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Abstract: In this paper, we investigate energy-efficient multicast precoding for massive multiple-input
multiple-output (MIMO) transmission. In contrast with most previous work, where instantaneous
channel state information (CSI) is exploited to facilitate energy-efficient wireless transmission design,
we assume that the base station can only exploit statistical CSI of the user terminals for downlink
multicast precoding. First, in terms of maximizing the system energy efficiency, the eigenvectors
of the optimal energy-efficient multicast transmit covariance matrix are identified in closed form,
which indicates that optimal energy-efficient multicast precoding should be performed in the beam
domain in massive MIMO. Then, the large-dimensional matrix-valued precoding design is simplified
into an energy-efficient power allocation problem in the beam domain with significantly reduced
optimization variables. Using Dinkelbach’s transform, we further propose a sequential beam domain
power allocation algorithm which is guaranteed to converge to the global optimum. In addition, we
use the large-dimensional random matrix theory to derive the deterministic equivalent of the objective
to reduce the computational complexity involved in sample averaging. We present numerical results
to illustrate the near-optimal performance of our proposed energy-efficient multicast precoding for
massive MIMO.

Keywords: energy efficiency; physical-layer multicasting; massive multiple-input multiple-output
(MIMO); statistical channel state information (CSI); beam domain transmission

1. Introduction

The wireless traffic demand of group-oriented services and applications such as mobile TV,
satellite communications, etc., is predicted to increase significantly in future wireless networks, and
physical-layer wireless multicast transmission is a promising approach for such rapidly increasing
demand. Recently, physical-layer multicasting has been incorporated in the 3GPP release known
as eMBMS [1] and has received extensive research interest [2–4]. In massive multiple-input
multiple-output (MIMO) systems [5–7], large numbers of antennas are equipped at the base station
(BS) so that a smaller number (compared with the number of BS antennas) of user terminals (UTs) can
be simultaneously served in the same time and frequency resources. Compared with conventional
small-scale MIMO systems [8], massive MIMO systems can significantly improve the spectral efficiency
and transmission reliability. Due to the ability of massive MIMO in shaping the multicast transmission
signals, physical-layer multicasting combined with massive MIMO promises to improve the multicast
transmission quality of service in the evolution of future wireless networks [9,10].

Energy efficiency (EE) is an important performance metric in wireless transmission design
and has received growing attention from both academia and industry [11,12]. Energy-efficient
transmission design for MIMO unicasting was investigated in some existing works, e.g., [13–15].
Meanwhile, energy-efficient multicasting transmission was also studied in several previous works.
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For example, energy-efficient coordinated multicast transmission design for multi-cell scenarios was
studied in e.g., [16,17]. In addition, energy-efficient joint unicast and multicast transmission design
for multi-cell MIMO systems was investigated in [18]. Please note that in most of the existing works
on energy-efficient physical-layer multicast transmission, e.g., [16–18], instantaneous channel state
information (CSI) is assumed to be known at the BS and exploited for transmission design.

For physical-layer massive MIMO multicast transmission, the transmission performance will
be highly dependant on the quality of the available CSI at the BS. CSI acquisition at the BS is a
challenging task in massive MIMO for both frequency-division duplex (FDD) and time-division
duplex (TDD) protocols. For FDD massive MIMO systems, acquisition of instantaneous CSI at the
BS will lead to a huge pilot and feedback overhead. Meanwhile, the hardware limitations might
destroy the reciprocity between the uplink and the downlink channels for TDD massive MIMO
systems, and thus instantaneous CSI acquisition is still not an easy task [19–22]. Compared with the
instantaneous CSI, the statistical CSI varies over much larger time scales and thus can be efficiently
and accurately obtained. In addition, massive MIMO channels exhibit new statistical properties with
a large number of antennas [23], which, then, can be exploited in energy-efficient massive MIMO
multicast transmission design.

In this paper, we investigate physical-layer multicast precoding for energy-efficient massive
MIMO transmission. Our work differs from previous works in that only statistical downlink CSI of the
UTs is available at the BS. Our major contributions are summarized as follows:

• We identify the eigenvectors of the optimal multicast transmit covariance matrix in terms of
maximizing the system EE in closed form, which reveals that optimal energy-efficient multicast
transmission should be performed in the beam domain in massive MIMO and simplifies
the large-dimensional matrix-valued energy-efficient massive MIMO multicast transmission
design into a power allocation problem in the beam domain with significantly reduced
optimization variables.

• We propose a sequential beam domain power allocation approach with guaranteed convergence
to the global optimum via exploiting Dinkelbach’s transform.

• We used the large-dimensional random matrix theory to deduce the deterministic equivalent (DE)
of the optimization objective function to further reduce the computational complexity involved in
sample averaging.

The rest of this paper is organized as follows. We present the massive MIMO beam domain
channel model in Section 2. In Section 3, energy-efficient multicast precoding for single-cell massive
MIMO transmission is investigated. The eigenvectors of the optimal energy-efficient multicast
transmit covariance matrix is identified in closed-form and a sequential beam domain power allocation
algorithm is proposed. Numerical results are presented in Section 4. Finally, we conclude the paper in
Section 5.

The notations adopted throughout the paper are listed as follows: We denote by RM×N the M×N
dimensional real-valued vector space and CM×N the M×N dimensional complex-valued vector space,
respectively. We adopt upper-case boldface letters to denote matrices and lower-case boldface letters
to denote column vectors, respectively. We adopt X < 0 to denote that X is a positive semidefinite
matrix. We use tr {·} to denote the matrix trace operation and det {·} to denote the matrix determinant
operation, respectively. We use E {·} to denote the expectation operation. We adopt CN (a, B) to
denote the circular symmetric complex-valued Gaussian distribution with mean a and covariance B.
We adopt (·)H , (·)T , and (·)∗ to denote the conjugate-transpose, transpose, and conjugate operations,
respectively. We adopt � to denote the Hadamard product. We adopt [A]m,n to denote the (m, n)th
element of matrix A. We adopt , and∼ to denote “be defined as” and “be distributed as”, respectively.

2. Massive MIMO Beam Domain Channel Model

We consider a single-cell massive MIMO system consisting of one BS which is equipped with
M antennas, and K UTs, where UT k is equipped with Nk antennas. In this paper, we focus on the
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single group multicast transmission case where the BS sends one common message to all the UTs in
the multicast group.

We denote by x ∈ CM×1 the multicast signal intended for the UTs in the multicast group, then the
signal received at UT k at a time instant can be written as

yk = Hkx + nk ∈ CNk×1, (1)

where Hk represents the downlink channel matrix from the BS to UT k at the given time instant, and
nk ∼ CN

(
0, σ2INk

)
denotes the additive Gaussian noise with σ2 being the noise power. We assume

that the multicast signal x satisfies E {x} = 0 and E
{

xxH} = Q ∈ CM×M where Q is the multicast
signal transmit covariance matrix.

Before investigating the energy-efficient massive MIMO multicast transmission design, we first
introduce the channel model adopted in our work which has a great impact on the considered
multicast design. Specifically, Weichselberger’s channel model [24,25] is adopted in our work.
Please note that in the adopted Weichselberger’s channel model, the channel correlation properties
between the transmitter (BS) and the receiver (UT) are jointly taken into account, which is different
from the Kronecker channel model where only the correlations at both ends are considered.
With Weichselberger’s jointly correlated channel model, the channel matrix Hk in (1) can be written
as follows

Hk = UkGkVH
k ∈ CNk×M, (2)

where Uk ∈ CNk×Nk and Vk ∈ CM×M are both deterministic unitary matrices, and Gk ∈ CNk×M

is a random matrix where the elements are all zero-mean independently distributed. Please note
that in massive MIMO related literature, Gk is usually referred to as the beam domain channel
matrix [19,21,23]. The second-order channel statistics of Gk can be fully characterized by the
following matrix

Ωk = E {Gk �G∗k} ∈ RNk×M. (3)

As the (i, j)th element of Ωk corresponds to the average power of the (i, j)th element of the beam
domain channel matrix, Ωk is usually referred to the beam domain channel power matrix. Please
note that Ωk varies in a larger time scale than instantaneous CSI. In addition, the channel statistics
are approximately constant for a wide range of frequencies [23,26]. Therefore, statistical CSI can
be obtained via averaging the samples over time and frequency in a realistic wideband wireless
transmission system with guaranteed accuracy. In this paper, we assume that the statistical CSI of the
multicast UTs can be perfectly known at the BS.

In massive MIMO systems with a sufficiently large number of BS antennas, the channels usually
exhibit new properties. One particular property of the massive MIMO channels is that the eigenvector
matrices of the correlation matrices at the BS of different transmission links (UTs) tend to be the same
and can be uniquely determined by the array topology equipped at the BS asymptotically [19,21,23].
Specifically, we denote by V this unique matrix, then the massive MIMO channel adopted in this paper
can be modeled as

Hk
M→∞
= UkGkVH . (4)

It is worth noting that the above channel model has been verified in typical scenarios [19,21,23]
and has been extensively adopted in previous works. The massive MIMO channel model in (4) will be
adopted throughout this paper.
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3. Energy-Efficient Multicast Precoding for Massive MIMO

In this section, we investigate energy-efficient multicast precoding for massive MIMO where
the BS only has knowledge of the statistical CSI of all multicast UTs and all the UTs know their own
instantaneous CSI perfectly. In particular, with multicast transmit covariance matrix Q, the achievable
ergodic multicast can be written as follows

Rmc = min
k

Rk, (5)

where Rk is UT k’s achievable ergodic rate which can be written as

Rk = E

{
log det

{
INk +

1
σ2 HkQHH

k

}}
(a)
= E

{
log det

{
INk +

1
σ2 GkVHQVGH

k

}}
, (6)

where (a) follows from the massive MIMO beam domain channel model in (4), and the determinant
identity det {I + AB} = det {I + BA}.

Before proceeding, we present the power consumption model. In massive MIMO systems, the BS
consumes most of the power and we focus on the power consumption at the BS. Specifically, we adopt
the power consumption model as follows [11,13]

P = ζtr {Q}+ MPc + Ps, (7)

where tr {Q} is the multicast transmit power, which is scaled by a coefficient ζ ≥ 1 modeling the
reciprocal of the transmit amplifier drain efficiency, Pc denotes the circuit power consumption of each
BS antenna, and Ps denotes the static power consumption at the BS. Then, the system EE of multicast
transmission with bandwidth W is given by

EEmc ,
WRmc

P
. (8)

In the following, we investigate energy-efficient multicast precoding with statistical CSI. We aim
to design the optimal transmit covariance Q that can maximize the multicast EE in (8). The problem to
be dealt with can be formulated as follows

arg max
Q

EEmc,

s.t. tr {Q} ≤ Pmax, Q � 0, (9)

where Pmax denotes the multicast power budget at the BS.
We denote by Q = ΦΛΦH the eigenvalue decomposition of the transmit covariance matrix

Q. Please note that the columns of Φ denote the eigenvectors of Q and can represent the multicast
signaling directions. Meanwhile, diagonal elements of Λ denote the eigenvalues of Q and the powers
allocated to each beam can be reflected in Λ. We first investigate the eigenvectors of the optimal
multicast transmit covariance matrix in the following theorem.

Theorem 1. The eigenvectors of the optimal transmit covariance matrix Qopt in terms of maximizing the
systems EE are constituted by the columns of the matrix V in (4), i.e.,

Qopt = VΛVH . (10)

Proof. Please refer to Appendix A.
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The result presented in Theorem 1 shows that the optimal energy-efficient multicast signaling
directions should align with the eigenvectors of the transmit correlation matrices at the BS. Thus,
the optimal multicast precoding in terms of maximizing the systems EE should be performed in the
beam domain. With Theorem 1, the matrix-valued energy-efficient transmit covariance matrix design
can be simplified into a vector-valued beam domain power allocation problem with significantly
reduced optimization variables. In particular, without loss of optimality, the energy-efficient multicast
transmit precoding optimization problem in (9) can be simplified to the following problem

arg max
Λ

WRmc (Λ)

P (Λ)
,

s.t. tr {Λ} ≤ Pmax, Λ � 0, Λ diagonal, (11)

in which

Rmc (Λ) , min
k

Rk (Λ) , (12)

Rk (Λ) , E

{
log det

{
INk +

1
σ2 GkΛGH

k

}}
, (13)

P (Λ) , ζtr {Λ}+ MPc + Ps. (14)

In the objective function of the beam domain power allocation problem (11), Rmc (Λ) and P (Λ)

are concave and linear functions with respect to Λ, respectively. Thus, the optimization problem in
(11) is a concave-linear fractional program. Dinkelbach’s transform and Charnes-Cooper transform
are two classic approaches to solve the concave-linear fractional program [11]. In this work, we adopt
Dinkelbach’s transform to solve this optimization problem. Compared to Charnes-Cooper transform,
Dinkelbach’s transform has an advantage that no extra constraints must be included. Via invoking
Dinkelbach’s transform, the energy-efficient precoding optimization problem in (11) can be solved via
iteratively solving the following sequence of convex optimization problems

Λ(`+1) = arg max
Λ

WRmc (Λ)− η(`)P (Λ) ,

s.t. tr {Λ} ≤ Pmax, Λ � 0, Λ diagonal, (15)

where η(`) is an introduced auxiliary variable in Dinkelbach’s transform, which is iteratively updated
as follows

η(`) =
WRmc

(
Λ(`)

)
P
(
Λ(`)

) , (16)

with ` denoting the iteration index. It can be shown that the above Dinkelbach’s transform-based
iteration approach is guaranteed to converge to the global optimum of the original optimization
problem in (11) with a super-linear convergence rate [11].

Although each transformed sub-problem in (15) is a convex program, the optimization complexity
might still be high in practice due to the sample average in calculating the expectation operation.
To reduce the implementation complexity in Monte-Carlo averaging over channel realizations, we
further employ the large-dimensional random matrix theory [27,28] to calculate the DE of the ergodic
rate. By replacing the multicast rate with its DE, the sequence of the convex optimization problems in
(15) can be rewritten as follows

Λ(`+1) = arg max
Λ

min
k

WRk (Λ)− η(`)P (Λ) ,

s.t. tr {Λ} ≤ Pmax, Λ � 0, Λ diagonal. (17)
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In (17), Rk (Λ) is the DE of Rk (Λ) given by

Rk (Λ) =
M−1

∑
i=0

log
{

1 + [Γk]i,i [Λ]i,i

}
+

Nk−1

∑
j=0

log
{[

Φ̃k

]
j,j

}
−

Nk−1

∑
m=0

[
Γ̃k

]
m,m

[(
Φ̃k

)−1
]

m,m
, (18)

where Γk ∈ CM×M, Γ̃k ∈ CNk×Nk , and Φ̃k ∈ CNk×Nk can be efficiently calculated via solving the
following fixed-point equations

Γk = Bk

((
Φ̃k

)−1
)

, (19a)

Γ̃k = Ck

(
Λ (IM + ΛΓk)

−1
)

, (19b)

Φ̃k = INk + Γ̃k. (19c)

It is worth noting that Bk (X) , 1
σ2 E

{
GH

k XGk
}
∈ CM×M and Ck (X) , 1

σ2 E
{

GkXGH
k
}
∈ CNk×Nk

appeared in (19) are both matrix-valued functions which both output diagonal matrices with the
corresponding ith output diagonal elements given by

[Bk (X)]i,i =
1
σ2 tr

{
diag

{
[Ωk]:,i

}
X
}

, (20)

[Ck (X)]i,i =
1
σ2 tr

{
diag

{(
[Ωk]i,:

)T
}

X
}

, (21)

respectively. The DE Rk (Λ) can be efficiently calculated using the channel statistics Ωk in a
few iterations without exhaustive averaging involved in the Monte-Carlo approach, and then the
computational complexity of the optimization problem in (15) can be further reduced.

Please note that the DE Rk (Λ) is a quite tight approximation of Rk (Λ) for massive MIMO channels
in typical settings [27,28]. In addition, as Rk (Λ) in (18) is a concave function with respect to the power
allocation matrix Λ, each sub-problem in (17) is a convex program and can be efficiently solved using
standard techniques. Formally, we present the description of our proposed energy-efficient multicast
beam domain power allocation algorithm for massive MIMO transmission using Dinkelbach’s
transform and large-dimensional random matrix theory in Algorithm 1. The computational complexity
of Algorithm 1 is presented as follows. From [11], we can obtain that the convergence rate of
Dinkelbach’s transform-based iteration will exhibit a super-linear trend in the sub-problem sequence
(15). In addition, each sub-problem in (15) is a convex program and thus the computational complexity
of each sub-problem is polynomial in the numbers of variables and constraints [29]. Moreover, the
complexity of calculating DE involved in the objective of each sub-problem is relatively low due to the
quick convergence [28] in solving (19).

Algorithm 1 Beam Domain Energy-Efficient Multicast Power Allocation Algorithm

Require: Initialization power allocation Λ(0), beam domain statistical CSI Ωk, threshold ε

Ensure: Beam domain energy-efficient multicast power allocation pattern Λ

1: Initialization: ` = 0, calculate η(`) using (16)
2: while

∣∣∣∣min
k

WRk

(
Λ(`)

)
− η(`)P

(
Λ(`)

)∣∣∣∣ ≥ ε do
3: Update `← `+ 1
4: Calculate Λ(`) via solving (17) with η(`−1)

5: Calculate η(`) using (16)
6: end while
7: Return Λ = Λ(`)
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4. Numerical Results

Extensive numerical results are provided in this section to corroborate the performance of the
proposed energy-efficient multicast precoding for massive MIMO transmission with only statistical
CSI available at the BS. In the simulation, we adopt the 3GPP SCM channel model and the suburban
macro-cell propagation scenario [30]. In addition, both the BS and the UTs are equipped with the
uniform linear arrays (ULAs) where the antennas are spaced with half wavelength. We list the major
simulation parameters in Table 1.

Table 1. Simulation Setup Parameters.

Parameter Value

Channel model 3GPP SCM
Propagation scenario Suburban macro-cell
Pathloss −120 dB (∀k)
Array topology ULA with half wavelength antenna spacing
Number of antennas at the BS M = 128
Number of UTs K = 8
Number of antennas at the UTs Nk = 4 (∀k)
Bandwidth W = 10 MHz
Amplifier inefficiency factor ζ = 5
Hardware dissipated power per antenna Pc = 30 dBm
Static power consumption Ps = 40 dBm
Noise variance σ2 = −131 dBm

Firstly, the convergence performance of the proposed energy-efficient multicast power allocation
algorithm is evaluated in Figure 1. We can observe from Figure 1 that the proposed energy-efficient
multicast power allocation algorithm converges very rapidly for different values of multicast power
budget Pmax. Usually, the proposed algorithm converges after very few iterations. In addition, we can
observe that the proposed multicast power allocation algorithm achieves near-optimal EE performance.
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Figure 1. Convergence performance of the proposed energy-efficient multicast power allocation
algorithm for different values of multicast power budget Pmax.
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We then compare the EE performance of the proposed EE maximization approach with that of the
rate maximization approach which aims to maximize the achievable ergodic multicast rate in Figure 2.
We can observe from Figure 2 that the proposed EE maximization approach and the conventional rate
maximization approach achieve similar EE performance in the low transmit power regime, which
indicates that using the maximum power budget is almost EE optimal. Meanwhile, in the high transmit
power regime, our proposed EE maximization approach significantly outperforms the conventional
rate maximization approach. In addition, we can also observe that the proposed DE result is quite
accurate compared with the Monte-Carlo results in a wide range of power budget values.
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Rate max, DE

Rate max, Monte-Carlo

Figure 2. Comparison of the EE performance between the proposed EE maximization approach and
the conventional multicast rate maximization approach. The depicted results are shown versus the
multicast power budget Pmax. The DE results of both approaches are also depicted.

Finally, the EE performance of our proposed approach versus the number of BS antennas is
evaluated in Figure 3. We can observe from Figure 3 that the EE performance of our proposed approach
will reduce as the number of BS antennas M increases, which indicates that power consumption
dominates the EE performance in the case with large numbers of antennas.
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Figure 3. EE performance of the proposed EE maximization approach versus the multicast power
budget Pmax for different numbers of BS antennas M.

5. Conclusions

In this paper, we have investigated energy-efficient physical-layer multicast precoding for massive
MIMO transmission where the BS only has access to the statistical CSI of all UTs. We first introduced
a massive MIMO beam domain channel model. Via exploiting the statistical properties of the
massive MIMO beam domain channels, we then showed the optimal energy-efficient multicast
signaling directions, which reduces the matrix-valued precoding design into a beam domain
energy-efficient power allocation problem. We further proposed a sequential power allocation
algorithm with guaranteed convergence to the global optimal solution via exploiting Dinkelbach’s
transform. In addition, we derived the DE of the design objective via exploiting the large-dimensional
random matrix theory. Simulation results showed the near-optimal EE performance of our proposed
approach for energy-efficient massive MIMO multicast precoding. The EE performance gain of the
proposed approach over the conventional rate optimization approach was also demonstrated in the
numerical results.
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Appendix A. Proof of Theorem 1

Please note that the consumed power P = ζtr {Q}+ MPc + Ps is not related to the off-diagonal
elements of VHQV. In addition, as Rmc is a concave function with respect to VHQV, it is not difficult
to show that VHQV should be diagonal to maximize Rmc using a proof technique similar to that
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presented in [31]. Moreover, the multicast transmit power tr {Q} is only related to the diagonal
elements of VHQV. Therefore, we can obtain that VHQV should be diagonal for maximizing the
objective function of problem (9). This concludes the proof.
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