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Abstract: The following work presents the model-assisted research on Valve-Regulated Lead-Acid
(VRLA) Absorbent Glass Mat (AGM) battery in pulse operation cycle. The experimental research
was conducted for a constant value of State of Charge (SOC) of the battery, for values ranging from
0.2 to 0.8. Based on the conducted test stand research, the parameters of the battery were identified,
which were later used to model the battery using the equivalent circuit based on dual polarization (DP)
model with double Resistive-Capacitive (RC) loop. Simulations were performed for the identified
parameters of the battery which are described by the general form of the polynomial. The second
part contains the research on utilization of Nonlinear AutoRegressive eXogenous (NARX) recurrent
neural network to predict SOC and a terminal voltage of the battery. Obtained validation results with
the use of the identified parameters of the double RC loop and NARX model were discussed in the
following work. The article also features the advantages and disadvantages of NARX model and
DP model utilization for the use of in Battery Managements Systems (BMS) and micro-installations
based on renewable energy sources. Furthermore, the advantages of the addition of more RC loops
to describe the dynamic states of batteries in pulse states were discussed in the article.

Keywords: NARX neural network; identification; pulse cycle; VRLA battery

1. Introduction

Currently more and more attention is given to distributed energy generation systems [1–9] and
alternative routes of development for conventional, hybrid and electric vehicles [10–18]. The balanced
development of distributed technologies and polygeneration systems with energy storages are directly
related to the climate change and the energy policy [19–22], especially for members of the European
Union. From the user’s perspective, the most important criteria of choice for the given type of energy
storage is the price per kWh. Currently, on the Polish market, the price for 1 kWh for electrochemical
batteries is within 60–150 euro/kWh [23–26] (e.g., lead-acid batteries or Valve-Regulated Lead-Acid
(VRLA) Absorbent Glass Mat (AGM) batteries) and more than 300 euro/kWh (Li-ion battery) [26].
Due to this, VRLA AGM batteries have found a wide range of applications in the industry [27–36],
e.g., in forklifts where VRLA batteries are used as ballast, in start-up of gas engines [27], Start and Stop
systems in vehicles with conventional drivetrains [15] and cogeneration systems where the gas engines
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have been employed [9], as well as other distributed energy generation systems and emergency power
supply systems connected with auxiliary electricity generators (e.g., in hospitals).

Battery management system (BMS) is a system that manages energy storage [37], e.g., battery,
ultracapacitor or hybrid system [38–43], by monitoring its state, calculating and reporting secondary
data, controlling its environment, authenticating it and balancing it. All of this is performed to
protect the battery from operating outside its Safe Operating Area (SOA) defined as the voltage
and current conditions over which the device can be expected to operate without self-damage.
BMS ensures the optimal usage of the internal energy of the battery, achieved by monitoring
and controlling the battery’s charging and discharging process [44]. To improve algorithms for
prediction and control in Battery Management Systems (BMS) for distributed systems, it is crucial to
know the operating characteristics of typical electrochemical batteries, which can be supported by
mathematical models [45].

This approach plays an essential role in hybrid systems [46–50]. The research of a dynamic
operation of an electrochemical battery in a specific random, pseudo-random, pulse and Hybrid Pulse
Power Characterization (HPPC) cycle [51–53], supported by a mathematical model, e.g., physical
model [43,54–57], neural network model [45], AutoRegressive–Moving-Average (ARMA) model,
fuzzy model [58,59], an adaptation model based on the Kalman filter [60–68] can give answers to
different questions regarding the operation of batteries [69–73] in technical facilities. It should be
also emphasized that the energy storage modeling has recently had increasing interest connected
with new developments in the field of hybrid, electric vehicles [74] and heavy-duty vehicles or
polygeneration systems [75].

The charging and discharging processes in batteries are nonlinear as a result of activation
polarization and concentration polarization [63]. In order to replicate the mentioned polarization
phenomena, a correct replacement model for the battery has to be adopted. The science literature
provides a number of models, such as: The Resistive-Capacitive (RC) model [63,76,77], Thevenin
model [78,79], a Partnership for a New Generation of Vehicle (PNGV) model [80–82], dual polarization
(DP) model [63,83–89] and many more [89–109]. From the mentioned models, the best results of battery
parameters and SOC estimation are achieved with the DP model [63].

In the following article, authors utilized an identified DP model to simulate the battery terminal
voltage in pulse for various battery SOC values, ranging from 0.2 to 0.8.

In the second part of the work, a Nonlinear AutoRegressive eXogenous model (NARX) in
the form of the recurrent artificial neural network (R–ANN) was used to the estimation of the
voltage on the VRLA battery terminals. Mostly, ANN models simplify the identification procedure
with high accuracy [30,69]. They have distinct advantages over linear identification methods,
i.e., the approximation of multivariable nonlinear functions, the simple gradient-based adaptation of
model parameters and a rapid calculation of ANN equations. In contrast to energy-balance analytical
models [44], the design procedure of the ANN does not demand an exact knowledge of model physical
equations, and physical parameters that describe the model, but only values of model variables in the
form of the cause-effect relationships.

In energy storage systems usefulness of standard ANNs for identification were proposed in the
form of feed-forward models [66], recurrent models [110,111] and recently Long-Short-Term-Memory
(LSTM) recurrent models [112]. In particular, interesting for our research are Recurrent Artificial Neural
Networks (R–ANN) where connections between units form a directed cycle. Previous research [30]
shows, that with properly chosen and pre-processed data, system parameters, and operating conditions,
recurrent ANN model can be used for prediction, to some extent, for energy storage performance
under a wide variety of operating conditions. Considered in this work, NARX model based on R–ANN
plays a significant role because it can be used as a predictor, nonlinear filter and as a nonlinear model
of the dynamical system which can be later used in model-based control algorithms [113,114] in the
BMS systems. R–ANNs exhibit dynamic temporal behavior, a property that can be utilized for the
prediction of the energy storage system performance parameters in subsequent recharging cycles [111].
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Different research works study usability of NARX models for the State-of-Charge (SOC), terminals
voltage and State-of-Health (SOH) estimation. The comparison of feed-forward ANN and recurrent
ANN to model SOC of a lithium-ion (Li-ion) battery is given in Reference [115]. In Reference [116]
NARX model is used to estimate of the lithium-iron-phosphate (LiFePO4) battery voltage using SOC
and current load signal, for the electric vehicle. In Reference [45] there is reported SOC and SOH
estimation based on dynamically driven NARX recurrent networks designed for both state of charge
(SOC) and State of Health (SOH) estimation for LiFePO4 and lithium titanate (LTO) batteries. Authors
of Reference [114] describe the research on SOC/SOH monitoring of Li-ion batteries with the hybrid
method, combining Electrochemical Impedance Spectroscopy (EIS) models and R–ANNs. Another
hybrid method is presented in Reference [117] where wavelet-neural-network-based NARX battery
model combined with particle filter estimator is used for the State-Of-Energy (SOE) estimation of the
LiFePO4 battery. An interesting approach is discussed in Reference [118] where dual neural network
fusion model is used to estimate the relation between Open Circuit Voltage (OCV) and SOC.

The structure of this work is the following. In Section 2 the test stand of VRLA AGM battery
has been presented, in Section 3 parameter estimation methods based on NARX model and DP
physical model have been discussed. Section 4 presents the main simulation results from DP model
(for identified parameters) and NARX model which are subsequently validated and compared against
experimental results. Finally, in Section 5, the main conclusions are given.

2. Test Stand Description

The following section contains the description of the test stand used to perform research on VRLA
AGM battery. The technical specification of VRLA battery cell for experimental work is as follows:
Nominal voltage: 6 V; nominal capacity: 7.2 Ah (1 C current was equal to 7.2 A); electrolyte trapped
in a separator made of glass mat: Absorbent Glass Mat (AGM); positive electrode material: PbO2;
negative electrode material: Pb.

The test stand consisted of the following elements: PC class computer with LabVIEW application
for acquiring selected research data with use of National Instruments measurement modules including:
NI 9206 for voltage measurement on battery posts, NI 9213 for temperature measurements of
the environment, battery terminals, and battery case. Three thermocouples of type K were used
to measure the temperatures (Tterm—the temperature at the terminals, Tbody—body temperature,
Tambient—ambient temperature, see Figure 1a,b). The test stand also featured a NI 9263 analog output
module for control over current load generating unit, which allowed for the generation of pulse load
profile. Finally, a NI 9401 digital TTL input/output module was used for relay switching between
charge and load circuits. Total electric power of a single load circuit reached around 1 kWe. Use of two
custom load generation units allowed for the increase of total electric power to about 2 kWe. Currently,
use of up to six load generation units is possible, which can operate together or independently
creating independent measurement tracks. The presented test stand is currently being expanded to six
independent, parallel measurement tracks for electrochemical batteries and ultracapacitors, which can
be tested independently or in one of two hybrid configurations: Parallel without universal bidirectional
DC-DC converter such as described in Reference [119] (without ability to control the load distribution
between battery and ultracapacitor) and with two-way, universal bidirectional DC/DC converters
(possible control overload distribution).

The developed test stand features several safety precautions against temperature, current and
voltage exceedance—the stand automatically disconnects the power sources if any of the monitored
values exceeds the set limits, which prevents the test stand from damage, which is crucial during
long term operational research [29]. The measurement stand allows for email reporting over TCP/IP
connection in case of warning or alarm value states, as well as SMS notifications with use of internet
SMS gates.

The test stand was designed for long-term operational research measurements of electrochemical
batteries, ultracapacitors, and hybrid energy storage systems containing a battery and an ultracapacitor,
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subjected to pulse work cycles and industrial work cycles, such as HPPC. The stand allows for
conduction of wide variety of operational tests, including complete operational wear of the tested
battery or ultracapacitor (operational capacity during tests is close to 0 or about several percent of the
nominal capacity).

Figure 1a presents the diagram of the tests stand with parameters acquired during measurements
of the battery in a pulse work cycle for SOC ranging from 0.8 to 0.2. Figure 1b presents a photograph
of the test and control stand for a single controllable current load source.
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Figure 1. The test stand: (a) General scheme; (b) photograph [29].

The measurement cycle was set up so before each measurement, the batter was fully charged,
then discharged with one-hour current value to the set SOC value. After reaching the set SOC and SOC
≈ const, the battery was subjected to pulse current values (Figure 2a). In the next stage, the battery
was discharged by 10% SOC and the load cycle was repeated. The described cycle was repeated for
SOC values ranging from SOC = 0.8 to SOC = 0.2. Figure 2a presents the current characteristic in the
pulse cycle. Figure 2b–d show plots for: Battery body temperature (Figure 2b), the temperature at the
battery terminals (Figure 2c) in pulse cycle and an ambient temperature (Figure 2d).
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(c) temperature at the battery terminals in pulse cycle; (d) ambient temperature.

3. Battery Parameters Estimation Based on NARX Model and DP Physical Model

The following section contains the description of adopted models: NARX and DP used to estimate
voltage values in pulse cycles.
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3.1. Dual Polarization (DP) Model Description and Parameters Identification

The following subsection presents the adopted equivalent circuit of VRLA AGM battery model
with the internal resistance of the battery included and a model accounting for changes in the activation
and concentration polarizations in pulse work cycle, featuring a double RC loop. Figure 3 presents the
equivalent circuit of the battery of the adopted double polarization (DP) model with two RC loops.
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Figure 3. Substitute diagram of the double polarization (DP) model.

The diagram presented in Figure 3 contains the following components: Open circuit voltage
UOCV(SOC) (UOCV, measured in the work cycle during relaxation stage for the given SOC value when
no charging/discharging occurs or is determined during identification); R0(SOC)—internal resistance
(ohmic resistance); activation polarization resistance R1(SOC); R2(SOC)—density polarization
resistance. The diagram also features capacitances C1(SOC) and C2(SOC), which describe the
transitional states during supplying power to the battery or from the battery as well as the activation
and density polarizations. Currents Ib1 and Ib2 are the electric currents flowing through C1 and C2. U1

and U2 are the voltage drops occurring in the first and second loop.
Based on analysis of Figure 3, an equation describing the behavior of the DP model can be written:

.
U1 = −(R1C1)

−1U1 + C−1
1 Ib.

U2 = −(R2C2)
−1U2 + C−1

2 Ib
0 = −R−1

0 U0 + Ib
Ut = UOCV −U1 −U2 −U0

(1)

The battery’s SOC is the ratio of its effective capacity Qbat to nominal capacity Qn described as:

SOC(t) = SOC0 ±QbatQ−1
n = SOC0 ±Q−1

n

t∫
0

ηc(Ib) · Ib(t)dt (2)

where SOC0 is the initial state of charge for time t = t0, ηc is the columbic efficiency, Ib is the battery
charging (–)/discharging (+) current at time t.

The open circuit voltage can be expressed as follows:

UOCV = EMF(SOC) = EMFmin + ∆UtSOC = EMFmin + (EMFmax − EMFmin)SOC (3)

The EMFmin and EMFmax values in Equation (3) can be determined on the basis of experiments
from the following equation:

U0 = EMF± IbR0 ⇒ EMF = U0 ∓ IbR0 (4)

where R0 is the internal resistance of the battery.
Based on the experimental research for I = Ich = Idch = 1 C the value of R0 can be calculated

as follows:
R0 = (|Uch| − |Udch|)/2Ib (5)
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where Uch is the charging voltage and Udch is the discharging voltage.
Dependencies Equations (3)–(5) present simple, technical, rough methods for estimating battery

parameters. Their advantage is simplicity and rapid calculation but the drawback is low accuracy.
For VRLA batteries, the linear EMF(SOC) relationship can be roughly assumed, in the case of

lithium batteries, these characteristics will be non-linear [60,63]. In further analyses, only EMF(SOC)
characteristics derived from the experimental research were considered.

An alternative to the simple estimation of the dependencies (3)–(5) are other methods, e.g.,
an identification by using the DP and NARX models presented in Sections 3.1.1 and 3.2, respectively.

3.1.1. Parameters Identification of DP Model

In the set of differential equations representing the model structure consisting of two RC loops and
resistance R0 connected in series and electromotive force source, a total of six parameters are present
(R1, R2, C1, C2, R0, UOCV) that require identification. In the DP model project, the differential equations
are generated automatically by Matlab Simscape software (a fragment of the project is presented in
Figure 4) or they can be designated using traditional methods.
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Current values acquired during measurements is used as input for the double RC loop model
(DP). The voltage values at battery terminals are the result of the differential equations. Based on the
assumed values of the six model parameters (R1, R2, C1, C2, R0, UOCV) the calculated voltage will differ
from the voltage acquired during measurements.

The goal of identification is to find the set of the six parameters (R1, R2, C1, C2, R0, UOCV) so
that the calculated voltage values differ as little as possible. The measure of identification error is
the value of integral of squared error e2 = (y* − y(Θ, x, u))2 between the value of calculated function
y(Θ, x, u) and obtained from measurements y*. The identification process is conducted with use of
“nonlinear data-fitting” procedure, which minimizes the value of integral J, presented in dependency
(6), of the squared error e2 by iterative adaptation of ∆Θ value of parameters (R1, R2, C1, C2, R0, UOCV),
∆Θ = [∆R1, ∆R2, ∆C1, ∆C2, ∆R0, ∆UOCV] with use of ∇J gradient and hessian H.

J =
tend∫
t0

e2dt =
tend∫
t0

(y ∗ −y(θ, x, u))2dt (6)

Knowing that:

∂J
∂θ

= −
tend∫
t0

2e
∂y(θ, x, u)

∂θ
dt (7)
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Function J reaches minimum when the following condition fulfilled:

J = min⇔ J(θ + ∆θ)− J(θ)
∆θ

=
∂J
∂θ

∆θ +
1
2

∂2 J
∂θ2 ∆θ2 = 0⇒ ∆θ = −2

∂J
∂θ
∂2 J
∂θ2

= −2
∇J
H

(8)

To modify the values of parameters Θ = [R1, R2, C1, C2, R0, UOCV] the Levenberg–Marquardt error
back propagation method was used, which uses properly weighted approximations of gradient of the
minimized function∇J and its hessian H with use of Jacobian calculated at end of each iteration based
on the obtained change of error ∆e, related to vector of change of parameters ∆Θ.

Adaptation of parameter values ∆Θ is conducted iteratively until the stationarity of the integral value J
of root mean squared error e2 is obtained, meaning a minimum was reached. Stationarity is reached when
the change of the relative value |∆J/J| < ε. In the research the value assumed was ε = 1× 109.

The identification procedure also requires a correct assumption of initial parameters Θ0 = [R10,
R20, C10, C20, R0, UOCV0], as in gradient methods a risk of founding a suboptimal local solution
instead of the optimal solution exists. In the conducted research the assumed values were equal to
order of magnitude of typical values for the given battery type Θ0 = [R10 = 1 × 101, R20 = 1 × 10−2,
C10 = 1 × 101, C20 = 1.0, R0 = 1 × 10−2, UOCV0 = 6.0].

Furthermore, the identification procedure has a condition imposed, that all values of parameter
vectors have to be positive.

The identified parameters of the DP model for SOC values ranging from 0.2 to 0.8 was described
by a polynomial function in the following form:

RO(SOC) = AR0SOC6 + BR0SOC5 + CR0SOC4 + DR0SOC3 + ER0SOC2 + FR0SOC1 + GR0

R1(SOC) = AR1SOC1 + BR1

R2(SOC) = AR2SOC6 + BR2SOC5 + CR2SOC4 + DR2SOC3 + ER2SOC2 + FR2SOC1 + GR2

C1(SOC) = AC1SOC6 + BC1SOC5 + CC1SOC4 + DC1SOC3 + EC1SOC2 + FC1SOC1 + GC1
C2(SOC) = AC2SOC5 + BC2SOC4 + CC2SOC3 + DC2SOC2 + EC2SOC1 + FC2
UOCV(SOC) = AUOCV SOC4 + BUOCV SOC3 + CUOCV SOC2 + DUOCV SOC + EUOCV

(9)

A similar description of the dependency (9) of the general form of parameter polynomial in
substitute diagram of the battery with the use of iteration-approximation method was presented in
Reference [56]. The work [85] contains the description of DP model parameters identified with the
general form of the polynomial equation.

Table 1 contains the coefficient values of the polynomial of the identified parameters: R1(SOC),
R2(SOC), C1(SOC), C2(SOC), R0(SOC) and UOCV(SOC) presented in dependency (9).

Table 1. Values of polynomial coefficients from dependency (9) for DP model.

Coefficient Name R0 R1 R2 C1 C2 UOCV

A −42 −3.9 × 10−5 110 6 × 108 −8.9 × 104 14
B 140 3.1 × 105 −320 −1.4 × 109 2.3 × 105 −27
C −200 – 390 1 × 109 −2.2 × 105 17
D 140 – −250 3.6 × 108 1.1 × 105 −3.3
E −57 – 92 1.8 × 108 −2.3 × 104 5.8
F 11 – −18 –3.8 × 107 2 × 103 –
G −0.85 – 1.4 3.5 × 106 – –

Figure 5 presents graphs of the identified parameters, as follows: UOCV = f(SOC) (Figure 5a),
R0 = f(SOC) (Figure 5b), R1 = f(SOC) (Figure 5c), R2 = f(SOC) (Figure 5d), C1 = f(SOC) (Figure 5e) and
C2 = f(SOC) (Figure 5f).
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3.2. NARX Model Description

NARX model is the nonlinear extension of the linear AutoRegressive with eXogenous input (ARX)
model, which is commonly used in time-series modeling [120]. The NARX model is an input-output
recursive model where the current output is described with a nonlinear functional expansion of lagged
input and output signals, plus additive noise. Several classes of models have been used for NARX
identification, e.g., radial basis functions [121], multilayer perceptrons (MLP) [122], or polynomial
models [123].

In the case considered in this paper, there is given an electrochemical energy storage system
in the form of a VRLA AGM battery, that can be recharged in pulse cycles at the laboratory stand.
Measured are: The voltage at the terminals Uterm(t), current load Iload(t), ambient temperature Tambient(t),
the battery body temperature Tbody(t) and the temperature at battery terminals Tterm(t).

The voltage signal can be predicted using the delayed voltage signal, current load signal,
and measured temperature signals. As it was described in References [116,117], the addition of
measurements of the temperature of the battery terminals, and battery body to the identified model
can improve its prediction properties. Therefore, the defining equation of the nonlinear part of the
NARX model of the considered VRLA battery can be written as follows:

Uterm NN(k) = f (UtermNN(k− 1), . . . , UtermNN(k− nU), Ilaod(k), . . . ., Ilaod(k− nI)

Tambient(k), . . . , Tambient(k− na), Tbody(k), . . . , Tbody(k− nb),
Tterm(k), . . . , Tterm(k− nt))

(10)
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where: UtermNN(k) is the NARX estimated output (voltage) signal at step k, nu is the number of delayed
steps of output (poles) signal, nI, na, nb, nt are the number of delayed steps of input signals (current
load, ambient temperature, battery body temperature, temperature at battery terminals, respectively).

3.2.1. NARX-ANN Architecture

In the considered case, the voltage signal estimation of a VRLA AGM battery can be defined as follows:
Under given assumptions, the problem is to predict changes of the voltage at the terminals in pulse cycles
with NARX model using the recurrent artificial neural network, based on performed measurements.

In the research there were used Recurrent Artificial Neural Networks (R–ANN) where connections
between units form a directed cycle. Due to the internal feedback loops, such networks exhibit dynamic
temporal behavior, a property that can be utilized for the prediction of the voltage signal of the energy
storage system in pulse cycles. With properly chosen battery data, system parameters and operating
conditions, R–ANN model can be used in prediction to some extent a battery performance under
a variety of operating conditions.

Therefore, taking into consideration the NARX model Equation (10), the recurrent neural network
inputs were chosen as follows:

• UtermNN(k − 1), ..., UtermNN(k − nu): Previous values of outputs on which the actual output
depends. These inputs are generated in the recurrent loop with tapped delay lines.

• Iload(k), ..., Iload(k − nI): Previous and delayed values of the current load signal.
• Tambient(k), ..., Tambient(k − na): Previous, delayed values of the ambient temperature.
• Tbody(k), ..., Tbody(k − nb): Previous, delayed values of the battery body temperature.

• Tterm(k), ..., Tterm(k − nt): Previous, delayed temperature at battery terminals.

Figure 6 presents a recurrent architecture of the considered NARX artificial neural network
(NARX-ANN), with parameters of Equation (10) chosen as nu = 1, nI = 1, na = 1, nb = 1, nt = 1.

Presented NARX-ANN has one nonlinear hidden layer (Figure 6) with nonlinear neurons described
by a sigmoidal activation function:

y(1)(j)NL(k) = f (1)(j)NL(x(1)(j)NL, k) = tan sig(x(1)(j)NL, k), f (1)(j)NL
∈ [−1, 1] (11)

where y(1)(j)NL(k) is the output signal of the j-th neuron in the 1st layer, and x(1)(j)NL(k) is the input
signal to the j-th neuron in 1st layer, defined as

x(1)(n)NL(k) = b(1)(n) + w(1)
p+1,ny(2)L(k− 1) +

p

∑
i=1

w(1)
i,nxi(k) (12)

and n is the number of neurons in nonlinear layer, p is the number of neuron inputs in nonlinear
hidden layer, w(1)

i,j is the weight of the i-th input to j-th neuron in the 1st layer, xi is the i-th input to
the network (with delayed inputs), b(1)(n) is the threshold offset of the n-th neuron in the 1st layer. The
second term of Equation (12) describes the recurrent feedback loop with tapped delay line from output
to input, in case when nu = 1.

The output of the network is y(2)L(k) and it is also the output signal from 2nd layer, which is a
linear output layer (Figure 6), with one neuron described by a linear activation function as follows

y(2)L(k) = f (2)L(x(2)L, k) = x(2)L(k), f (2)L ∈ R (13)

where x(2)L(k) is the input signal to the neuron in 2nd layer, defined as

x(2)L(k) = b(2) +
n

∑
i=1

w(2)
i,1y(1)(i)NL(k) (14)
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and, w(2)
i,1 is the weight of the i-th input to neuron in 2nd layer, b(2) is the threshold offset of the

neuron in 2nd layer.
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Figure 6. The parallel (recurrent) structure Nonlinear AutoRegressive eXogenous Arificial Neural
Network (NARX-ANN) model with two neurons in hidden layer, and one neuron in the output layer
(D-Tapped Delay Line).

3.2.2. NARX-ANN Training

For the purpose of training and evaluating of NARX-ANN models, the error of VRLA battery
voltage estimation was calculated as follows

e(k) = yNN(k)− y(k) (15)

where: y(k) = Uterm(k), yNN(k) = UtermNN(k), k is the sample number.
During training, the performance function of NARX-ANN model was chosen as a Mean Squared

Error (MSE), calculated as:

ENN = MSE =
1
N

N

∑
k=1

[e(k)]2 (16)

where: N is the number of data samples.
During the evaluation, there was investigated the efficiency of the NARX-ANN models trained

using the Levenberg–Marquardt algorithm [124,125], that is based on the first three terms of Taylor’s
series approximation of the performance function. In the Levenberg–Marquardt method, the direction
of improvement and the step coefficient are not determined, as in the case of the steepest descent or
conjugate gradients algorithms. The Levenberg–Marquardt method is a special case of the variable
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metrics method [125] where changes in weights in the i-th training iteration are determined according
to the equation

W(i+1) = W(i) − H(W(i))
−1∇ENN(W(i)) (17)

where the weight vector is in the form of following vector W = [w1, . . . , wnW ]T , and nW is the number
of neural network weights.

The Levenberg–Marquardt algorithm, used for the selection of weights in the NARX-ANN during
training, required knowledge of the gradient values of the objective function relative to each of the
network weights. To determine it in a multi-layer network, the backpropagation algorithm [126] was
used, where the values of the elements of the gradient vector ∇ENN(W(i)) in (17) are calculated in the
direction from the output layer to the input layer of the NARX-ANN model.

As a result of using the backpropagation algorithm, the vector of the first derivatives of the
performance function with respect to weight changes is determined as follows:

∇ENN(W(i)) =
[

∂ENN(W(i))

∂w1
. . .

∂ENN(W(i))

∂wnW

]T
(18)

Moreover, the Levenberg–Marquardt algorithm requires the knowledge of Hessian matrix H(W(i))

calculated as

H(W(i)) =
∂2E(W)

∂W2 =


∂2E(W)
∂w1∂w1

· · · ∂2E(W)
∂w1∂wnW

...
...

∂2E(W)
∂wnW ∂w1

· · · ∂2E(W)
∂wnW ∂wnW

 (19)

In the Levenberg–Marquardt method, a positive definite Hessian matrix (19) is approximated
numerically [124,125].

The NARX-ANN models were trained iteratively in the batch mode, in which in every training
iteration, weights and biases were updated after all the network inputs and outputs from chosen
dataset were presented [124]. For each NARX-ANN, all weights and biases were initialized using the
Nguyen–Widrow initialization procedure [127]. The network architecture was based on the previous
research [30,110] for energy storage systems and preliminary tests, showing that 10 neurons in the
hidden layer, with input delays chosen as nu = 1, nI = na = nb = nt = 2 shall give satisfactory estimation
results. In each NARX-ANN model there was one nonlinear hidden layer, and one linear output layer
(see Figure 6).

As the number of training iterations can be very large, the conditions of stopping the training
were determined. Usually, the basic values taken into account are the assumed minimum value of
the NARX-ANN performance function and the assumed maximum number of training iterations.
The following training stop conditions were chosen: Epochs = 1500, or E ≤ 10−6.

Furthermore, the early stopping methodology was used, to train the NARX-ANN model in
a supervised way. The dataset for each SOC was divided into three subsets:

1. Training dataset: Subset used updating the NARX-ANN weights and biases during network training.
2. Validation dataset: Subset used to validate the NARX-ANN in every iteration during training.

The performance function value on the validation set was monitored during the training. The rise
of the error on the validation subset was an indication that the network begins to overfit the data.
When the performance function for validation error increased for a specified number of iterations,
the training stopped, and the weights and biases at the minimum of the validation error were
chosen for the network.

3. Testing dataset: Subset not used in the training, used to compare different models during evaluation.

There were between 12,000–14,000 data samples in each dataset (depending on SOC). The datasets
used for training were divided into three parts using interleaved indices [124], namely: Training
dataset (70% of the full dataset), testing dataset (15% of the full dataset), and validation dataset (15%
of the full dataset).
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The performance of the NARX-ANN model training, for all data subsets, and for different SOC is
given in Figure 7a–g. During training, the performance function decreased for each dataset, while early
stopping methodology allowed to create the model with best generalization properties. The average
time of the training did not exceed 10 min.
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In Figure 8a–g there are given linear regression plots for trained NARX-ANN models. Values of
relationship coefficient (R) are close to 1, that indicates that there is an exact linear relationship between
real values of voltage and estimated values with each NARX-ANN model. However, there were few
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samples in training data that visibly diverge from the linear approximation in the regression plot.
This indicates the possible outliers during voltage estimation, that are further described in Section 4.

For every trained model, and dataset there were calculated errors, presented in Figure 9a–g in the
form of histograms (with 50-bin grouping) for each subset. Every error distribution was tested using
the Pearson’s chi-squared test [128], which returns a test decision for the null hypothesis that the data
in the error vector comes from a normal distribution with a mean and a variance estimated from error
vector. The test proved, that the null hypothesis at the 5% significance level for all datasets and subsets
used for training, validation, and testing. All trained NARX models had a mean value close to zero,
with a very small variance that proves their good approximation and generalization properties.
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Figure 8. The linear regression plots of NARX-ANN model for training, validation and testing subsets,
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in pulse work cycle.
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4. Validation of Results Acquired from Measurements, DP and NARX Models

The following section contains the validation results for voltage values obtained during
measurements and from NARX and DP models, for SOC ranging from 0.2 to 0.8, respectively:
Figure 10a for SOC = 0.2, Figure 10b for SOC = 0.3, Figure 10c for SOC = 0.4, Figure 10d for SOC = 0.5,
Figure 10e for SOC = 0.6, Figure 10f for SOC = 0.7 and Figure 10g for SOC = 0.8. For SOC from 0.2 to
0.7 the voltage error obtained from NARX network was higher than for DP model. However, it did
not exceed 0.27 V (Figure 10a for SOC = 0.2) while for DP model the error did not exceed 0.045 V
(for SOC = 0.7). In the case of SOC = 0.8 (Figure 10g) the NARX model was more precise, the error
did not exceed 0.1 V. For the DP model the maximum error was 0.36 V. The DP model presents worse
results when the battery is charged to at least SOC = 0.8. During charging, nonlinear phenomena
occurred related to activation and concentration polarization of reagents on the electrodes. In order
to model the electrochemical processes in the range above SOC = 0.8 more precisely, additional RC
loops can be added [72], which would increase the description accuracy of nonlinear processes during
charging/discharging of the battery, especially in the pulse cycle. In Reference [89] it was concluded
that with the increase of RC loop the accuracy of the model increases, but the time needed to identify
the model parameters increases as well.

It can be seen (Figure 10) that the NARX-ANN model has good voltage generalization properties
throughout the considered SOC range. However, there are some higher errors visible in the moments of
sudden changes in the current load. This behavior can be connected with the small number of samples
covering the vicinity of this points, comparing to the amount of data in the periods where the transitions
were smooth. We can infer, that the NARX-ANN model generalizes better the periods with a higher amount
of data. This indicates the sensitivity of the NARX-ANN model to such sudden changes resulting in
large error range, that can be connected with the generalization properties of the neural networks [129].
In comparison, the presented DP model is more robust sudden changes of the current load.

The quality of the single NARX-ANN and DP model of the VRLA battery was evaluated using
Mean Square Error (MSE) performance function (16) and the goodness of fit between estimated data
and reference data calculated as Normalized Root Mean Square Error (NRMSE) [130]:

NRMSE(k) = 1− ‖e(k)‖
‖y(k)− y‖ (20)

where: y–mean value of the modeled signal. The value of NRSME varies between −∞ (bad fit) to 1
(perfect fit).
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Figure 10. Graphs of voltage at battery terminals. Comparison between NARX and DP models and
measurement results, with presented error values, respectively for: (a) SOC = 0.2; (b) SOC = 0.3;
(c) SOC = 0.4; (d) SOC = 0.5; (e) SOC = 0.6; (f) SOC = 0.7 and (g) SOC = 0.8 in pulse work cycle.
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Table 2 presents the values of MSE and NRMSE for SOC values ranging from 0.2 to 0.8. MSE
values are low and do not exceed 0.93× 10−3 (DP model for SOC = 0.8) and 1× 10−4 (NARX model for
SOC = 0.2). The NRSME value for NARX model in SOC range from 0.2 to 0.8 is above 0.93 (the lowest
for SOC = 0.5, NRSENARX = 0.9371), which indicates a well-identified model.

In the case of the DP model, the value of NRMSEDP is above 0.77 (with the lowest value
NRMSEDP = 0.7737 for SOC = 0.8), the model was identified correctly. The lowest value of NRMSEDP

for SOC = 0.8 is mainly a result of the battery temporarily exceeding the maximum voltage of 6.8 V
(the hyperbolic character of voltage increase at battery terminals).

Table 2. Quality indices for NARX and DP models of the Valve-Regulated Lead-Acid (VRLA) battery.

State of Charge (SOC)
Data Set Value

NARX Model DP Model

MSENARX NRMSENARX MSEDP NRMSEDP

0.2 9.6263 × 10−5 0.9453 0.2009 × 10−3 0.9210
0.3 4.9337 × 10−5 0.9546 0.2673 × 10−3 0.8986
0.4 3.3201 × 10−5 0.9427 0.0695 × 10−5 0.9192
0.5 2.9521 × 10−5 0.9371 0.0542 × 10−3 0.9147
0.6 2.4470 × 10−5 0.9376 0.1323 × 10−3 0.8549
0.7 2.1085 × 10−5 0.9407 0.0528 × 10−3 0.9062
0.8 4.2477 × 10−5 0.9489 0.9224 × 10−3 0.7737

5. Conclusions

The work presents model-aided research of VRLA AGM batteries in pulse work cycle. Two model
approaches were presented, based on two RC loop model (known as DP model) and type NARX
neural network model. Using the identified parameters, simulations were conducted and validated
against results of experimental measurement results.

In this paper, it was shown that the DP model gives good results of voltage estimation for
the considered SOC range. An advantage of the presented DP model is the possibility to estimate
unidentified parameter values for a given SOC interval (e.g., SOC = 0.65).

Considering the NARX-ANN model, it has good estimation abilities for the voltage prediction.
Results presented in Table 2 show that it has good repeatability, with small dispersion with changing
SOC. For different datasets, it had slightly better, stable performance comparing with the DP model.
However, there are a few drawbacks of such solution. First, it is a black-box model, with the structure
that does not reflect the physical properties of the VRLA battery, so its usability is limited to prediction,
rather than control. Secondly, it is sensitive to sudden changes in the current load, while the DP
model is more robust. The possible solution can be a proper design of the current load signal [131],
and research on the NARX-ANN generalization and sensitivity interconnection [129].

A well identified DP model can be used to simulate the operation of the battery during any work
cycle, particularly in conjunction with a BMS system, e.g., for estimating SOC, remaining travel range,
and SOH status [132]. The DP model presented in this work will be expanded in the future with the
following points considered:

• Self-discharge over time, which for batteries ranges from 5 to 30% per month [133] depending on
type of battery and storage conditions (it is planned to add R component to the equivalent battery
circuit (Figure 3) in parallel with UOCV).

• Changes in State of Health of the battery and its prediction with aid of operational research [29,134].
The authors of Reference [29] are currently working on expanding the functionality of the DP model.

• Increase in the accuracy of identified parameters with the use of models with additional RC loops
(three and four RC loop pairs), which will greatly increase accuracy particularly for SOC >0.8
and SOC <0.2. Another approach, instead of increasing the number of RC loop pairs and also
a compromise between the number of estimated parameters and the accuracy, is to use constant
phase elements (CPE) [135–138].
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• Kalman filter [57–60], which in quasi-only mode will allow to identify parameters that cannot be
measured directly, such as: UOCV, R0 etc.

• Fusion of presented DP and NARX-ANN models using tailored Extendend Kamlan Filtering [139].
Such solution shall allow combining the structural and robustness properties of the DP model
with the NARX-ANN model accuracy [140], and repeatability for different working conditions.
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Nomenclature

Acronyms
AGM Absorbent Glass Mat
BMS Battery management system
CPE Constant Phase Elements
D Tapped Delay Line
DP Dual polarization
HPPC Hybrid Pulse Power Characterization
MSE Mean Squared Error [–]
NARX Nonlinear AutoRegressive eXogenous
NRMSE Normalized Root Mean Square Error
OCV Open Circuit Voltage
R ANN–Recurrent Artificial Neural Network
SOA Safe Operating Area
SOC State of Charge
SOE State of Energy
SOH State of Health
VRLA Valve Regulated Lead Acid
Greek symbols, subscripts, superscripts and abbreviations
b(m)

(n) The threshold offset of the n-th neuron in layer m [–]
C1, C2 Capacitances [F]
e Error
EMF Electromotive force [V]
H Hessian
Iload Loading current from control unit [A]
Ich/Idch Charging/discharging current [A]
Ib1, Ib2 Currents flowing through C1 and C2 [A]
J Jacobian
k Sample number [–]
N The number of data samples [–]
n The number of neurons in nonlinear layer [–]
nI, na, nb, nt Number of delayed steps of inputs [–]
nu Number of delayed steps of output (poles) [–]
nW Number of neural network weights [–]
p The number of neuron inputs in nonlinear hidden layer [–]
R0 Ohmic resistance [Ω]
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R1 Activation polarization resistance [Ω]
R2 Density polarization resistance [Ω]
SOC0 The initial State of Charge for time t = t0 [–]
Qbat Effective capacity [Ah]
Qn Nominal capacity [Ah]
Tambient Ambient temperature [K]
Tbody Body temperature [K]
Tterm Temperature at terminals [K]
U1, U2 The voltage drops occurring in the first and second loop [V]
Uch The charging voltage [V]
Udch The discharging voltage [V]
UOCV Open Circuit Voltage [V]
UtermNN NARX model output at step k [V]
W = [w1, . . . , wnW ]T The weight vector [–]
w(m)

ij The weight of the i-th input to j-th neuron in layer m [–]
∇J Gradient
∇ENN(W(i)) The gradient vector
ηc The columbic efficiency [–]

References

1. Ismael, S.M.; Abdel Aleem, S.H.E.; Abdelaziz, A.Y.; Zobaa, A.F. State-of-the-art of hosting capacity in modern
power systems with distributed generation. Renew. Energy 2019, 130, 1002–1020. [CrossRef]

2. Fuentes-Cortés, L.F.; Flores-Tlacuahuac, A. Integration of distributed generation technologies on sustainable
buildings. Appl. Energy 2018, 224, 582–601. [CrossRef]

3. Wang, Y.; Huang, Y.; Wang, Y.; Zeng, M.; Li, F.; Wang, Y.; Zhang, Y. Energy management of smart micro-grid
with response loads and distributed generation considering demand response. J. Clean. Prod. 2018, 197,
1069–1083. [CrossRef]

4. Nguyen, S.; Peng, W.; Sokolowski, P.; Alahakoon, D.; Yu, X. Optimizing rooftop photovoltaic distributed
generation with battery storage for peer-to-peer energy trading. Appl. Energy 2018, 228, 2567–2580. [CrossRef]

5. Zhang, X.; Chen, H.; Xu, Y.; Li, W.; Huang, Y. Distributed generation with energy storage systems: A case
study. Appl. Energy 2017, 204, 1251–1263. [CrossRef]

6. Del Granado, P.C.; Pang, Z.; Wallace, S.W. Synergy of smart grids and hybrid distributed generation on the
value of energy storage. Appl. Energy 2016, 170, 476–488. [CrossRef]

7. Mills, G.; MacGill, I. Assessing Electric Vehicle storage, flexibility, and Distributed Energy Resource potential.
J. Energy Storage 2018, 17, 357–366. [CrossRef]

8. Szabłowski, Ł.; Milewski, J.; Badyda, K.; Kupecki, J. ANN-supported control strategy for a solid oxide fuel
cell working on demand for a public utility building. Int. J. Hydrogen Energy 2018, 43, 3555–3565. [CrossRef]

9. Milewski, J.; Szabłowski, Ł.; Kuta, J. Control strategy for an Internal Combustion engine fuelled by Natural
Gas operating in Distributed Generation. Energy Procedia 2012, 14, 1478–1483. [CrossRef]

10. Huang, Y.; Wang, H.; Khajepour, A.; Li, B.; Ji, J.; Zhao, K.; Hu, C. A review of power management strategies
and component sizing methods for hybrid vehicles. Renew. Sustain. Energy Rev. 2018, 96, 132–144. [CrossRef]

11. Hiermann, G.; Hartl, R.F.; Puchinger, J.; Vidal, T. Routing a mix of conventional, plug-in hybrid, and electric
vehicles. Eur. J. Oper. Res. 2019, 272, 235–248. [CrossRef]

12. Iwata, K.; Matsumoto, S. Use of hybrid vehicles in Japan: An analysis of used car market data. Transp. Res. Part D
2016, 46, 200–206. [CrossRef]

13. Chen, S.Y.; Wu, C.H.; Hung, Y.H.; Chung, C.T. Optimal strategies of energy management integrated with
transmission control for a hybrid electric vehicle using dynamic particle swarm optimization. Energy 2018,
160, 154–170. [CrossRef]

14. Fathabadi, H. Novel battery/photovoltaic hybrid power source for plug-in hybrid electric vehicles.
Sol. Energy 2018, 159, 243–250. [CrossRef]

15. Breetz, H.L.; Salon, D. Do electric vehicles need subsidies? Ownership costs for conventional, hybrid,
and electric vehicles in 14 U.S. cities. Energy Policy 2018, 120, 238–249. [CrossRef]

http://dx.doi.org/10.1016/j.renene.2018.07.008
http://dx.doi.org/10.1016/j.apenergy.2018.04.110
http://dx.doi.org/10.1016/j.jclepro.2018.06.271
http://dx.doi.org/10.1016/j.apenergy.2018.07.042
http://dx.doi.org/10.1016/j.apenergy.2017.05.063
http://dx.doi.org/10.1016/j.apenergy.2016.01.095
http://dx.doi.org/10.1016/j.est.2018.01.016
http://dx.doi.org/10.1016/j.ijhydene.2017.10.171
http://dx.doi.org/10.1016/j.egypro.2011.12.1120
http://dx.doi.org/10.1016/j.rser.2018.07.020
http://dx.doi.org/10.1016/j.ejor.2018.06.025
http://dx.doi.org/10.1016/j.trd.2016.03.010
http://dx.doi.org/10.1016/j.energy.2018.06.023
http://dx.doi.org/10.1016/j.solener.2017.10.071
http://dx.doi.org/10.1016/j.enpol.2018.05.038


Energies 2018, 11, 3160 23 of 28

16. Song, Z.; Zhang, X.; Li, J.; Hofmann, H.; Ouyang, M.; Du, J. Component sizing optimization of plug-in
hybrid electric vehicles with the hybrid energy storage system. Energy 2018, 144, 393–403. [CrossRef]

17. de Souza, L.L.P.; Lora, E.E.S.; Palacio, J.C.E.; Rocha, M.H.; Renó, M.L.G.; Venturini, O.J. Comparative
environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid
and electric vehicles for a sustainable transportation system in Brazil. J. Clean. Prod. 2018, 203, 444–468.
[CrossRef]

18. Chmielewski, A.; Szulim, P.; Gregorczyk, M.; Gumiński, R.; Mydłowski, T.; Mączak, J. Model of an electric
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50. Kopczyński, A.; Piórkowski, P.; Roszczyk, P. Parameters selection of extended-range electric vehicle powered
from supercapacitor pack based on laboratory and simulation tests. IOP Conf. Ser. Mater. Sci. Eng. 2018, 421,
022016. [CrossRef]

51. Zhu, W.H.; Tatarchuk, B.J. Characterization of asymmetric ultracapacitors as hybrid pulse power devices for
efficient energy storage and power delivery applications. Appl. Energy 2016, 169, 460–468. [CrossRef]

52. Castano-Solis, S.; Serrano-Jimenez, D.; Fraile-Ardanuy, J.; Sanz-Feito, J. Hybrid characterization procedure of
Li-ion battery packs for wide frequency range dynamics applications. Electr. Power Syst. Res. 2019, 166, 9–17.
[CrossRef]

53. Panchal, S.; Mcgrory, J.; Kong, J.; Fraser, R.; Fowler, M.; Dincer, I.; Agelin-Chaab, M. Cycling degradation
testing and analysis of a LiFePO4 battery at actual conditions. Int. J. Energy Res. 2017, 41, 2565–2575.
[CrossRef]

54. Panchal, S.; Mathew, M.; Fraser, R.; Fowler, M. Electrochemical thermal modeling and experimental measurements
of 18650 cylindrical lithium-ion battery during discharge cycle for an EV. Appl. Therm. Eng. 2018, 135, 123–132.
[CrossRef]
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