
identification method updates the model parameters constantly and is preferable for a high precision
state estimation. The recursive least square method gains its popularity for its capability to capture the
variation of the parameters in a single input single output (SISO) system, meanwhile less storage is
needed and fast convergence can be realized.

3.1. Single Forgetting Factoc Recursive Least Square Algorithm

To reduce the influence of the old samples and focus more on recent data, the forgetting factor is
employed in the RLS. The commonly used single forgetting factor RLS scheme is described as follows.

Consider the SISO linear discrete time-varying system described in Equation (6):

y(k) = ϕT(k)θ + ζ(k) (6)

in which {
ϕ(k) = [−y(k− 1), ...,−y(k− na), u(k− d), ..., u(k− d− nb)]

T

θ = [a1, ..., ana, b0, ..., bnb]
T (7)

ζ(k) is additive white noise, na, nb and d are system constants. The forgetting factor λ is introduced
to exponentially decrease the remote data in the least square error function V shown in Equation (8),
in which L is the number of observations:

V =
L

∑
k=1

λL−k[y(k)− ϕT(k)θ̂]
2

(8)

The minimum value of the least square error function V can be obtained by calculating the
estimated θ̂ recursively using the following Equation (9).

θ̂(k) = θ̂(k− 1) + K(k)[y(k)− ϕT(k)θ̂(k− 1)]

K(k) = P(k−1)ϕ(k)
λ+ϕT(k)P(k−1)ϕ(k)

P(k) = 1
λ [I − K(k)ϕT(k)]P(k− 1)

(9)

The smaller the value of λ, the stronger the ability of tracking since the old record die out rapidly.
However, fast tracking may cause instability of the estimation result. Usually the range of the forgetting
factor is set to [0.9, 1] to strike a balance in this trade-off relationship.

3.2. Introducing the Multiple Forgetting Factors Scheme

In Section 3.1, the SFFRLS was introduced, the use of a forgetting factor makes the estimation
keep track of the change of new samples. However, there is only one forgetting factor that applies
to all the parameters to be estimated. In fact, the parameters usually vary at different rates.
For example, the internal resistance R0 of the battery varies with temperature, SOC and SOH
while the polarization resistance Rp is influenced by the highly dynamic load current [37]. As a
consequence, employing a forgetting factor to parameters which have different dynamic features
will lead to the underperformance of the algorithm. The discrepancies of dynamic characteristics
of parameters require different and independent forgetting factors for parameters. The RLS with
multiple forgetting factors was recommended to meet the requirement. The forgetting factors can be
assigned independently so that the fast changing parameters have smaller forgetting factors while the
steadily varying parameters have larger forgetting factors. Inspired by the MFFRLS introduced by
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Francesco et al. in [46], we propose a novel MFFRLS scheme in this paper for the online identification
of battery parameters as:

θ̂(k) = θ̂(k− 1) + K(k)[y(k)− ϕT(k)θ̂(k− 1)]

K(k) = Fλ(P−1(k−1))−1
ϕ(k)

1+ϕT(k)Fλ(P−1(k−1))−1
ϕ(k)

P(k) = [I − K(k)ϕT(k)]Fλ(P−1(k− 1))−1

(10)

in which Fλ is a forgetting map defined as follows:

[Fλ(M)]i,j =

 min(λ1, ..., λn)[M]i,j if i 6= j

λi[M]i,j otherwise
(11)

in which M is a positive definite matrix of dimension n. λi is the forgetting factor correspond with
the i-th parameter. i = 1, ..., n. It is worth to note that when the same λi is applied to all parameters,
the algorithm will be identical to the single forgetting factor scheme described in Section 3.1. In the
proposed method, the cross terms of Fλ(R) are weighted by the smallest forgetting factor and the
diagonal terms are updated by the corresponding forgetting factors, hence, the multiple forgetting
factors scheme is realized.

3.3. The Inplementation of MFFRLS on Batteriey Parameter Identification

In order to implement the proposed MFFRLS to the battery model. The characteristics of the ECM
described in Equations (1) and (2) should be transformed to the form of Equation (6). Applying Laplace
transform to the Equations (1) and (2), the battery dynamic can be expressed in the s-domain:

Up(s) =
Rp

RpCps + 1
i(s) (12)

Uoc(s) = Ut(s) + i(s)R0 + Up(s) (13)

Considering the i(s) and (Ut −Uoc)(s) to be the system input and output respectively, the transfer
function of the system can be obtained in Equation (14):

(Ut −Uoc)(s)
i(s)

= −R0 −
Rp

RpCps + 1
(14)

The forward Euler transformation method is utilized in this study to discretize the transfer
function by substitute (z− 1)/Ts for s, in which Ts is the sampling time:

(Ut −Uoc)(z)
i(z)

=
b0 + b1z−1

1 + a1z−1 (15)

(Ut −Uoc)(k) = −a1(Ut −Uoc)(k− 1) + b0i(k) + b1i(k− 1) (16)

in which 
a1 = Ts

RpCp
− 1

b0 = −R0

b1 = R0 − RoTs
RpCp

− Ts
Cp

(17)
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Equation (17) have the same form with Equation (6) and MFFRLS can then be realized to perform
online identification of system parameters a1, b0 and b1. The ECM parameters R0, Rp and Cp can be
calculated as follows: 

R0 = −b0

Rp = a1b0−b1
a1+1

Cp = Ts
a1b0−b1

(18)

3.4. The Optimization of Forgeeting Factors

In Section 3.3, the novel MFFRLS algorithm combining with the battery model is introduced.
The model consists of three parameters and three different forgetting factors will be deployed.
The problem is then converted to choosing the optimum value of these forgetting factors. The difficulty
is that there are three different forgetting factors to be determined whose deviation from the optimum
value will cause the underperformance of the system. To solve this multi-object optimization problem,
an intelligent technique, known as particle swarm optimization (PSO), was utilized. PSO has been
widely applied in optimization issues since originally proposed in 1995 for its simplicity and capability
to achieve near optimal solution [47]. PSO is a swarm intelligence algorithm which consists a group
of particles representing possible solutions. Each particle has two characteristics called position and
velocity in order to simulate the movement of particles in the searching space. In each new iteration,
the velocity of each particle is updated according to the personal best position and global best position
with respect to the predefined fitness function FT . The procedure of PSO is summarized in Table 2.

Table 2. Major steps of particle swarm optimization (PSO) optimization.

Initialization

Step 1: Define the number of particles N, maximum iteration kmax, initial value and limitation
of velocity and position (p0

j , v0
j , pmax, pmin, vmax, vmin), personal best position of each particle

pbestj, global best position of particles gbest, inertia weight limitation (wmax, wmin) and
adjustment weight (c1, c2).

Updating

Step 2: Update velocity and position of each particle using equations below 1, if the calculated
value exceeds the limitation, then it will be replaced by the corresponding limit.
w = wmax − (wmax − wmin)k/kmax vk+1

j = wvk
j + c1r1(pbestj − xk

j ) + c2r2(gbestk − xk
j )

xk+1
j = xk

j + vk
j

Step 3: Calculate the fitness function of each particle, update the personal best position and
global best position by{

pbestj = min(FTj, pbestj)

gbest = min(FTj, gbest)

Iteration and exit Step 4: If k = kmax, then exit and display the results, otherwise k = k + 1 and return to step 2
1 r1 and r2 are random numbers in the range of [0, 1].

In this optimization process, the sum of the square error is defined as the fitness function expressed
in Equation (19), as the identification accuracy is a fundamental indicator of the performance of the
RLS algorithm.

FT =
L

∑
k=1

[y(k)− ϕT(k)θ̂]
2

(19)

In order to obtain the optimum forgetting factors of SFFRLS and MFFRLS, computer simulation of
the PSO was conducted. The New European Driving Cycle (NEDC) experiment under the temperature
of 25 ◦C was carried out and the recorded data was used to identify the parameters. Uoc was
derived from SOC-OCV curve characterized in Section 4.2 where SOC was accurately obtained
from ampere-hour counting. The two PSO algorithms were initialized using the same parameter.
The forgetting factors of SFFRLS and MFFRLS obtained through PSO optimization are listed in Table 3.
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Table 3. Forgetting factors optimized by PSO.

Algorithms Forgetting Factors

SFFRLS 0.9689
MFFRLS [0.9272, 0.9054, 0.9062]

Note that the second forgetting factor and the third forgetting factor of the MFFRLS are
numerically close. However, this is not by accident. According to Equation (17), system parameter
b0 = −R0 while b1 = R0 − (R0Ts)/(RpCp)− Ts/Cp. The offline identification result in Section 4.2
shows that the value of R0 and Rp are as low as 10−2Ω order of magnitude while that of Cp is 103F
order of magnitude, Ts = 1s in this study. Therefore, the last two terms of the expression of b1 can be
neglected and b1 ≈ R0. It can then be concluded that the second and third model parameters b0 and b1

have the same dynamic characteristic. As a consequence, the values of the optimum forgetting factors
tend to be similar.

3.5. Joint Algorithm of Online Parameter Identification and SOC Estimation

The MFFRLS online identification method was combined with UKF SOC estimator to calculate
the battery parameters and SOC precisely. The MFFRLS-UKF scheme is shown in Figure 2.
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As shown in Figure 2, the variables in MFFRLS and UKF are initialized. Each time the battery
current and voltage are measured, using the measured current and voltage as well as the Uoc derived
from the SOC predicted by UKF, the MFFRLS can be conducted and battery parameters will be updated.
The recently updated parameters will be transferred to the UKF section to replace the previous model
parameters. The SOC is then estimated through UKF with the updated parameters, measured current
and voltage. Then the algorithm moves to the next iteration.
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4. Experimental Verifications

4.1. A Brief Introduction of the Test Bench

The test of the battery is carried out on three major devices. The Arbin BT-5HC (Arbin Instruments,
College Station, TX, USA) is used for battery charging, discharging and temperature monitoring.
The Sanwood SC-80-CC-2 temperature chamber (Sanwood, Guangdong, China) provides a controlled
environment of precise temperature and humidity for the battery. A host computer with Arbin Mits
Pro Software (v7.0) and MATLAB R2016b (MathWorks, Natick, MA, USA) is used for charging and
discharging control, data recording, and data processing. The commonly used cylindrical battery
is chosen to carry out the experiment. The Samsung ICR18650-22P battery (Samsung SDI, Seoul,
South Korea) is selected in this case whose technical specification includes: nominal capacity 2150 mAh,
nominal voltage 3.6 V, charging end voltage 4.2 V, discharging cut-off voltage 2.75 V. The overall scheme
of the test system is illustrated in Figure 3.
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Figure 3. Outline of the test bench.

4.2. Battery Characterization

The basic characteristic of the battery should be calibrated, including the actual capacity, the
SOC-OCV relationship and the offline identified parameters which are the model input of UKF
algorithm and reference value of that identified by FFRLS-UKF and MFFRLS-UKF. The nominal
capacity test was carried out at the temperature of 25 ◦C. The battery was fully charged through
constant current constant voltage (CC-CV) method and then fully discharged to its cut-off voltage
with 0.2 C constant current, in which C-rate stands for the charge and discharge current relative to
its nominal capacity, e.g., 1 C is 2.15 A in this study. The procedure was repeated three times and the
average amount of discharge was regarded as the actual capacity of the battery.

The SOC-OCV curve was derived through a series of pause discharge periods, the procedures are
described as follows: (1) The battery was fully charged through CC-CV method and after 2 hours’ rest,
the measured terminal voltage was regarded as the OCV of the battery with 100% SOC; (2) the battery
was discharged to 98% SOC with a constant current of 0.5 C and then it was left in the open-circuit
condition for 2 h, the OCV correspond to 98% SOC can then be measured; (3) Step (2) was performed
repeatedly to measure the OCV of the battery at SOC levels of 90%, 80%, 70%, 60%, 50%, 40%, 30%,
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20%, 10%, 8%, 5%, 3%, 1% and 0%. The OCV under different SOC values was recorded and the 6-th
order polynomial was utilized to describe the relationship between OCV and SOC:

OCV =
6

∑
m=0

lmSOCm (20)

The fitting result is listed in Table 4, the recorded data with fitted curve are shown in Figure 4.

Table 4. Polynomial coefficient of SOC-OCV curve

Coefficients l0 l1 l2 l3 l4 l5 l6

Values 3.4453 0.8606 −0.0442 −8.6603 30.2828 −36.1564 14.4612
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The reference values of the battery parameters were identified offline. The battery was discharged
with a constant current and rested for 2 h. The internal resistance was calculated from the instantaneous
terminal voltage change ∆Ut after the disappearance of the constant discharge current i as expressed
in Equation (21). Then in the rest period, the variation of terminal voltage Ut can be deduced as
Equation (22) according to Equations (1) and (2), the polarization resistance and capacity were derived
from the exponential curve fitting method. It is noteworthy to mention that the internal resistance
identified offline is more reliable while other offline parameters may have considerable errors [48],
nonetheless, the order of magnitude is a worthy point of reference as analyzed in Section 3.4. The values
of the internal resistance obtained through offline identification method at 16 different SOC levels in
the temperature of 25 ◦C are listed in Table 5. The values of all model parameters identified in 25 ◦C at
the SOC level of 98% are listed in Table 6 and utilized as the model parameters of UKF described in
Sections 4.3–4.5.

R0 =

∣∣∣∣∆Ut

i

∣∣∣∣ (21)

Ut = Uoc − iRp exp(− t
RpCp

) (22)
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Table 5. Reference values of R0 at different SOC levels in 25 ◦C.

SOC (%) 98 95 90 80 70 60 50 40

R0(Ω) 0.0367 0.0369 0.0373 0.0368 0.0363 0.0359 0.0360 0.0364

SOC (%) 30 20 10 8 5 3 1 0

R0(Ω) 0.0367 0.0374 0.0393 0.0410 0.0430 0.0456 0.0502 0.0522

Table 6. Reference values of 1-RC model parameters in 25 ◦C at 98% SOC level.

Parameters R0(Ω) Rp(Ω) Cp(F)

Values 0.0367 0.0183 3768

4.3. NEDC Test under Constant Temperature

The NEDC was loaded to the battery in a constant temperature of 25 ◦C to verify the effectiveness
of three different methods under the ideal operation condition. Gaussian white noise sequences with
variance 10−4 and 10−6 were added to measured current and voltage data respectively to simulate
actual operation condition in all tests. The UKF algorithm using offline identified parameters as
listed in Table 5 was employed as a contrast. Two online parameter identification methods combining
UKF: the SFFRLS-UKF and the proposed MFFRLS-UKF, using the forgetting factors determined in
Section 3.4, were implemented here and in the next three tests. The current variation of the NEDC
cycle is shown in Figure 5.
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Figure 5. Current profile of New European Driving Cycle (NEDC) test.

The identification results of internal resistant R0 of SFFRLS-UKF and MFFRLS-UKF are shown
in Figure 6. Good caution must be taken into account that the R0 changes steadily in a constant
temperature environment, hence, a simple first-order lag filter is adopted here to smooth the
identification result as expressed in Equation (23), in which η is a constant between 0 and 1. Larger η

takes the advantage of higher sensitivity but decreases stability. Based on comparison experiments,
η is selected as 0.05. The reference values are obtained through offline identification listed in Table 6.
It is clearly shown in Figure 6 that both the two algorithms provide reasonable results whose values
are close to the reference value. The value of R0 identified online rises quickly at the end of the test
during which the SOC is low, which conforms with the offline identification results.
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R′0(k) = (1− η)R′0(k− 1) + ηR0(k) (23)

The result of SOC separately estimated by three different algorithms: UKF, SFFRLS-UKF and
MFFRLS-UKF are listed in Table 7 and shown in Figure 7. SOC obtained by the ampere-hour integral
method using a high-definition measurement of current and voltage was regarded as the reference SOC.
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25 ◦C constant temperature: (a) SOC estimation; (b) SOC estimation error.
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Table 7. Statistic characters of SOC estimation of constant temperature NEDC test.

Algorithms UKF SFFRLS-UKF MFFRLS-UKF

Mean error 0.0120 0.0061 0.0060
Max error 0.0190 0.0085 0.0080

RMSE 0.0131 0.0063 0.0062

Even though the UKF used the parameters identified in the same temperature, it can be seen
in Table 7 that it shown the worst performance considering all statistic character values. This is
due to the highly dynamic characters of the battery parameters, which are not only affected by
the ambient temperature, but also influenced by other variables such as SOC and the aging of the
battery. Thus, fixed parameters defined in a particular condition was not capable to catch up with
the dynamic behavior of the battery, which resulted in a relatively poor estimation of SOC. The two
online parameter identification methods shown batter results compare with the offline method, the
mean errors of SOC of SFFRLS-UKF and MFFRLS-UKF were 0.61% and 0.60% respectively. Under
the condition that the temperature remained constant, the parameters tended to change at a relatively
slow rate, as a consequence, the two approaches had a similar performance and the advantage of the
multiple forgetting factor scheme, specifically its fast tracking ability, was not yet clearly revealed.

4.4. NEDC Test under Variable Temperature

In order to verify the ability of capturing dynamic characteristic of batteries of three different
methods and simulate the temperature changes during actual operation (e.g., cold start process in
winter of high latitude areas) simultaneously, the NEDC cycles were loaded on the battery whose
ambient temperature was changing during the whole test. The images of current and temperature as
functions of time are shown in Figure 8.
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Figure 8. Current and temperature profile of NEDC test under variable temperature: (a) current;
(b) temperature.

The SOC estimation results are shown in Table 8 and Figure 9. The two online identification
algorithms, together with the UKF estimator, outperformed the single UKF estimator with offline
battery parameters, indicating that the online identification methods could overcome the uncertainty
of parameters caused by the variation of ambient temperature and SOC. The proposed MFFRLS-UKF
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method provided a precise SOC estimation with the 0.29% mean error of SOC, while the mean error
of the traditional single forgetting factor method is 0.82%. The novel MFFRLS-UKF displayed its
superiority in the complex temperature changing environment.

Table 8. Statistic characters of SOC estimation of NEDC test under variable temperature.

Algorithms UKF SFFRLS-UKF MFFRLS-UKF

Mean error 0.0440 0.0082 0.0029
Max error 0.0600 0.0123 0.0047

RMSE 0.0477 0.0088 0.0030
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4.5. Test of Multiple Cycles under Variable Temperature

To further investigate the capability of tracking the changing battery characters of the proposed
algorithm and its adaptability to different operation cycles. Two multiple cycles were deliberately
designed and experiments were carried out on the battery under the changing ambient temperature.
The two multiple cycles, consisting of Urban Dynamometer Driving Schedule (UDDS), Dynamic Street
Test (DST), NEDC, and Federal Urban Driving Schedule (FUDS), named Multiple Cycle 1 and Multiple
Cycle 2, respectively, were shown in Figure 10 in details about current and ambient temperature.
Cycle 1 and Cycle 2 shared the same temperature trend but differed in the sequence of testing scheme,
providing a comprehensive operation scene of the battery.

It can be seen in the SOC estimation result shown in Figure 11 and Table 9 that the proposed
MFFRLS-UKF shows the highest precision in both the two multiple cycles. The mean error of SOC
for SFFRLS-UKF and MFFRLS-UKF were 1.11% and 0.76% respectively in Multiple Cycle 1, 1.26%
and 0.85% respectively in Multiple Cycle 2, indicating that the proposed multiple forgetting factor
identification scheme is good at handling the parameter uncertainty caused by the rapid changing of
ambient environment and the vast variation in operation cycles.
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Figure 10. Current and temperature profile of two multiple cycles tests under changing temperature:
(a,b) Multiple Cycle 1; (c,d) Multiple Cycle 2.

Energies 2018, 11, x FOR PEER REVIEW  17 of 21 

 

 
Figure 10. Current and temperature profile of two multiple cycles tests under changing temperature: 
(a,b) Multiple Cycle 1; (c,d) Multiple Cycle 2. 

 
Figure 11. SOC estimation result and SOC error of UKF, SFFRLS-UKF and MFFRLS-UKF during 
multiple cycles tests under variable temperature: (a,b) Multiple Cycle 1; (c,d) Multiple Cycle 2. 

5. Conclusions 

In this paper, a novel MFFRLS procedure is introduced for the online identification of lithium-ion 
batteries to cope with the problems caused by different dynamics of battery parameters that cannot 
be easily solved by the SFFRLS method. Combined with UKF, the merit of estimating battery SOC 

C
ur

re
nt

 (A
)

Te
m

p 
(°

C
)

Figure 11. SOC estimation result and SOC error of UKF, SFFRLS-UKF and MFFRLS-UKF during
multiple cycles tests under variable temperature: (a,b) Multiple Cycle 1; (c,d) Multiple Cycle 2.

Table 9. Statistic characters of SOC estimation under multiple cycles tests.

Tests Multiple Cycle 1 Multiple Cycle 2

Algorithms UKF SFFRLS-UKF MFFRLS-UKF UKF SFFRLS-UKF MFFRLS-UKF

Mean error 0.0528 0.0111 0.0076 0.0558 0.0126 0.0085
Max error 0.0732 0.0160 0.0090 0.0827 0.0166 0.0103

RMSE 0.0583 0.0116 0.0076 0.0623 0.0132 0.0086



Energies 2018, 11, 3180 16 of 19

5. Conclusions

In this paper, a novel MFFRLS procedure is introduced for the online identification of lithium-ion
batteries to cope with the problems caused by different dynamics of battery parameters that cannot
be easily solved by the SFFRLS method. Combined with UKF, the merit of estimating battery
SOC with high accuracy of the proposed algorithm is verified through experiments under different
temperature variations.

In the constant temperature NEDC test, it is found that the proposed MFFRLS-UKF has similar
performance compared with SFFRLS-UKF in terms of SOC estimation accuracy. In the NEDC test
and two multiple cycle tests under variable temperature, the MFFRLS-UKF outperforms SFFRLS-UKF
and UKF with fixed parameters. (e.g., the mean SOC error of MFFRLS-UKF is reduced to 0.29% in
NEDC test under changing temperature). Therefore, the proposed method is advantageous for SOC
estimation, especially when faced with uncertainty of ambient temperature.

The online parameter identification combined with SOC estimation was performed in this study.
The internal resistance identified by MFFRLS fluctuates more, as the Lithium-ion battery is a complex
dynamic system, the model parameters identified by MFFRLS adjust quickly to adapt to the dynamic
operation condition and provide an accurate SOC estimation. This fluctuation is preferable for SOC
estimation but is not preferred for R0-based SOH estimation. To address this trade-off issue, our future
work will be focused on the joint estimation algorithm of SOC and SOH based on an intelligent online
parameter identification method to achieve more comprehensive features of the BMS.
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Nomenclature

Acronyms Symbols
1-RC First-order resistor-capacitor a, b Parameters to be identified
2-RC Second-order resistor-capacitor Cn Nominal Capacity
ARX Auto regressive exogenous Cp Polarization capacity
BMS Battery management system Fλ Forgetting map
CC-CV Constant current-constant voltage FT Fitness function
CKF Cubature Kalman filter i Load current
DST Dynamic Street Test I Identical matrix
ECM Equivalent circuit model k Time step index
EKF Extended Kalman filter l Coefficient of polynomial function
EV Electric vehicle L Number of observations
FUDS Federal Urban Driving Schedule M Positive definite matrix
LS Least squares n Dimension of parameters
MFF Multiple forgetting factors na, nb, d SISO system constants
MFFRLS Multiple forgetting factors recursive least square P Covariance vector
NEDC New European Driving Cycle R0 Internal resistance
NEVs New energy vehicles Rp Polarization resistance
OCV Open circuit voltage s Complex variable
PC Personal computer t Time
PNGV Partnership for a New Generation of Vehicles Ts Sampling time
PSO Particle swarm optimization Uoc Open circuit voltage
RC Resistor-capacitor Ut Terminal voltage
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RELS Recursive extended least square V Least square error function
RLS Recursive least square y Output of SISO system
RMSE Root mean square error z Discretization variable
RTLS Recursive total least square Greek symbols
SISO Single input single output ζ White noise
SOC State of charge η Filtering constant
SOH State of health θ Parameter vector
SFFRLS Single forgetting factor recursive least square λ Forgetting factor
U-D Unit upper triangular factor-diagonal factor ϕ Data vector
UDDS Urban Dynamometer Driving Schedule
UKF Unscented Kalman filter
Subscript Superscript
min Minimum value ′ Filtered value
max Maximum value
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