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Abstract: This paper presents a power compensation strategy to suppress the double frequency
power ripples of Voltage source converter high-voltage direct current (VSC-HVDC) systems under
unbalanced grid voltage conditions. The mathematical control equations of the double frequency
ripple power of VSC under unbalanced operating conditions are firstly derived and established,
where the dynamic behaviors of the double frequency ripples in active and reactive power
are regarded as being driven by current-relevant components and voltage-relevant components,
respectively. Based on the equations, a power compensation control strategy of VSC-HVDC is proposed
via the passivity-based control with disturbance observer to suppress both the current-relevant and
voltage-relevant components in the power ripples. With this control strategy, the double frequency
ripples in active and reactive power are suppressed simultaneously and system performance is
significantly enhanced with the implementation of the disturbance observer in the passivity-based
control. Theoretical stability analysis and simulation cases show the effectiveness and superiority of
the proposed strategy.

Keywords: VSC-HVDC; unbalanced grid conditions; double frequency ripples; power compensation;
passive-based control; disturbance observer

1. Introduction

Recently, the voltage source converter based high voltage direct current (VSC-HVDC) is widely
used in dc transmission, renewable energy generation, island network supply and other fields [1–4].
In general control scheme of VSC-HVDC, the three-phase AC grid voltage is usually assumed to
be balanced. However, once the unbalanced grid conditions occur (e.g., due to AC grid voltage
unbalance and unsymmetrical faults), the converter will operate in abnormal condition and the
negative sequence components in voltage and current will do great harm to system operation. If no
compensation measures are adopted, the double frequency ripples will appear in the output power of
VSC, which affects output quality of the converter [5–7] and may even make the converter malfunction.
Therefore, how to suppress the double frequency ripples under unbalanced grid conditions becomes
a hot topic in the research of VSC-HVDC control.
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To suppress the double frequency power ripples, the additional active power filter is utilized
in Reference [8–10] to eliminate the asymmetric components. The active power filter has ideal
performance in regulating asymmetrical components but the cost input is high. Hence improving the
control strategy of the converter is the mainstream research on the suppression of double frequency
power ripples. The VSC control strategies in ideal balance grid have been relatively mature and the most
common schemes are the voltage oriented control (VOC). The existing unbalance control research of
VSC under the framework of VOC is mainly realized by obtaining the control reference value according
to some kind of control objective (e.g., elimination of active power ripple, reactive power ripple or
negative-sequence current component) and tracking this reference value with suitable method [11,12].
In Reference [13], a novel method of separating the instantaneous positive and negative sequence
components is proposed and well applied for different control objectives of VSC under unbalanced
grid voltage. In Reference [14], an optimal active and reactive power control is proposed to achieve
multi-objectives for VSC-HVDC under unbalanced grid voltage conditions. A flexible control strategy
is proposed in Reference [15] for oscillation control of the active and reactive power by introducing
a control parameter k. In Reference [16], an improved model predictive current control for VSC is
presented when unbalanced grid voltages occur to reduce power fluctuations. In Reference [17], a direct
power control for grid-connected VSC under unbalanced network is proposed by applying a virtual
phase angle for coordinated transformations. The optimal power control strategies for VSC-HVDC
systems under unbalanced grid voltage conditions are proposed in Reference [18,19], which enable the
system to provide flexible power control. In Reference [20], a power control of VSC-HVDC converters is
presented to limit the influence of AC unbalanced faults on multi-terminal DC grids. In Reference [21],
a novel unified dynamic model and control strategy are presented to improve the power quality for
VSC-HVDC under unbalanced grid conditions. These control strategies are verified to be effective but
the fluctuations of active and reactive power cannot be suppressed at the same time.

For past few years, the passivity-based control has attracted more and more attentions because
of the flexible adjustment and simplified control structure and has been applied in power converter
control [22,23]. The passivity-based control of the doubly fed induction generator under unbalanced
grid voltage is proposed in Reference [24]. However, the passivity-based control is applied to replace the
traditional PI (Proportional-Integral) control for system response improvement instead of eliminating
the double frequency ripple power. Therefore, the double frequency ripples in active and reactive
power still cannot be suppressed simultaneously. On the other hand, although the passivity-based
control gives the controller design by configuring system energy and injecting damping to achieve the
satisfactory transient response, it is sensitive to unmodeled dynamics and model errors. To handle
the issue, a perturbation observer-based passivity-based control is proposed in Reference [25] but
the implementation of high-order observer brings in serious noise and complicates system structure,
which means the enhanced passivity-based control also needs further study.

In this paper, a power compensation strategy to suppress the double frequency ripples in active
and reactive power of VSC-HVDC systems under unbalanced grid voltage conditions is proposed.
The main work of this paper can be drawn as:

(1) The mathematical control equations of the double frequency ripple power of VSC under
unbalanced grid conditions are derived and established. In the equations, the dynamic behaviors of the
double frequency ripples in active and reactive power are regarded as being driven by current-relevant
components and voltage-relevant components, which can be controlled respectively for double
frequency ripple suppression.

(2) Based on the established control equations, a power compensation control strategy of
VSC-HVDC is proposed via the passivity-based control with disturbance observer. The passivity-based
control is responsible for the tracking control of current-relevant components with the expected
value, while the disturbance observer focuses on the compensation of the voltage-relevant
components. With this control strategy, the double frequency ripples in active and reactive power
of VSC-HVDC under unbalanced grid conditions are suppressed simultaneously and system
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performance is significantly enhanced with the implementation of the disturbance observer in the
passivity-based control.

Theoretical stability analysis and simulations of a two-terminal VSC-HVDC system on
PSCAD/EMTDC verify the validity and superiority of the proposed control strategy.

2. Analysis and Control Equations Establishment of Double Frequency Ripple power of VSC

The VSC structure adopted in this paper is the two-level topology and shown in Figure 1.
The representations of the variables in Figure 1 are shown in the Nomenclature Section. Although the
modular multilevel converter (MMC) is recognized as the promising converter technology applied in
high-voltage and high-power transmission technology, the system-level control of MMC is similar to
that in two-level converter since they have same vector control model in dq coordinate system [26],
which mean the response characteristics of the two converters under unbalanced grid conditions
are also same. Therefore, the two-level converter is used as the study object in this paper for
explicit explanations.
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Figure 1. The VSC topological structure. 

Under balanced grid voltage condition, the mathematical model of VSC in synchronous rotating 
reference frame is [11] 
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When asymmetric fault occurs in the grid, the dissymmetry in system electrical quantities is
mainly caused by negative sequence components, since the zero sequence components are isolated
by the Y/∆ transformer in the grid side. Considering that in the synchronous rotating reference
frame, the positive sequence component is equal to the dc component, while the negative sequence
component is equal to the double frequency component, the double frequency ripple power in the
forward direction dq rotating frame can be written as (2) according to [17] (d axis is chosen to be
coincided with grid voltage vector)

P2 =
3
2
(
id0Ed2 + iq0Eq2 + Ed0id2

)
Q2 =

3
2
(
id0Eq2 − iq0Ed2 − Ed0iq2

) , (2)

where the right subscript “0” stands for dc component and “2” stands for double frequency component.
It is seen from (2) that the factors that cause the double frequency ripples in the output power include
the double frequency components of grid voltage (Ed2 and Eq2) and the double frequency components
of VSC current (id2 and iq2). Therefore, the double frequency ripple power can be regard as the results
driven by the current-relevant components and voltage-relevant components which can be described as
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{
P2 = P2i + P2u
Q2 = Q2i + Q2u

, (3)

where P2i, P2u, Q2i and Q2u are defined as
P2i =

3
2

Ed0id2, P2u =
3
2
(
id0Ed2 + iq0Eq2

)
Q2i = −

3
2

Ed0iq2, Q2u =
3
2
(
id0Eq2 − iq0Ed2

) , (4)

To control double frequency ripple power, take the derivative of (4). Since the derivative of dc
component is zero, it results in

dP2

dt
=

dP2i + dP2u

dt
=

3
2

Ed0
did2
dt

+
dP2u

dt
dQ2

dt
=

dQ2i + dQ2u

dt
= −3

2
Ed0

diq2

dt
+

dQ2u

dt

, (5)

Since the independent control equation of VSC double frequency voltage can be derived as[
Ud2
Uq2

]
=

[
Ed2
Eq2

]
− R

[
id2
iq2

]
− L

d
dt

[
id2
iq2

]
+ ωL

[
iq2

−id2

]
, (6)

By substituting (6) into (5), it results in
L

dP2

dt
=

3
2

Ed0
(
Ed2 − Rid2 −Ud2 + ωLiq2

)
+ L

dP2u

dt
L

dQ2

dt
= −3

2
Ed0
(
Eq2 − Riq2 −Uq2 −ωLid2

)
+ L

dQ2u

dt

, (7)

Furtherly, the differential equations which take double frequency power P2 and Q2 as state
variables can be obtained as

L
dP2

dt
=

3
2

Ed0Ed2 − RP2 − uP −ωLQ2 +

(
L

dP2u

dt
+ RP2u + ωLQ2u

)
L

dQ2

dt
= −3

2
Ed0Eq2 − RQ2 + uQ + ωLP2 +

(
L

dQ2u

dt
+ RQ2u −ωLP2u

) , (8)

where uP and uQ satisfy uP = 1.5Ed0Ud2, uQ = 1.5Ed0Uq2. Let wPu and wQu be defined as
wPu =

3
2

Ed0Ed2 + L
dP2u

dt
+ RP2u + ωLQ2u

wQu = −3
2

Ed0Eq2 + L
dQ2u

dt
+ RQ2u −ωLP2u

, (9)

In (9), the voltage-relevant components that cause the double frequency power ripples are
included in wPu and wQu, which can be regarded as the “double frequency voltage disturbance” of the
differential Equations (8). Meanwhile, to furtherly improve the robustness of control system, the error
terms εP and εQ are introduced in the disturbances wPu and wQu to describe the unmodeled dynamics
including modelling errors and unknown time-varying external disturbances. Then it yields that

wPu =
3
2

Ed0Ed2 + L
dP2u

dt
+ RP2u + ωLQ2u + εP

wQu = −3
2

Ed0Eq2 + L
dQ2u

dt
+ RQ2u −ωLP2u + εQ

, (10)
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Finally, the control equations of the double frequency ripple power can be depicted by
L

dP2

dt
= −RP2 − uP −ωLQ2 + wPu

L
dQ2

dt
= −RQ2 + uQ + ωLP2 + wQu

, (11)

In (11), wPu and wQu reflect the influence of voltage-relevant components and unmodeled
dynamics on the double frequency ripple power. Apart from wPu and wQu, the control Equation (11)
reflect the double frequency ripple behaviors caused by current-relevant components. Hence through
proper double frequency power compensation control based on (11), the current-relevant and
voltage-relevant components that cause double frequency ripples can be suppressed simultaneously.

3. Power Compensation Strategy for VSC-HVDC via Passivity-Based Control with
Disturbance Observer

In normal condition, the common vector double loop control is adopted in VSC for desired
control aims. However, under unbalanced grid voltage, a power compensation controller is needed
to suppress the double frequency power ripples with no impact on the normal operation of VSC.
The compensation strategy should be effective in controlling the double frequency components of the
unbalanced voltage and current to compensate the output voltage of inner loop PI control. In this paper,
the passivity-based control with disturbance observer are proposed to form the power compensation
control, which serves as the auxiliary adjustment of VSC under unbalanced grid condition. The design
of passivity-based control aims at minimizing the double frequency ripple power P2 and Q2 with the
double frequency voltage disturbance wPu and wQu observed and compensated in the control scheme.

3.1. PCHD Model of the VSC-HVDC Systems and the Passivity-Based Control Strategy

Consider the PCHD (Port-Controlled Hamiltonian with Dissipation) model [23] of control
Equation (11) described as 

.
x = [J(x)−<(x)]∂H(x)

∂x
+ G(x)u

y = GT(x)
∂H(x)

∂x

, (12)

where x(t), u(t) and y(t) denote the system state, the control input and the system output, respectively.
It is noted that with the positive defined Hamiltonian function H(x) to be system storage function, the
system (12) is passive from the input u to output y. The system state and input variables are shown as

x = [LP2 LQ2]
T = D[P2 Q2]

T , u = [u2 u2]
T

D =

[
L 0
0 L

]
, G =

[
−1 0
0 1

]
, (13)

The disturbance wPu and wQu is involved in the control input, which means u1 = uP − wPu and
u2 = uQ + wQu. Then the Hamiltonian function H(x) are obtained as

H =
1
2

xTD−1x =
1
2
(

1
L

x2
1 +

1
L

x2
2), (14)

The interconnection matrix and damping matrix shown in (15) satisfy J = −JT and < = <T ≥ 0

J =

[
0 −ωL

ωL 0

]
, < =

[
R 0
0 R

]
, (15)
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The control objective of the passivity-based control based on PCHD model is to seek a control input
u to ensure that the closed-loop system (12) is asymptotically stable within the desired equilibrium
point x∗

x∗ =
[

x∗1 x∗2
]T

=
[

LP∗2 LQ∗2
]T

. (16)

To achieve the control objective that system (12) can be asymptotically stable, a closed-loop desired
Hamiltonian function Hd(x) with the feedback control u = β(x) should be considered so that system
energy is minimum in the equilibrium point and that the system can be described by the equations.

.
x = [Jd(x)−<d(x)]

∂Hd(x)
∂x

, (17)

where Jd and <d satisfy 
Jd(x) = J(x) + Ja(x) = −JT

d (x)
<d(x) = <(x) +<a(x) = <T

d (x)
Hd(x) = H(x) + Ha(x)

, (18)

Designers should have high freedom in selecting the matrix Jd, <d and Hd to satisfy the desired
objective. For general speaking, it is defined that

Ja = 0

<a =

[
r1 0
0 r2

]
, (19)

The closed-loop desired Hamiltonian function Hd(x) is taken as

Hd(x) =
1
2
(x− x∗)TD−1(x− x∗), (20)

Then it can be obtained in (21) by substituting (18), (19) and (20) into (12)

.
x = [(Jd − Ja)− (<d −<a)]

(
∂Hd(x)

∂x
− ∂Ha(x)

∂x

)
+ Gu

= (Jd −<d)
∂Hd(x)

∂x
− (Ja −<a)

∂H(x)
∂x

− (Jd −<d)
∂Ha(x)

∂x
+ Gu

(21)

To ensure that (21) is equivalent to system Equation (17), the following relationship is forced to
be satisfied

(Jd −<d)
∂Ha(x)

∂x
= −(Ja −<a)

∂H(x)
∂x

+ Gu, (22)

Hence the feedback control is depicted by

u = β(x) = G−1

[
RP∗2 + ωLQ∗2 + r1(P∗2 − P2)

RQ∗2 −ωLP∗2 + r2(Q∗2 −Q2)

]
, (23)

Furtherly it can be obtained that{
uP = −RP∗2 −ωLQ∗2 − r1(P∗2 − P2) + wPu
uQ = RQ∗2 −ωLP∗2 + r2(Q∗2 −Q2)− wQu

, (24)

With the control law in (23), it can be proved that
∂Hd(x)

∂x
= D−1(x− x∗)

∂2Hd(x)
∂x2 = D−1

, (25)
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When x = x∗, it has ∂Hd/∂x = 0 and ∂2Hd/∂x2 > 0, which proves that Hd(x) takes the minimal
value at x∗. Therefore, the minimum system energy is achieved and the closed-loop system tends to be
asymptotically stable within the desired equilibrium point [23].

3.2. Robust Passivity-Based Control Strategy via Disturbance Observer

In the passivity-based control law (24), it is seen that the disturbance value wPu and wQu must be
available to realize the asymptotical stability of the closed-loop system. From the definition of wPu
and wQu in (10), if the unmodeled dynamics and errors (εP and εQ) are not considered, the terms
wPu and wQu can be calculated through (9). Nevertheless, to improve the robustness of controller
regarding to unmodeled dynamics and errors and to avoid complicated calculation of (9), terms wPu
and wQu are estimated online via the double-disturbance observer (DDO) to eliminate and compensate
the disturbance.

It is known that the disturbance wPu and wQu are time-varying hence they can be viewed as the
polynomials with respect to time t according to Taylor’s formula{

wPu(t) = p10 + p11t + p12t2 + · · ·
wQu(t) = p20 + p21t + p22t2 + · · · , (26)

where pij(i, j = 0, 1, 2, . . . ) is the constant coefficient of the polynomial. As it can be seen, the dynamic
behavior of the time-varying disturbance is approximated as a high-order polynomial. Nevertheless,
considering that the noise becomes more serious and the structure becomes more complicated in
higher order observer, a first-order observer is adopted for the disturbance observation [27]. Then the
standard form of the state equation and the output equation of (11) are represented as follows{ .

χ(t) = f(χ) + g1(χ)uPQ(t) + g2(χ)w(t)
y(t) = χ(t)

, (27)

where 

χ =
[

χ1 χ2

]T
=
[

P2 Q2

]T

uPQ =
[

uP uQ

]T
, w =

[
wPu wQu

]T

f(χ) =

[
f1(χ)

f2(χ)

]
=

[
−Rχ1/L−ωχ2

ωχ1 − Rχ2/L

]

g1 =

[
−1/L 0

0 1/L

]
, g2 =

[
1/L 0

0 1/L

] , (28)

A double-disturbance observer (DDO), which is the extension form of the observer in
Reference [28], is introduced here to estimate the disturbance in (28){

ŵ = k + µ(χ)
dk
dt = −(l(χ)g2(χ))k− l(χ)

[
g2(χ)µ(χ) + f(χ) + g1(χ)uPQ

] , (29)

where µ(χ) and l(χ) are given as
µ(χ) =

[
µ1 µ2

]T
= l(χ)·χ

l(χ) =

[
l1 0
0 l2

]
, (30)
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If the observation error is defined as{
ewp = wPu − ŵPu
ewQ = wQu − ŵQu

, (31)

Then the dynamic equation of the observation error is depicted by{ .
ewp + l1ewp/L = 0
.
ewQ + l2ewQ/L = 0

, (32)

To ensure that the above disturbance equation is globally asymptotically stable, the observer gain
should be chosen as lj > 0(j = 1, 2), which means that the observation value ŵ can converge to the
actual value exponentially. Furtherly the relationship of the estimated value and actual value of the
disturbances are 

ŵPu(s) =
1

1 + T1s
·wPu(s)

ŵQu(s) =
1

1 + T2s
·wQu(s)

, (33)

where T1 = l1/L and T2 = l2/L; s is the differential operator. In order to realize the estimation at
a certain speed and accuracy, the observer gains should be large to make the dynamic response of the
observer faster than that of the control system. But the system may subject to saturation or noise during
implementation if l1 and l2 are too large. Therefore, the observer gains need to be chosen properly to
realize this balance.

In order to eliminate and compensate the disturbance, a compensation control G f d is designed
and added into the closed loop structure base on the estimated disturbance. The compensation control
G f d satisfies

G f dj(s) = 1 + sTj(j = 1, 2), (34)

Along with the disturbance compensation value, the power compensation control is{
uP = −RP∗2 −ωLQ∗2 − r1(P∗2 − P2) + ŵPu·G f d1
uQ = RQ∗2 −ωLP∗2 + r2(Q∗2 −Q2)− ŵQu·G f d2

, (35)

The overall block diagram of the proposed passivity-based control with DDO is shown in Figure 2.
To apply the proposed control scheme, electrical measurements are acquired for the dq transformation
and calculation of the double frequency power P2 and Q2. Then the proposed passivity-based power
compensation control via the disturbance observer can be realized according to the above mathematical
derivation. The obtained unbalanced control signals Ud2 and Uq2 together with the modulation voltage
signals from the common vector double loop control form the overall control scheme for VSC-HVDC
under unbalanced grid conditions and finally, the voltage command for VSC converter can be available.
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passivity-based power compensation control via the disturbance observer can be realized according 
to the above mathematical derivation. The obtained unbalanced control signals 2dU  and 2qU  
together with the modulation voltage signals from the common vector double loop control form the 
overall control scheme for VSC-HVDC under unbalanced grid conditions and finally, the voltage 
command for VSC converter can be available.  
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3.3. Stability Analysis of the Proposed Power Compensation Strategy via Passivity-Based Control with
Disturbance Observer

The stability analysis of the proposed power compensation strategy via passivity-based control
with disturbance observer is conducted in this part. From (29) and (30), the estimated disturbance
value can be depicted as

ŵPu(s) =
l1(R + Ls)

l1 + Ls
P2(s) +

l1ωL
l1 + Ls

Q2(s)−
l1

l1 + Ls
uP(s)

ŵQu(s) =
−l2ωL
l2 + Ls

P2(s) +
l2(R + Ls)

l2 + Ls
Q2(s)−

l2
l2 + Ls

uQ(s)
, (36)

It can be seen in (36) that the active and reactive disturbance components are associated with
both the double frequency active and reactive power, which means (36) is the MIMO (Multiple Input
Multiple Output) system equation. By substituting (36) into (35), it can be obtained as

(
1−

l1G f d1

l1 + Ls

)
uP(s) = −(R + r1)P∗2 (s)−ωLQ∗2(s) +

[
r1 + G f d1

l1(R + Ls)
l1 + Ls

]
P2(s) + G f d1

l1ωL
l1 + Ls

Q2(s)(
1−

l2G f d2

l2 + Ls

)
uQ(s) = −ωLP∗2 (s) + (R + r2)Q∗2(s) + G f d2

l2ωL
l2 + Ls

P2(s)−
[

r2 + G f d2
l2(R + Ls)

l2 + Ls

]
Q2(s)

. (37)

Furtherly, by substituting (37) into system Equation (11) and by replacing the state variables with
the small disturbance variables, it can be depicted by
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[
∆P2

∆Q2

]
= GM·

[
∆wPu
∆wQu

]
, (38)

where4 is defined as the small signal disturbance of each variable and GM is derived as

GM =

[
m11 m12

m21 m22

]

m11 =
(R + r2 + Ls)

(
l1 + Ls− G f d1·l1

)
(l1 + Ls)[(R + r1 + Ls)(R + r2 + Ls) + ω2L2]

m12 =
−ωL

(
l2 + Ls− G f d2·l2

)
(l2 + Ls)[(R + r1 + Ls)(R + r2 + Ls) + ω2L2]

m21 =
ωL
(

l1 + Ls− G f d1·l1
)

(l1 + Ls)[(R + r1 + Ls)(R + r2 + Ls) + ω2L2]

m22 =
(R + r1 + Ls)

(
l2 + Ls− G f d2·l2

)
(l2 + Ls)[(R + r1 + Ls)(R + r2 + Ls) + ω2L2]

, (39)

The zero-pole theory of the MIMO system [29] points out that, for a system with transfer function
matrix GM(s), the pole polynomial ϕ(s) corresponding to a minimal realization is the least common
denominator of all non-identically-zero minors of all orders of GM(s) and the zero polynomial z(s)
corresponding to a minimal realization is the greatest common divisor of all the numerators of all
order-r minors of GM(s), where r is the normal rank of GM(s), provided that these minors are adjusted
in such a way as to have the pole polynomial ϕ(s) as their denominators. According to this theory,
the zero and pole polynomials of GM(s) in (39) are{

z(s) =
(

l1 + Ls− G f d1·l1
)(

l2 + Ls− G f d2·l2
)[

(R + r1 + Ls)(R + r2 + Ls) + ω2L2]
ϕ(s) = (l1 + Ls)(l2 + Ls)

[
(R + r1 + Ls)(R + r2 + Ls) + ω2L2]2 , (40)

Then the zero-pole map of the closed-loop system can be obtained and the system stability can be
determined according to the root locus curve of the predominant pole.

When the basic parameter values in (40) are selected as stated in Section 4 for system control,
the zero-pole maps of GM(s) are plotted in Figure 3. It is known from (40) that there are four poles of
GM(s), among which two are determined by r1 and r2 (namely Pr) and two are determined by l1 and l2
(namely Pl). As seen in Figure 3, the poles of the closed-loop transfer function are all located in the left
half of the imaginary axis and ensure a stable system. From Figure 3a,b different values of r1 and r2

have an effect on the pole positions of Pr and system dynamics as a result. During the increasing of r1

and r2, poles Pr moves away from the imaginary axis and may be located to the two sides of real axis.
Hence the dynamic response gets faster and oscillation may occur. When r1 and r2 get too much larger,
the poles Pr are too much away from the imaginary axis and the predominant effect is attenuated.
From Figure 3c,d it is seen that the observer gains l1 and l2 of the DDO also have impacts on system
dynamic response. When l1 and l2 are increasing, poles Pl are located in the real axis and moves away
from the imaginary axis, which means system dynamic response gets faster. The predominant poles of
GM(s) are determined by the poles distribution of Pr and Pl , which indicates that proper parameters
should be chosen for superior system dynamic performance.
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4. Simulation Results

To verify the validity of the proposed control strategy, the dc transmission simulation model with
a two-terminal VSC-based converter shown in Figure 4 is established in PSCAD/EMTDC. The rated
VSC line voltage and DC bus voltage are 230 kV and 330 kV, respectively. The passivity parameters
r1 and r2 are set as 50 and 30, while the observer gain l1 and l2 are set as 150 and 200. To reflect the
superiority of the proposed control, the comparison cases are set in the simulations. However, since
most existing control strategies are ineffectual in suppressing the active and reactive power ripples
at the same time, we adopt a resonance controller with properly adjusted parameters [13] as the
conventional compensation control for comparison. This resonance control is also implemented based
on the double frequency ripple power control Equation (8) but superior system response cannot be
achieved compared with the proposed control strategy according to the simulation results.Energies 2018, 11, x FOR PEER REVIEW  12 of 20 
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4.1. Case 1

In this case, the suppression performance of the double frequency ripples with different control
strategies is tested. Before 2.5 s, the system operates under normal grid condition. At time 2.5 s, the B
phase and C phase voltage of source AC2 have a drop of 4.23 kV (50%) shown in Figure 5. As for the
control system, it remains unchanged with the common vector double loop control during 2.5 s to 3.5 s.
After 3.5 s, the proposed power compensation strategy and the conventional resonance compensation
strategy are added as the auxiliary controllers respectively for the suppression of the double frequency
ripples. The simulation results are shown in Figures 6–8.
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Figure 8. Simulation results with only passivity-based power compensation strategy. (a) Simulation
results of active and reactive power. (b) Simulation results of double frequency components of active
and reactive power.

It is seen from the simulation results that under unbalanced grid conditions with no auxiliary
power compensation strategy (2.5–3.5 s), the double frequency ripples with large amplitudes appear
in the active and reactive power. By comparing Figures 6 and 7, it is known that both the proposed
passivity-based power compensation strategy (with the disturbance observer) and the conventional
resonance compensation strategy can suppress the double frequency ripples in active and reactive
power simultaneously, which verify the effectiveness of the established double frequency ripple
power control Equation (8). Nevertheless, the steady-state suppression performance of the proposed
strategy is better than conventional strategy through the partial enlarged figures in Figures 6 and 7.
More significantly, the dynamic response at 3.5 s of the proposed compensation strategy is much better
than the conventional resonance compensation strategy. Figure 6 shows that the active and reactive
power reach to stable state with much large overshoot and longer transient time under the conventional
strategy. Therefore, the effectiveness of the proposed passivity-based control with disturbance observer
in suppressing the double frequency power ripples are verified with superior dynamic response.

To furtherly show the superior performance of the proposed passivity-based power compensation
strategy with disturbance observer, the simulations with only passivity-based control is shown in
Figure 8. In this scheme, the double-frequency voltage disturbances wPu and wQu are calculated
through (9) instead of the observer. It can be seen from Figure 8 that the dynamic response and
the suppression performance both become worse compared with that in Figure 7. The observed
and calculated values of the double-frequency voltage disturbance wPu and wQu shown in Figure 9
indicate that there exists difference between the observed and calculated values caused by modelling
errors and external impacts, which cause the performance degradation of the passivity-based control
with calculated values of wPu and wQu. It can be concluded that the response performance of the
passivity-based power compensation strategy is significantly improved with the implementation of
disturbance observer.
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4.2. Case 2

To verify the control effects of the proposed strategy with different control parameters,
the simulation results of the double frequency power ripples (take reactive Q2 as an example) under
the proposed passivity-based power compensation strategy via disturbance observer with different
parameters are shown in Figures 10 and 11.Energies 2018, 11, x FOR PEER REVIEW  15 of 20 
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Figure 11. Simulation results of double frequency components of reactive power with different
observer gain.

Figure 10 shows the simulation results of the double frequency ripples in reactive power with
different passivity parameter r2. It indicates that during the increasing of r2, power oscillation may
occur and the control effect is attenuated (marked in red in Figure 10) and this depends on the
pole positions caused by specific value of r2 which also confirms the previous theoretical analysis.
From Figure 11, it is seen that different observer gains have significant impacts on system performance
and control effects will be weakened if the observer gain is too small. Therefore, with properly
chosen passivity parameters and observer gains, expected suppression performance and dynamic
response can be obtained under the proposed passivity-based power compensation strategy with
disturbance observer.
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4.3. Case 3

In this case, the situation of single-phase grounding short-circuit fault is tested. Before 3 s,
the system operates under normal condition. At time 3 s, the A phase grounding fault with the ground
resistance Rg = 0.0005 Ω in AC2. The simulation results with no auxiliary control, the conventional
resonance compensation strategy and the proposed passivity-based compensation strategy via
disturbance observer are shown in Figures 12–14 respectively.
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It is seen that under single-phase grounding short-circuit fault, large amount of double frequency
ripples exists in the active and reactive with no auxiliary compensation strategy adopted, which
also causes dc voltage fluctuation in double frequency. By comparing the simulation results, it can
be found that double frequency ripples in active and reactive power are reduced to a large degree
with the proposed compensation strategy and the conventional resonance compensation strategy
and the suppression performance with the proposed strategy is relatively better. Additionally, the
transient process at time 3 s under the proposed strategy is much improved with no overshoot and
fast transient time. The response of dc voltage in Figure 14 also indicates the satisfactory dynamic
performance of the system. Therefore, the proposed control shows superior properties in suppressing
the double frequency power ripples and responding to external disturbance.

4.4. Comparable Evaluation

It can be concluded from the above three cases performed on the dc transmission simulation
model of Figure 8 that:

(1) under the proposed control strategy, the double frequency ripples in active and reactive power
are regulated with better steady-state suppression performance and enhanced dynamic response
compared with the conventional resonance compensation strategy and the only passivity-based
compensation strategy;

(2) different passivity parameters and different observer gains have significant impacts on system
performance and control effects will be weakened if these parameters are chosen improperly;

(3) in this case of single-phase grounding short-circuit fault, the double frequency ripples in active
and reactive power are reduced largely with the proposed control strategy and the transient process
can be much improved with little overshoot and fast transient time.
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5. Discussion

When the unbalanced grid conditions occur, the VSC converter operates in abnormal condition
and the negative sequence electrical components is adverse for the system normal operation. Most exist
literatures (listed in the Reference) mainly aim at obtaining some specific kind of control objective,
which means the fluctuations of active and reactive power cannot be suppressed at the same time.
In this case, a novel control strategy to suppress the double frequency ripples in active and reactive
power of VSC-HVDC systems under unbalanced grid voltage conditions is proposed. This control
strategy is based on the derived mathematical control equations of the double frequency ripple power
of VSC converter. The passivity-based control together with the disturbance observer forms the basic
control framework of VSC. Theoretical analysis and simulation results show that with this control,
the double frequency ripples in active and reactive power of VSC-HVDC under unbalanced grid
conditions are suppressed simultaneously and system performance is significantly enhanced. It should
be noticed that the control parameters of the proposed strategy should be chosen properly for the
desired performance response according to the respective system structure.

6. Conclusions

In this paper, the mathematical model of the double frequency ripple power for VSC-HVDC
systems under unbalanced grid conditions is derived and then a power compensation strategy to
suppress the double frequency ripples in active and reactive power is proposed. The main contribution
of this paper is that with this proposed control strategy, the double frequency ripples in active and
reactive power of VSC-HVDC under unbalanced grid conditions can be suppressed simultaneously
and system performance is significantly enhanced with the implementation of the disturbance observer
in the passivity-based control. The compensation strategy is proved to be effective in regulating the
double frequency components of the unbalanced voltage and current without affecting the normal
operation of VSC converter. The stability analysis of the proposed power compensation strategy is also
conducted in this paper to analyze the system response with different control parameters. Theoretical
analysis and simulations in PSCAD/EMTDC show the validity and superiority of the proposed control
strategy. The research outcomes are applicative in real conditions of renewable energy generation,
island network supply and microgrid, while the control parameters should be chosen carefully for the
desired operation performance according to the actual system structure characteristics. The challenging
issue of the application of the research outcomes is that robust PLL (Phase Locking Loop) technology
should be available for accurate phase tracking under the unbalanced grid voltage conditions.
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Nomenclature

Ua,b,c,ia,b,c the three phase voltage and current of the converter
Ea,b,c the three phase voltage of the AC grid
R, L the per-phase resistance and inductance of the AC filter
C the DC filter capacitor
Udc, idc the DC voltage and current of the converter
Ps, Qs the transmission active and reactive power of the converter
Ud, Uq the d axis and q axis components of VSC voltage
id, iq the d axis and q axis components of VSC current
Ed, Eq the d axis and q axis components of AC grid voltage



Energies 2018, 11, 3140 18 of 19

P2i, Q2i
the current-relevant components that cause the double frequency ripples in active and
reactive power

P2u, Q2u
the voltage-relevant components that cause the double frequency ripples in active and
reactive power

uP, uQ the double frequency power control inputs of VSC
J(x), Jd(x) the original and the desired interconnection matrix
<(x),<d(x) the original and the desired damping matrix
H(x), Hd(x) the original and the desired Hamiltonian function
G(x) the coefficient matrix with full rank
ŵ the estimation of the disturbance
k the internal state of the observer
µ(χ), l(χ) the observer function and the observer gain
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