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Abstract: Solar energy is the most clean renewable energy source and has good prospects for future
sustainable development. Installation of solar photovoltaic (PV) systems on building rooftops has
been the most widely applied method for using solar energy resources. In this study, we developed
an approach to simulate the monthly and annual solar radiation on rooftops at an hourly time
step to estimate the solar PV potential, based on rooftop feature retrieval from remote sensing
images. The rooftop features included 2D rooftop outlines and 3D rooftop parameters retrieved
from high-resolution remote sensing image data (obtained from Google Maps) and digital surface
model (DSM, generated from the Pleiades satellite), respectively. We developed the building features
calculation method for five rooftop types: flat rooftops, shed rooftops, hipped rooftops, gable rooftops
and mansard rooftops. The parameters of the PV modules derived from the building features were
then combined with solar radiation data to evaluate solar photovoltaic potential. The proposed
method was applied in the Chao Yang District of Beijing, China. The results were that the number of
rooftops available for PV systems was 743, the available rooftop area was 678,805 m2, and the annual
PV electricity potential was 63.78 GWh/year in the study area, which has great solar PV potential.
The method to perform precise calculation of specific rooftop solar PV potential developed in this
study will guide the formulation of energy policy for solar PV in the future.

Keywords: solar resources; digital surface models (DSM); rooftop feature; rooftop photovoltaic;
solar photovoltaic potential; energy

1. Introduction

Rapid economic development has brought about resource over-consumption, environmental
pollution and ecological damage [1]. One of the most efficient solutions to these problems is to
shift from fossil fuel power generation to renewable energy [2]. In 2016, the share of PV electricity
production represented 1.5% of all electricity produced globally, the global solar PV capacity was
303 GW and China’s 77.4 GW [3]. Rooftop solar PV, which directly converts sunlight into electricity, has
good prospects for solving energy and environmental problems in the future, especially in China [4]
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(Figures 1 and 2). In order to promote the development of photovoltaics, many scholars have done
lots of related studies on solar urban plans, energy production simulation, energy efficiency, storage
solution and economic benefit [3,5–8]. However, PV potential map is the precondition and foundation
of large-scale development of PV. China has a vast territory and abundant solar resources, making
it an appropriate country to develop and utilize solar energy resources [9]. The China National
Energy Administration announced that the government aimed to reach the capacity of 100 GW of solar
photovoltaic by 2020 in its 13th Five-Year Plan. However, the speed of development of the rooftop
PV in China was far less than expected. Achieving the goal involves relying on the high-precision
planning of large-scale PV deployment, therefore, there is a need to estimate and quantify the potential
for rooftop solar photovoltaics [10].
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To accurately simulate the energy production of renewable energy sources, PVGIS developed
by the European Commission and PVWatts developed by National Renewable Energy Laboratory
(NREL) are two popular PV models, which are free and relatively simple to operate [13]. The basis
of PVGIS are a large database and country maps available for Europe and Africa, which present
solar irradiation from ground stations or satellites [14]. The big weakness of PVGIS is that it is not
applicable for countries outside of Europe and Africa. PVWatts uses the data from the NREL National
Solar Radiation Database (NSRDB), which covered the Americas including Hawaii between about
21 degrees South latitude to about 60 degrees North, and the Indian subcontinent and parts of Central
Asia. This model also allows the user to import his own or a different database. PVWatts estimates
annual and monthly electricity production with location, basic design parameters, and an average
annual retail electricity rate [15]. PVGIS and PVWatts are Large-scale photovoltaic potential assessment
models, and their data do not cover China.

Solar PV potential estimation methods which are suitable for China can be classified into
generalized estimation and detailed modeling [16]. Generalized estimation calculates the PV
distribution by analyzing the influence of the factors (local environmental, economic, social variables
and buildings distribution, etc.) on the spatial distribution of photovoltaic applications [17].
Rooftop suitable for PV plays an important role in the estimation of rooftop solar PV potential [18].
This method includes the correlation coefficient method and the constant-value method. Some studies
have selected typical regions as samples to calculate the correlation coefficient between population
density or building density and the photovoltaic roof available area, then, the correlation coefficient
is used to calculate the photovoltaic roof available area in the entire region, which (as the only PV
installation parameter) is then used to estimate the solar PV potential [19]. L. K. Wiginton used ten
of the 109 census subdivisions as samples to extrapolate the relationship between population and
roof area and estimated the potential power and energy output from the deployment of rooftop
PV [20]. The constant-value method is an even more general approach used to estimate solar PV
potential. The method assumes a constant value for the entire building stock of different building types,
regardless of slope or orientation. The different building types are classified according to different
standards and perspectives, such as residential, commercial, and industrial buildings based on building
function and flat and pitched roofs based on rooftop form [21,22]. This method is suitable for a large
range of research, although its accuracy is lower. Additionally, this method is more applicable to areas
that have more perfect building statistical data and similar architecture.

The detailed modeling method based on Geographic Information System (GIS), which is more
objective and more accurate than previous methods, is a mainstream approach to estimate the solar PV
potential by assigning ideal values for rooftop characteristics to rooftop models [19,23,24].

The study of the detailed modeling method has focused on both the rooftop projection area
method and the rooftop architectural morphology method. The rooftop projection area method refers
to the area of each rooftop through building spatial distributions extracted from remote sensing images,
and the area of each rooftop, the only PV installation parameter, is used to estimate the solar PV
potential [25,26]. However, in this method, the accuracy is low because of the neglect of rooftop
shapes. The rooftop architectural morphology method can model 3D rooftops, which can determine
solar resources or shadow effects on buildings and more precise PV installation parameters [27–29].
The 3D models are most often generated from orthophotography or light detection and ranging
(LiDAR) data [16,30]. This method is difficult and complicated and is not suitable for large regions,
although it is relatively accurate. Additionally, the estimation of solar PV potential does not require all
rooftop parameters, just some parameters. Therefore, some simple methods are needed for large-scale
estimation of solar PV potential.

In this study, we propose a methodology that aims at assessment of the PV solar potential
through the retrieval of rooftop features using high-resolution remote sensing images combined with
digital surface models (DSM) that can be easily obtained by oblique photography. Rooftop features
consist of the 2D rooftop outline and 3D rooftop parameters. The process has three steps: 2D rooftop
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outline extraction, 3D rooftop parameters recognition and solar module parameter calculation. The 2D
rooftop outlines were extracted and simplified using an object-oriented classification method based
on high-resolution remote sensing images. The 3D rooftop parameters, which consist of rooftop type,
slope and aspect, were recognized using the DSM. The module parameters area, slope and aspect were
then calculated by combining the 2D rooftop outlines and the 3D rooftop parameters. The proposed
method was used to calculate solar PV use in the Chao Yang District, Beijing, China based on satellite
images obtained from Google Maps [31] and the DSM.

2. Results and Validation

2.1. Study Area and Data Sources

The data sources of this study included the Pleiades DSM and satellite images obtained from
Google Maps of the Chao Yang District, Beijing. The Chao Yang District, which is located on the eastern
side of Beijing, is a densely populated and economically developed central area that contains many
unique industrial zones. It is a planned and regularly-developed district that contains various types of
buildings with different shapes and usages.

For the satellite data, the resolution of the image from Goggle Maps was approximately 0.2 m.
The DSM was generated from the Pleiades images with an approximately 0.9 m ground sampling
distance. Figure 3 illustrates the location, the google image and the DSM of the study area. The area
covered by the scenes was 2 km × 2.5 km. The western part of the scene contains some larger shading
structures including the Birds Nest Stadium and the National Stadium. It is worth mentioning that
in our work these structures were excluded. The northeastern and eastern parts consist of mostly
residential areas that have small houses with an even spatial distribution and generally complex and
compact building shapes.
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2.2. Building Extraction Results

Based on the Google image and DSM, the buildings were extracted using the object-oriented
classification method. Based on the comparative analysis of many experiments, we used a value of
1 for the parameter “weight of each spectrum layer”, 2 for “weight of DSM layer”, 50 for “segmentation
scale”, 0.7 for “the weight of spectral heterogeneity” and 0.3 for “the weight of compactness” in Formula
(2). After multi-resolution segmentation, we extracted the artificial objects, including buildings, road,
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overpasses, and so on, using spectral features, shape features and texture features such as NDVI and
Brightness. We extracted the buildings from the artificial objects using the DSM. Then, we reconfigured
the detected building patches using the Hough transformation and manual modification. The results
are shown in Figure 4.
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2.3. Rooftop Assessment

The rooftops of the complex buildings usually consisted of several flat rooftops and were thus
often generalized as one rooftop. We recognized the rooftop type, and ridge lines of the building
rooftops were extracted to determine the rooftop parameters. Then, the sunny hips were extracted
based on the ridge lines and the aspect types. Figure 5 presents various examples of rooftops showing
different roof types.
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The area contained 760 rooftops that included 33 pitched rooftops. A reference dataset was
prepared to assess the accuracies of the extracted buildings and the rooftop parameters by manually
delineating and labeling the buildings from the image and field measurement of the hip types, the areas,
the slopes, and the aspects of the rooftops. We randomly selected 50 points as the samples and
conducted ground surveys by GPS. The actual data (rooftop hip type, area, slope, aspect, and other
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data) were obtained. The field work showed that the interpretation precision of remote sensing was
87%, based on the longitude and latitude of each sample point. Table 1 illustrates the type, area, slope
and aspect of 10 samples extracted from ground truth and images.

Table 1. Accuracy analysis for 10 selected rooftop samples.

Number
Type Area (m2) Slope (◦) Aspect

Method Actual Method Actual Method Actual Method Actual

1 0 0 9263.17 9000 0 0 0 -
2 0 0 1676.52 1700 0 0 0 -
3 1 1 357.86 380 15 20 120 120
4 0 0 304.02 320 0 0 0 -
5 1 1 274.24 300 48 45 0 0
6 1 1 310.55 360 13 16 180 180
7 1 1 255.43 220 15 20 0 0
8 1 1 44.01 40 36.3 40 90 90
9 1 1 214.78 260 46.3 50 270 270

10 1 1 403.98 410 21.8 17 0 0

Error: 0% Error: 8.24% Error: 12.03% Error: 0%

2.4. PV Potential Assessment Results

The solar module parameters were calculated based on the rooftop parameters, which included
area, slope and aspect. We extracted 760 rooftops from the image, with an area of 809,837 m2 in
two dimensions. Based on shadow and slope, we excluded the rooftops that were unsuitable for solar
module installation, which left 743 rooftops with an area of 678,805 m2 available for PV. For photovoltaic
array structure design and installation on flat rooftops, one should ensure that solar modules are set
without shading each other from 9 a.m. to 3 p.m. on the winter solstice because the shadow is longest
on the winter solstice. We determined by calculation that the distance at 3 p.m. on the winter solstice
is at its maximum when α is 43.58◦ and h is 19.78◦. Based on Formula (1), the area of the PV modules
was approximately half of the rooftop area. For pitched rooftops, the area of the PV modules was the
cosine of the area of sunny rooftop hips.

We applied the above methodology to the sample area in 2016 to demonstrate the applicability
of the method. The monthly and annual solar radiation was calculated at an hourly time step for
each rooftop hip. The total annual solar radiation in the study area was 63.78 GWh/year and the
average radiation over each square meter was 93.97 kWh/m2/year (Figure 6). The results show that
during the summer, this urban area received approximately twice the solar radiation it received in
winter. The study area received more solar radiation in the third quarter than in the other quarters.
The maximum monthly solar irradiation occurred in July and was 7.16 GWh; the minimum of 2.34 GWh
occurred in December.

In the view of circular economy, the energy conservation and pollution reduction of PV is also
significantly. According to the Beijing Statistical Yearbook [32], there are 8473 people per square
kilometer in Chaoyang District of Beijing. The per capita household electricity consumption is
899 kWh/year. The study area is 5 km2 with 42,365 people. The total electricity consumption in
the study area in 2016 is 38.09 GWh/year. It can be seen that the photovoltaic power generation
capacity in the study area can meet the living electricity consumption. The CO2 emission reduction
factor of North China Power Grid is 1 tCO2/MWh, which is released by the National Development
and Reform Commission. The study area can reduce CO2 emissions by 38,090 t per year.
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3. Study Area and Data

In this study, solar PV potential was assessed using several main parameters based on the solar
radiation model as Equation (1) [33]:

Ep =
(

fp· fo
)
·Et1,t2 =

(
fp· fo

)
·
∫ t2

t1

ftStRtdt (1)

where Et1,t2 is the in-plane irradiation received by PV modules during the [t1, t2] time period. t1 and t2

are the beginning and ending times of solar energy potential assessment, respectively. St is the area
of non-shadow solar photovoltaic modules in time T. ft is the direct normal irradiance (DNI) after
atmospheric radiation correction in time T. In this study, the PV energy production was calculated
by the in-plane irradiation defined as the sunlight that illuminates tilt plane surface. Rt is the angle
modifying factor between solar rays and rays received by PV modules, namely, Conversion factor from
DNI to in-plane irradiation. Ep is the PV power generation of rooftop during the [t1, t2] time period.
If Ep is annual photovoltaic power generation, the unit is kWh/year. fp is the module conversion
efficiency, fo is the performance ratio (PR) of PV system. In this study, the average module efficiency
was assumed at a conservative 16% [33], and the average performance ratio was assumed at 75% [34].

Solar altitude (h) and solar azimuth (α) are fixed at a constant longitude and latitude position
at certain times, and St and Rt are the key variables for PV potential estimation. To exactly evaluate
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the relative PV potential based on the two key variables, three parts are needed: (1) rooftop outline
detection, (2) rooftop feature acquisition and (3) solar PV modules parameters calculation.

The flowchart of the methodology is presented in Figure 7.
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3.1. Rooftop Outline Detection

The rooftop outlines of buildings were detected from high-resolution satellite images that
combined most information about spectra, shape and texture using an object-oriented classification
method [35]. Rooftop outline detection included image segmentation, object recognition and
post classification.

In this study, we improved the multi-resolution image segmentation by adding a DSM layer in
addition to images, which can be expressed as follows:

H = wdsm·U
[

f1

(
wlayer, s, wcolor, wcom

)
, f2

(
wlayer, s, wcolor, wcom

)]
(2)

{
∆DSM < 3m, wdsm = 1
∆DSM < 3m, wdsm = 0

(3)

The weight of each layer (wlayer), the segmentation scale (s), the weight of spectral heterogeneity
(wcolor) and the weight of compactness (wcom) were set to decide if two objects would merge.
The suitable values of the four variables were selected through many experiments based on the
geometry of the building (length, width, area, and other measures). In the process of clustering,
the difference in DSMs of two objects were added as constraint conditions.

After segmentation, the building was extracted through a set of classification rules that consisted
of some spectral features, shape features and texture features. Then, a simplified process was performed
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to produce the regular edge of a building rooftop. Regular rooftop outlines of rectangular buildings and
circular-shaped (circle-, ring-, C- and S-shapes) buildings were delineated by a Gaussian smoothing
filter, edge detection and Hough transformation [36].

3.2. Rooftop Feature Parameters Acquisition

Rooftop PV available area is significantly determined by rooftop feature parameters such as area,
slope and aspect, which varied for different rooftop types. Therefore, we proposed a method to retrieve
these parameters based on rooftop classification.

(1) Rooftop classification

For PV potential evaluation, rooftops can be generally classified into flat rooftops and pitched
rooftops. Based on a sample survey in the study area and a literature review [37], we classified the
rooftop into five categories: flat rooftops, shed rooftops, hipped rooftops, gable rooftops and mansard
rooftops. Sketches of the five categories of rooftops are shown in Figure 8 [37].
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Surface aspect was used to recognize the rooftop types. Surface aspect on a point of the surface is
the function of the elevation change rate in the east-west (Y axis) and north-south (X axis) direction
and is expressed by the Equation (4) [38]:

aspect = arctan
(

fy/ fx
)

(4)

where fx is the elevation change rate in the north-south (X axis) direction and fy is the elevation change
rate in the east-west (Y axis) direction. fx and fy are calculated by the three-order inverse distance
square weight difference in a 3 × 3 moving window over the DSM image.

The rooftop type can be classified based on the dominant aspect and the distribution rule because
aspect type is obviously irregular on flat rooftops and the domain aspect type is significant on pitched
rooftops. The classification criteria are shown in Table 2.
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Table 2. Different rooftop type recognition criterion based on aspect.

Rooftop Type Aspect Types Detailed Description

Flat rooftop No dominant aspect types
Shed rooftop One dominant aspect types
Gable rooftop Two opposite dominant aspect types

Hipped rooftop Two large area of opposite aspect types and two small area of opposite aspect types
Mansard
rooftop Four similar area of aspect types and a small flat rooftop

(2) Rooftop feature parameters

The rooftop feature parameter required for flat rooftops was area. However, for pitched rooftops,
the sunny hipped type, which is useful for solar PV potential estimation, was first recognized by
extracting the ridge lines based on DSM and aspect. The ridge lines were extracted by fitting the
lines to the group of local maximum pixels of the DSM with aspect data. The sunny hips of Gable
rooftops consist of one longitudinal hip; the sunny hips of hipped rooftops usually consist of the
two longitudinal hips and one lateral hip; and the sunny hips of mansard rooftops usually consist of
one flat hip, two longitudinal hips and one lateral hip. The required rooftop feature parameters of each
rooftop hip for the five kinds of rooftops are shown in Table 3.

Table 3. Required rooftop feature parameters of each rooftop hip.

Rooftop Type Hip Sunny Hip Area Slope Aspect

Flat rooftop
√

Shed rooftop
√ √ √

Gable rooftop longitudinal
√ √ √ √

longitudinal
√ √ √

Hipped rooftop

longitudinal
√ √ √ √

longitudinal
√ √ √ √

Lateral
√ √ √ √

Lateral

Mansard
rooftop

flat
√

longitudinal
√ √ √ √

longitudinal
√ √ √ √

Lateral
√ √ √ √

Lateral

3.3. Solar PV Module Moduleparameter Acquisition

Solar PV module parameters include available rooftop, installation tilt angle, installation
orientation, and module area. The available rooftops were initially extracted by excluding those
covered by shade, which can be calculated at 12 noon on the spring and autumnal equinoxes when the
azimuth is 180◦ and the altitude is approximately 50◦ [39,40]. Additionally, according to the National
Renewable Energy Laboratory (NREL) method [16], installation of photovoltaic modules is not allowed
on rooftops whose slopes are greater than 60 degrees and were thus excluded. The remaining building
rooftops were used to calculate the area of solar modules.

Install tilt angle is one of the key parameters for solar PV estimation. The optimal tilt angle in
Beijing was determined to be 36◦ by analyzing the change trend of yearly radiation on an inclined
plane with the angle of inclination based on the solar calculation model [41] of an inclined plane and
the power output model of photovoltaics [42]. Considering the installation of modules on different
types of rooftops, we defined the install tilt angle to be 36◦ for flat rooftops and equal to the rooftop
slope for pitched rooftops.
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Module area was determined by the rooftop types. For flat rooftops, the solar modules are
generally installed in parallel rows and we thus needed to consider the module-to-module shading [33].
For multi-row PV systems, this type of shading is inevitable, although designers can choose a proper
array geometry to satisfactorily minimize this type of shading loss. Figure 9 illustrates how module
shading affects design geometry for multi-row arrays. α is the azimuth, h is the altitude, l is the length
of the array, the tilt angle (θ) is 36◦, and d is the distance between the array modules. The distance (d)
between the photovoltaic modules was calculated by the Equation (5) [33]:

d = l· cos θ + l· sin θ· cot h· cos α (5)
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The area of a photovoltaic array (Sa) was calculated based on the area of the rooftop (Sr) by the
Formula (6) [33]:

Sa = W·l = W·d/(cos θ + sin θ· cot h· cos α) = Sr/(cos θ + sin θ· cot h· cos α) (6)

For pitched rooftops, Sa was calculated based on the sunny slope by the following formula:

Sa = Sr/ cos θ (7)

3.4. Calculation of St and Rt

Based on the area of a photovoltaic array (Sa), the area of non-shadow solar photovoltaic modules
(St) can be calculated as follows

St = Sa/Ss (8)

where Ss is the area of solar modules shaded by other objects calculated by overlaying the shading for
every daylight hour and the rooftop outlines.

The angle correction factor (Rt) should be considered when calculating the direct solar radiation
received by the solar photovoltaic modules because of the influence of the angle between the normal
vector of the solar photovoltaic modules and the direction vectors of the solar rays. Rt can be expressed
as Equation (9) [43,44]:

Rt = sin(h + θ)· cos(α + γ) (9)

where θ and γ are the slope and aspect of the solar photovoltaic modules, respectively.
The spatial distribution of solar radiation on rooftops can be simulated by the rooftop 2D outline

and 3D parameters. Solar radiation is a highly dynamic phenomenon with strong temporal variation
over hours, days and months. The method can be effectively used to identify proper rooftops for
installation of solar photovoltaic modules and the areas of solar photovoltaic modules not shaded by
the neighboring buildings and trees at each hour.

4. Conclusions

A rapid growth in solar energy applications and interest in the sustainable development of
cities have contributed to a growing need for accurate solar resource assessments in urban areas.



Energies 2018, 11, 3172 12 of 14

This study offers a reasonable way to evaluate photovoltaic potential based on remote sensing image
and DSM. The method proposed was used to extract the 2D rooftop outlines using the object-oriented
classification method based on the spectrum, shape and texture information of remote sensing image
data. Then, rooftop types were identified based on the DSM, including flat rooftops, shed rooftops,
hipped rooftops, gable rooftops and mansard rooftop types, taking into consideration actual rooftop
conditions in the case study area. For different types of rooftops, the rooftop parameters (area, slope,
aspect, etc.) were calculated. The rooftops that were suitable for installing solar modules were selected
by the two filter conditions that the slope of pitched rooftops was less than 60◦ and that rooftops were
not shaded at 12 noon on the spring and autumnal equinoxes. Based on the rooftop feature parameters,
the solar PV module parameters were calculated for different kinds of rooftops. Finally, the area of
non-shadowed solar photovoltaic modules (St) and the angle correction factor (Rt) were calculated to
assess the solar PV potential.

The proposed method was applied to the sample area, and the monthly and annual PV power
generation on rooftops was simulated at an hourly time step. The results showed that the number of
rooftops available for PV was 743, and the area was 678,805 m2. The annual PV power generation in
the study area was 63.78 GWh/year, and the average PV power generation over each square meter
was 93.97 kWh/m2/year. The solar radiation showed strong spatial and temporal variation. The study
area received more solar radiation in the third quarter than in other quarters. The maximum monthly
PV power generation occurred in July and was 7.16 GWh; the minimum occurred in December and
was 2.34 GWh. It was confirmed that the study area has a large potential to implement solar energy
use. The application results indicated that the method proposed by this study can effectively estimate
PV power generation by specific rooftops and provided an efficient method for solar energy resource
potential evaluation and solar energy utilization.
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