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Abstract: In this work, we perform a comprehensive comparative study of two advanced control
algorithms—the classical tracking model predictive control (MPC) and economic MPC (EMPC)—in
the optimal operation of wind energy conversion systems (WECSs). A typical 5 MW wind turbine
is considered in this work. The tracking MPC is designed to track steady-state optimal operating
reference trajectories determined using a maximum power point tracking (MPPT) algorithm. In the
design of the tracking MPC, the entire operating region of the wind turbine is divided into four
subregions depending on the wind speed. The tracking MPC tracks different optimal reference
trajectories determined by the MPPT algorithm in these subregions. In the designed EMPC, a uniform
economic cost function is used for the entire operating region and the division of the operating
region into subregions is not needed. Two common economic performance indices of WECSs are
considered in the design of the economic cost function for EMPC. The relation between the two
economic performance indices and the implications of the relation on EMPC performance are also
investigated. Extensive simulations are performed to show the advantages and disadvantages of the
two control algorithms under different conditions. It is found that when the near future wind speed
can be predicted and used in control, EMPC can improve the energy utilization by about 2% and
reduce the operating cost by about 30% compared to classical tracking MPC, especially when the
wind speed varies such that the tracking MPC switches between operating subregions. It is also
found that uncertainty in information (e.g., future wind speed, measurement noise in wind speed)
may deteriorate the performance of EMPC.

Keywords: renewable energy; predictive control; wind turbine; economic optimization; nonlinear systems

1. Introduction

Renewable energy generation technologies, like wind energy conversion systems (WECS),
have been widely adopted globally. In a recent report of the National Renewable Energy Laboratory
(NREL), for example, the State of Alaska Legislature in 2010 adopted the goal of supplying 50% of
Alaska energy needs from renewable energy sources by 2025 [1]. Among various modern renewable
energy resources, wind energy accounts for the largest portion and is anticipated to maintain steady
growth in the coming years.

It is well known that the control system of a WECS plays a very important role in balancing
the efficiency of energy generation and structural fatigue of the WECS. In a typical tracking control
design, a WECS has two operating modes, i.e., partial load mode and full load mode. When a WECS
is operated in the partial load mode, a typical control objective is to adjust the generator speed to
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capture as much energy as possible from the wind; when the WECS is operated in the full load mode,
the typical control objective is to regulate the blade pitch angle to maintain both the output power
and the generator speed at their rated values to ensure the safety of the equipment [2]. The operation
of a WECS may switch between these two operating modes frequently due to the variation of wind
speed. This poses great challenges in the controller design for WECSs.

In the literature, many control strategies have been proposed for the control of WECSs with
the purpose of either maximizing wind energy capture or maintaining the system at rated power.
When a WECS operates in partial load mode, the maximum power point tracking (MPPT) is one of
the most effective approaches for extracting energy from wind. Existing research studies primarily
focus on three MPPT algorithms, namely, tip speed ratio (TSR) control, hill-climb search (HCS) control,
and power signal feedback control [3,4]. In these algorithms, the optimal steady-state reference
trajectories are calculated. These reference trajectories are then sent to the feedback control layer.
The main objective of the feedback control layer is to drive a WECS to track the optimal reference
trajectories. In the feedback control layer, different control algorithms have been explored including
the classical proportional integral (PI) control [5,6], linear quadratic Gaussian (LQG) approach [7,8],
robust control [9,10], and model predictive control (MPC) [11–15]. Among these algorithms, MPC has
become more and more popular because of its ability to account for state and input constraints as well
as optimality considerations explicitly in the evaluation of control actions.

While the framework of MPPT and MPC has been successful, it primarily focuses on tracking
the optimal operating references which are different for different operating modes (partial load and
full load). The transition between the operating modes (which may be frequent) are not explicitly
considered, which may lead to loss of control performance. In recent years, a generalized form of
MPC—economic MPC (EMPC)—has been developed and attracted significant attention. In EMPC,
the separation between operating reference optimization (e.g., MPPT) and reference tracking is
removed; and real-time operating reference optimization and feedback control are integrated into
one optimal control framework [16–20]. EMPC uses the economic index directly as the cost function
for online optimization and has been demonstrated to provide improved economic performance
than the classical tracking MPC in different applications [21–23]. In [24,25], EMPC were applied
to the control of wind turbines. However, these two papers did not present a detailed analysis
for the entire operating region. In particular, the transition between the operating modes were not
considered. Moreover, information uncertainty and the impact of prediction horizon were not taken
into consideration explicitly.

In this paper, we perform a comprehensive comparison of the classical tracking MPC and EMPC
for WECSs. Specifically, we consider a typical wind turbine in this work. Both operating modes
of the wind turbine are considered. The entire operating range of the wind turbine is divided
into four subregions depending on the wind speed. The tracking MPC tracks different operating
references in these subregions and the operating references are determined by an MPPT algorithm.
In the design of EMPC, one single economic cost function is used for the entire operating region.
Two common performance indices for wind turbines are used in the design of the economic cost
for EMPC. The relation between the two performance indices is also investigated. The implications
of the relation on EMPC performance and behaviors are also discussed. Extensive simulations are
performed to study the advantages and disadvantages of the tracking MPC and the EMPCs with
the two different cost functions under perfect information and uncertain information scenarios. It is
found that when the near future wind speed can be predicted and used in control, EMPC can improve
the energy utilization and reduce the operating cost compared to the tracking MPC, especially when
the wind speed varies such that the tracking MPC switches between operating subregions. It is also
found that uncertainty in information (e.g., future wind speed, measurement noise in wind speed)
may deteriorate the performance of EMPC.

The main objective of this paper is to compare classical tracking MPC and EMPC for WECSs.
The rest of the paper is structured as follows: In Section 2, a description of the WECS and the nonlinear
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model used for controller design are given. In Section 3, a detailed description of the controllers design
are proposed. Section 4 shows detailed simulations and analysis on the WECS under two controllers.
Finally, Section 5 concludes the paper.

2. Wind Energy Conversion System Description

The WECS consists of a series of operating units including the wind turbine, the drivetrain shaft
and the electric generator. A schematic of the WECS is shown in Figure 1. In the WECS, the kinetic
energy in the wind is first captured by the wind turbine in the form of mechanical energy, which is
then transported through the drivetrain shaft, and is transformed to electrical energy in the generator
before it is finally delivered to the grid. The model considered is based on [26].

Wind turbine

Electric 

Generator

Wind

Drivetrain shaft

Grid

Figure 1. Schematic of the WECS.

2.1. Wind Turbine

The wind turbine rotor interacts with the wind stream, resulting in a behavior named
aerodynamics. In addition, the aerodynamic power, which means the kinetic energy of wind in
a unit length of time, depends on the wind speed on the rotor, the pitch angle and angular velocity of
the rotor. The aerodynamic power Pa extracted by the wind turbine can be described as [26]:

Pa =
1
2

ρπR2v3Cp (λ, β) , (1)

where ρ is the air density, R is the rotor radius, v is the rotor wind speed, β is the pitch angle of the
rotor blade, λ is the ratio between the peripheral blade speed and the wind speed:

λ=
ωaR

v
, (2)

where ωa is the rotor angular velocity. The aerodynamic power coefficient Cp (λ, β), describing the
power extraction efficiency of a wind turbine, is modeled as follows [11]:

Cp = 0.5176
(
116
/

λi − 0.4β− 5
)

e−21/λi + 0.0068λ, (3)

where λi is determined using
1
λi

=
1

λ + 0.08β
− 0.035

β3 + 1
.
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A graph of the aerodynamic power coefficient Cp (λ, β) is shown in Figure 2. As shown in the
figure, the maximum aerodynamic power coefficient can be achieved by appropriately tuning λ and β.
Let us denote the corresponding λ and β that give the maximum Cp as λopt and βopt; that is,

(λopt, βopt) = arg max
λ,β

Cp(λ, β). (4)

It is considered that the angular velocity of rotor ωa is subject to the following constraint:

ωa,in ≤ ωa (τ) ≤ ωa,rated, (5)

where ωa,in is the cut-in rotor speed and ωa,rated is the rated rotor speed.

0

0

0.2

C
p

0.4

10

0.6

40302020 100

   = 8.4
   = 0
  C

p,max
 = 0.48

Figure 2. Power coefficient surface for WECS.

The pitch angle β is adjusted by a pitch angle actuator. The dynamics of the pitch angle β is
modeled as the following second-order differential equation:

β̈ = −w2
nβ− 2ζwn β̇ + w2

nβre f , (6)

where βre f is the desired pitch angle and is the manipulated input of the pitch angle actuator, β is the
actual pitch angle, wn is the natural frequency of the pitch actuator, and ξ is the damping constant of
the pitch actuator. In the MPC design considered in this work, βre f will be one of the manipulated
inputs.

The pitch angle is subject to the following constraints:

βmin ≤ β (τ) ≤ βmax, (7)

β̇min ≤ β̇ (τ) ≤ β̇max, (8)

where βmin and βmax denote respectively the minimum and maximum values that the pitch angle may
take β̇min and β̇max denote, respectively, the minimum and maximum pitch angular speeds.

2.2. Drivetrain Shaft

The generator receives power from the wind turbine through a drivetrain shaft system.
The drivetrain shaft includes a low-speed shaft, a high-speed shaft, and a gearbox. The low-speed shaft
is considered to be flexible while the high-speed shaft is considered to be rigid. Stiffness and damping
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of the low-speed shaft are modeled as one spring and one damper. Based on these assumptions,
a two-mass drivetrain model can be developed as shown below [26]:

Jaω̇a = Ta − ksθ − ds θ̇, (9)

Ta =
Pa

ωa
=

1
2ωa

ρπR2v3Cp (λ, β) , (10)

Jgω̇g =
ksθ

Ng
+

ds θ̇

Ng
− Tg, (11)

θ̇ = ωa −
ωg

Ng
, (12)

where Ja and Jg are the inertia of the rotor and the generator, respectively. Ta is the aerodynamic
torque. ks and ds are the stiffness and damping coefficients of the low-speed shaft. θ stands for the
shaft twist angle. Tg is the generator torque and ωg is the generator angular velocity. Ng is the gear
ratio. A schematic of the drivetrain shaft system is shown in Figure 3.

aT

sd

aJ

gJ

gT

gN

ga

sk

Figure 3. Drivetrain shaft system of WECS.

2.3. Electric Generator

The electric generator exerts a counter torque Tg on the drivetrain shaft, its dynamics can be
described as follows:

Ṫg = − 1
τg

Tg +
1
τg

Tg,re f , (13)

where Tg,re f is a manipulated input variable and denotes the desired torque values, Tg is the actual
generator torque. τg is the time constant of the generator.

The operation of the generator is subject to the following constraints:

0 ≤ Tg (τ) ≤ Tg,rated, (14)

Ṫg,min ≤ Ṫg (τ) ≤ Ṫg,max, (15)

where Tg,rated is the rated generator torque. Ṫg,min and Ṫg,max denote respectively the minimum and
maximum generator torque speeds.

The electrical power converted from the mechanical power is modeled as follows:

Pe = ηTgωg, (16)

where η is the efficiency of power conversion. The electrical power should satisfy the following constraint

0 ≤ Pe (τ) ≤ Pe,rated, (17)

where Pe,rated is the rated power.
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2.4. State-Space Representation

Defining a set of state variables x =
[

ωa ωg θ Tg β β̇
]T

, input variables

u =
[

Tg,re f βre f

]T
, the dynamics of the state variables can be written in the following compact

form based on the modeling equations described in Sections 2.1–2.3:

ẋ = f (x, u, v), (18)

where the wind speed v is an disturbance input to the system. Figure 4 shows the block diagram of the
model, and Tg,re f and βre f are manipulated inputs of the system. The parameters of the model used in
this work are reported in Table 1 [27].

Rotor Drivetrain Generator

Generator 

torque 

actuator

Pitch 

actuator

v aT

a

g

gT



ref , refgT

eP

Figure 4. Block diagram of the WECS.

Table 1. Model parameters for 5 MW wind turbine [27].

Parameters Values Definitions

Pe,rated 5 Rated power (MW)
Tg,rated 43,093.55 Rated generator torque (N·m)
ωa,rated 12.1 Rated rotor speed (rpm)
ωa,in 6.9 Cut-in rotor speed (rpm)
vin 3 Cut-in wind speed (m/s)
v2 5.4 Boundary wind speed (m/s)
v3 9.5 Boundary wind speed (m/s)
vrated 11.2 Rated wind speed (m/s)
vout 25 Cut-out wind speed (m/s)
ρ 1.23 Air density (kg/m3)
R 63 Blade radius (m)
λopt 8.4 Optimal tip speed ratio
βopt 0 Optimal blade pitch
Cp,max 0.48 Peak power coefficient
Ng 97 Gear ratio
Ja 3.54× 107 Rotor inertia (kg·m2)
Jg 534.116 Generator inertia (kg·m2)
ks 8.676× 108 Drivetrain shaft stiffness (N·m/rad)
ds 6.215× 106 Drivetrain damping coefficients (N·m/(rad/s))
τg 0.1 Time constant of generator torque actuator (s)
wn 0.88 Natural frequency of pitch actuator (rad/s)
ξ 0.1 Damping of pitch actuator
βmax 90 Maximum blade pitch
βmin 0 Minimum blade pitch
β̇max 8 Maximum blade pitch rate
β̇min −8 Minimum blade pitch rate
Ṫg,max 15,000 Maximum generator torque rate (N·m/s)
Ṫg,min −15,000 Minimum generator torque rate (N·m/s)
η 94.4% Generator efficiency
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3. Model Predictive Control Strategies

The primary objective of the WECS is to maximize wind power capture while protecting the
operating units. For a WECS, there are many constraints that should be satisfied to ensure equipment
safety of the system. Specifically, constraints Equations (7), (8) and (15) are considered as hard
constraints while Equations (5), (14) and (17) can be treated as soft constraints that may be relaxed for
sufficiently short time periods.

3.1. Classical Tracking MPC

3.1.1. Steady-State Target Calculation

In this section, we calculate the optimal steady-state targets for the rotor speed ωa, blade pitch
angle β and generator torque Tg. At a steady-state, we have

Pe = ηPa =
1
2

ηρπR2v3Cp (λ, β) .

Due to less than perfect efficiency, the generator is only able to convert some of the mechanical
power to electrical power [26]. Thus, the objective of maximizing the steady-state electric power Pe at
a given wind speed v is equivalent to maximizing the aerodynamic power coefficient Cp. Note that
the dynamics of the generator torque actuator and pitch angle actuator disappear at steady-state
conditions. Therefore, we can use the following steady-state optimization problem to find the optimal
steady-state operating target:

Cp,max(v) = max
β,λ,ωa ,Tg

Cp(λ, β), (19a)

s.t. λ=
ωaR

v
, (19b)

1
2ωa

ρπR2v3Cp = TgNg, (19c)

ωa,in ≤ ωa (τ) ≤ ωa,rated, (19d)

βmin ≤ β (τ) ≤ βmax, (19e)

0 ≤ Tg (τ) ≤ Tg,rated. (19f)

The above steady-state optimization is a parametric optimization depending on the wind speed v.
The solution is shown in Figure 5 where the entire operating region is divided into four regions with
vin, i.e., the cut-in wind speed for WECS, v2, v3 and vrated as a boundary.

Region IV: When the wind speed is over the rated value (i.e., v ≥ vrated), both the rotor speed and
generator torque reaches their upper bound. That is:

ω
re f
a (v) := ωa,rated, (20)

Tre f
g (v) := Tg,rated (21)

.
WECS keeps the electric power Pe at its rated value by changing the blade pitch angle as follows:

βre f (v) :=
{

β|Pe,rated =
1
2

ηρπR2v3Cp

(
ωa,ratedR

v
, β

)}
. (22)

When the wind speed is below the rated value, the WECS operates in the partial load region
which is divided into three subregions, namely, I, II, III as shown in Figure 5.
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Figure 5. Optimal steady-state targets of the rotor speed (ωa), electric power (Pe), generator torque (Tg),
pitch angle (β), under varying wind speed v.

Region III: When the wind speed is below the rated value and over the wind speed
v3 (i.e., v3 ≤ v < vrated), where

v3 =
ωa,ratedR

λopt
,

only the rotor speed reaches its upper bound, that is,

ω
re f
a (v) := ωa,rated. (23)

The pitch angle is fixed at its optimal value (i.e., βopt), and the WECS maximizes electric power Pe

by changing the generator torque as follows:

Tre f
g (v) :=

1
2ωa,ratedNg

ρπR2v3Cp

(
ωa,ratedR

v
, 0
)

. (24)
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The classical MPC strategy taken in this work assumes keeping the pitch at its optimal value
βopt before the electrical power reaches its rated value:

βre f (v) := βopt. (25)

Region II: When the wind speed is below the wind speed v3 and over v2 (i.e., v2 ≤ v < v3), where

v2 =
ωa,inR
λopt

.

It is expected to maximize wind power capture by maintaining WECS operating at the optimal
power coefficient all the time. Previous research results primarily focus on the TSR control in this region,
one of the conventional MPPT algorithms. Then, the optimal steady-state is readily obtained as [11]:

ω
re f
a (v) :=

λoptv
R

, (26)

Tre f
g (v) :=

{
Tg|

1
2

ρπR2v3Cp,max = Ng
λoptv

R
Tre f

g

}
, (27)

βre f (v) := βopt. (28)

These references in region III and II are also consistent with the optimal steady-state operating
target obtained using Equation (19) in which only constraint Equation (5) is active in region III.

Region I: When the wind speed is between the cut-in wind speed vin and wind speed
v2 (i.e., vin < v < v2), the rotor angular velocity ωa is at its lowest allowed value,

ω
re f
a (v) := ωa,in (29)

and the Tg reference can be obtained as follows:

Tre f
g (v) :=

1
2ωa,inNg

ρπR2v3Cp

(
ωa,inR

v
, 0
)

. (30)

In this region, the reference of the pitch angle will be set at the optimal value:

βre f (v) := βopt. (31)

To sum up, the optimal reference rotor angular velocity ω∗a , pitch angle β∗ and the generator
torque T∗g in MPC design according to the above discussion are as follows:

ω∗a =


ωa,in, if vin ≤ v ≤ v2
λoptv

R , if v2 < v ≤ vrated

ωa,rated, if v > vrated

β∗ =

 βopt, if v ≤ vrated{
β|Pe,rated = 1

2 ηρπR2v3Cp

(
ωa,ratedR

v , β
)}

, if v > vrated

T∗g =



1
2ωa,in Ng

ρπR2v3Cp

(
ωa,inR

v , 0
)

, if vin ≤ v ≤ v2{
Tg| 12 ρπR2v3Cp,max = Ng

λoptv
R Tre f

g

}
, if v2 < v ≤ v3

1
2ωa,rated Ng

ρπR2v3Cp

(
ωa,ratedR

v , 0
)

, if v3 < v ≤ vrated

Tg,rated, if v > vrated.

(32)
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In the classical tracking MPC design, the MPC will track the three reference trajectories above
depending on the wind speed.

3.1.2. Tracking MPC Formulation

The classical tracking MPC for WECS is based on tracking the wind dependent reference
trajectories, while minimizing structural fatigue. As stated above, there are different control objectives
for different operating regions. The classical tracking MPC achieves this through changing the reference.
As for the state constraints of WECS, we will incorporate both hard constraints and soft constraints
in the optimization problem. At a sampling time tk, the MPC optimization problem for the WECS,
under both partial load region and full load region is formulated as follows:

min
u(τ)∈S(4t),εP ,εω ,εT

∫ tk+N

tk

(FMPC (x̃ (τ) , u (τ) , v (τ)) + Fs (εP, εω, εT))dτ, (33a)

s.t. ˙̃x (τ) = f (x̃ (τ) , u (τ) , v (τ)) , (33b)

x̃ (tk) = x (tk) , (33c)

0 ≤ Pe (τ) ≤ Pe,rated + εP, (33d)

ωa,in − εω ≤ ωa (τ) ≤ ωa,rated + εω, (33e)

0 ≤ Tg (τ) ≤ Tg,rated + εT , (33f)

βmin ≤ β (τ) ≤ βmax, (33g)

Ṫg,min ≤ Ṫg (τ) ≤ Ṫg,max, (33h)

β̇min ≤ β̇ (τ) ≤ β̇max, (33i)

where S(4t) denotes the family of continuous piece-wise functions with sampling time4t. N is the
predictive horizon. FMPC (x̃ (τ) , u (τ) , v (τ)) is the tracking objective function. Fs (εP, εω, εT) is the
punishment on slack variables. x̃ (τ) is the predicted future state trajectory of the WECS. Equation (33b)
is the nonlinear state-space representation of the WECS in Equation (18). x(tk) in Equation (33c) is the
initial condition at time tk. Equation (33d–h) are the output constraints and state constraints.

The tracking objective function is chosen as:

FMPC (x (τ) , u (τ) , v (τ)) = qMPC
1 (ωa (τ)−ω∗a (v))

2 + qMPC
2

(
Tg (τ)− T∗g (v)

)2

+ qMPC
3 (β (τ)− β∗ (v))2 + rMPC θ̇2 (τ) ,

(34)

where qMPC
1 , qMPC

2 , qMPC
3 , rMPC are weights. The first three terms account for wind power capture

while the last term of state change rate reflects the structural fatigue of the system. ω∗a (v), T∗g (v),
β∗ (v) are the reference trajectories described in Equation (32).

The slack variables εP, εω, εT are decision variables associated to the degree of violation of the
corresponding constraints. We choose to penalize the slack variables using the quadratic form:

Fs (εP, εω, εT) = rs
(

ε2
P + ε2

ω + ε2
T

)
, (35)

where rs is a penalty of the slack variables.
As for the constraints, Equation (33d–f) mean that the system should remain operating at the rated

values when wind speed is over the rated value, while temporary violation of these constraints are
acceptable. Treating these constraints as soft constraints makes the MPC optimization problem much
easier to solve and may lead to improved closed-loop performance. Equation (33g) is a constraint on
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the blade pitch angle and constraints of Equation (33h,i) impose constraints on the increasing rate of
blade pitch angle and the generator torque.

The controller is evaluated at discrete time instants tk = t0 + k∆t, k = 0, 1..., with t0 the initial time
and ∆t the sampling time. If we denote the optimal solution to optimization problem Equation (33) as
u∗MPC (t |tk ), only the first step value of u∗MPC (t |tk ) is applied to the WECS; that is,

u (t) = u∗MPC (t |tk ) , ∀t ∈ [tk, tk+1) . (36)

At the next sampling time, the MPC optimization problem is re-evaluated.

3.2. Economic MPC

In the tracking MPC, the optimal operating references depend on both the operating region and
the wind speed. When wind speed changes, the cost function Equation (33a) in tracking MPC may
switch frequently according to operating regions. EMPC provides a unified framework for the optimal
operation of WECS systems. The division of the entire operating region into subregions for controller
design is no longer necessary as long as a unified economic cost function exists for the entire operating
region, which is indeed the case for WECS systems. The proposed EMPC strategy can be formulated
as the following scheme:

min
u(τ)∈S(4t),εP ,εω ,εT

∫ tk+N

tk

(FEMPC (x (τ) , u (τ) , v (τ)) + Fs (εP, εω, εT))dτ, (37a)

s.t. Equation (33b)− Equation (33i). (37b)

In the above EMPC optimization problem, FEMPC represents the economic stage cost related to
the economics of the operation and Fs is the penalty on the slack variables as in the tracking MPC
design. Two different designs of FEMPC are considered:

FEMPC1 (x (τ) , u (τ) , v (τ)) = −qEMPC1 Pe (τ) + rEMPC1 θ̇2 (τ) , (38)

FEMPC2 (x (τ) , u (τ) , v (τ)) = −qEMPC2 Pa (τ) + rEMPC2 θ̇2 (τ) . (39)

FEMPC1 means maximizing the produced electrical power while FEMPC2 trends to maximize
aerodynamic power extracted from the wind turbine. Both stage costs account for structural fatigue.
The two stage costs only differ in the first term. An interpretation of the impact of this difference over
one prediction horizon is provided below. Let us define LEMPC1 and LEMPC2 as follows:

LEMPC1 =
∫ tk+N

t
−Pe (x (τ))dτ, (40)

LEMPC2 =
∫ tk+N

t
−ηPa (x (τ) , v (τ))dτ, (41)

where η is the efficiency of power conversion defined in Equation (16). Given that the aerodynamic
power Pa = Taωa and electrical power Pe = ηTgωg, combining with Equations (9), (11) and (12),
the difference between Equations (40) and (41) can be expressed as:

LEMPC2 = LEMPC1 − η Jaω2
a (tk + N)− η Jgω2

g (tk + N)− ηksθ2 (tk + N)

− η
∫ tk+N

t
ds θ̇(τ)2dτ + constant.

(42)

In Equation (42), the three terms ω2
a (tk + N), ω2

g (tk + N) and θ2 (tk + N) stand for the terminal

states of the system. In addition, the term
∫ tk+N

t ds θ̇(τ)2dτ accounts for the drivetrain shaft transient
load (i.e., fatigue). Equation (42) indicates that the EMPC with the stage cost Equation (38) (denoted as
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EMPC2) contains terminal cost terms inherently while the EMPC with stage cost Equation (39)
(denoted as EMPC1) does not inherently contain terminal penalties. It can also tell from a practical
point of view, a part of aerodynamic power Pa is transformed to electrical power Pe, and the rest is
stored in the equipment (i.e., the terminal cost in Equation (42)). Therefore, EMPC1 may need a larger
predictive horizon than EMPC2. On the other hand, EMPC2 may lead to increased drivetrain shaft
transient load compared with EMPC1 given that the other control settings are the same. The derivation
details can be found in Appendix A.

4. Simulation Results and Discussion

In this section, we carry out simulations to compare the classical tracking MPC and the EMPC in
terms of closed-loop economic performance, i.e., the captured aerodynamic power Pa, the generated
electrical power Pe and the drivetrain shaft transient load θ̇. Two cases containing perfect wind speed
information and inaccurate wind speed information are considered under different types of wind,
i.e., gradient wind and turbulent wind.

4.1. Simulation Settings

In the simulations, the wind speed is generated according to the Van der Hoven spectrum [2];
that is, the wind speed is modeled as a slowly varying average wind speed superimposed by a rapidly
varying turbulent wind speed:

v = vm + vd, (43)

where vm is the mean wind speed over a certain time period and vd is the rapid varying component.
It is assumed that the current wind speed at the rotor can be measured, for example, using a light
detection and ranging (LIDAR) system [28].

The performance of the control schemes will be compared under two types of wind: gradient
wind and turbulent wind. Three controllers, i.e., the classical tracking MPC, EMPC1 with stage cost
Equation (38) and EMPC2 with stage cost Equation (39) are implemented in MATLAB (version 2017b).
The dynamic optimization problems are solved using IPOPT based on Casadi (version 3.3)—a software
framework to facilitate the implementation and solution to optimal control problems using automatic
differentiation [29,30]. Moreover, control parameters used in the simulation are listed in Table 2. The
same weights are set for the stage costs of the two EMPC controllers. In order to get better performance
for the classical tracking MPC, we choose different weights for partial load region(subregions I, II, III)
and full load region (subregion IV). The horizon (prediction and control) for both MPC and EMPCs is
fixed at 20 s with a sampling time of 0.1 s.

Table 2. Controller settings.

Control Schemes Parameters

EMPC1 qEMPC1 = 10, rEMPC1 = 2, rs = 1e8

EMPC2 qEMPC2 = 10, rEMPC2 = 2, rs = 1e8

MPC (Partial load)
qMPC

1 = 5e6, qMPC
2 = 2e3,

qMPC
3 = 3e8, rMPC = 2, rs = 1e8

MPC (Full load)
qMPC

1 = 5e5, qMPC
2 = 2e3,

qMPC
3 = 7e5, rMPC = 2, rs = 1e8

Prediction horizon N = 20s

Controller sampling time ∆t = 0.1s

4.2. Perfect Information Scenario

In the first scenario, we compare the three controllers when the information of wind speed is
available along the predictive horizon and it is assumed that the wind speed is accurately known.
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4.2.1. Gradient Wind

In the first set of simulations, we consider the wind speed varies between two subregions and the
wind is considered to be gradient wind. Figure 6 shows the wind speed used in this set of simulations.
The wind speed jumps between 6.5, 8 and 12 m/s. This makes the system switches between subregion
II, III and IV.
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Figure 6. Wind speed.

The simulation results are shown in Figures 7 and 8. The blue lines are the references which are
calculated for the classical tracking MPC using Equation (32). From the figures, it can be seen that
when wind speed changes from 6.5 m/s to 8 m/s, the system is operated in subregions II and its main
objective is to extract wind power as much as possible. As shown in Figures 7 and 8, the tracking MPC
and the two EMPCs all can track the optimal operating references. The tracking MPC and the two
EMPCs give nearly the same dynamic trajectory.
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Figure 7. States ωa, ωg and θ for the proposed EMPC1 (black dash-dotted line), EMPC2 (red solid line)
and classical tracking MPC (green dashed line) under gradient wind.
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However, when the wind speed changes between 8 m/s and 12 m/s (switches between subregion
III and subregion IV), the two EMPCs present much superior performance than the tracking MPC.
As can be seen in Figure 8, the blade pitch angle β under the tracking MPC approaches the optimal
steady state gradually after the wind speed becomes 12 m/s; in contrast, the proposed EMPCs keep
the pitch angle at zero for some time so that more energy from the wind can be captured. The behavior
of EMPCs may be explained using Cp. In Figure 9, the black point is the highest value of Cp which
is the optimal operation point for wind turbine with partial load (subregions I, II, III). The red line
indicates the optimal Cp when the wind speed is over the rated value (subregion IV). When the wind
speed changes from 8 m/s to 12 m/s, the optimal Cp is changed from the black point to a point on the
red line. When using EMPCs, the pitch angle goes along the line β = 0 and then along the red line.
That is why the pitch angle keeps at zero for a while. However, as for the tracking MPC, it drives the
system to the final optimal Cp on the red line directly, which leads to decreased transient performance.
The superiority of EMPCs over the tracking MPC can also be seen when the wind speed decreases
from 12 m/s to 8 m/s. In this case, the pitch angle has a smaller move under the EMPCs as shown in
Figure 8, which can also be explained using Figure 9 similarly.
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Figure 8. States Tg, β and dβ/dt for the proposed EMPC1 (black dash-dotted line), EMPC2 (red solid
line) and classical tracking MPC (green dashed line) under gradient wind.

The produced electrical power Pe and aerodynamic power coefficient Cp under the three
controllers are shown in Figure 10. Apparently, in the transient period, the two EMPCs lead to
a larger Cp, and the produced electrical power Pe is also more than the classical tracking MPC. As for
the case of wind speed decreasing, it extracts more wind energy using EMPCs at the cost of an action
of blade pitch actuator.
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Figure 9. Three-dimensional graph of Cp.
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Figure 10. Performance Cp and Pe for the proposed EMPC1 (black dash-dotted line), EMPC2 (red solid
line) and classical tracking MPC (green dashed line) under gradient wind.

For the sake of showing the performance of the control schemes quantitatively, the economic
performance is evaluated in terms of the average power TPe and average captured power TPa defined
as follows:

TPe =
1

Nsim

Nsim

∑
i=1

Pe (i), TPa =
1

Nsim

Nsim

∑
i=1

Pa (i),

where Nsim is the amount of simulation steps. The comparison results are listed in Table 3.
The numbers in brackets denote the ratios of the corresponding performance values with respect

to the one of the tracking MPC. It is clearly shown that the two EMPCs give improved performance in
terms of TPe and TPa in all cases. Especially in the switching process, the power captured by EMPCs
compared with the MPC increases by 2.08% at the cost of slightly increased structural fatigue load.
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Table 3. Average economic performance under gradient wind.

×106 6.5–8 m/s 8–12 m/s 12–8 m/s 8–6.5 m/s

TEMPC1
Pe

1.3934(1.00364) 4.4570(1.0193) 2.3421(1.0036) 1.3214(1.0027)

TEMPC2
Pe

1.3934(1.00364) 4.4638(1.0208) 2.3421(1.0036) 1.3214(1.0027)

TMPC
Pe

1.3883 4.3727 2.3337 1.3178

TEMPC1
Pa

1.8664(1) 5.3355(1.0184) 1.871(1.0048) 1.0034(1.0038)

TEMPC2
Pa

1.8664(1) 5.3355(1.0184) 1.8713(1.0048) 1.0034(1.0038)

TMPC
Pa

1.8664 5.239 1.862 0.9997

4.2.2. Turbulent Wind

In the second set of simulations, we consider the performance of the three control schemes when
we have turbulent wind. The turbulent wind sequence used in simulations is at an average value
of 8 m/s and 11 m/s with the same medium turbulence intensity of I = 0.15 [2] shown in Figure 11.
In this case, we assume that we could obtain all the wind speed information on the whole prediction
horizon for controllers. The simulation results for this turbulent wind speed are given in Figures 12–14.
From the figures, it can be seen that there is no obvious superiority for the EMPCs in the partial load
region. The produced electrical power Pe and extracted aerodynamic power Pa are almost the same
while the fatigue load for EMPCs may get better than the classical tracking MPC. However, when the
wind speed rapidly varies around the rated wind speed, the EMPCs give much superior performance
over the tracking MPC. In this situation, the classical tracking MPC needs to change its set-points and
weights constantly. We could see this impact from Figure 13. The change frequency of blade pitch
angle for MPC strategy is higher than the EMPCs significantly.

In addition, further comparisons are also carried out to study the effects of prediction horizon
on these controllers under this turbulent wind. Since the wind is fluctuating constantly, we consider
structural fatigue defined as:

TLoad =
1

Nsim

Nsim

∑
i=1

θ̇2 (i).
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Figure 11. Wind speed.

The results are listed in Tables 4 and 5 with different prediction horizons obtained by simulating
the system in a closed loop for 25 min. From the tables, it can be seen that the captured aerodynamic
power decreases with the decrease of the prediction horizon. When the prediction horizon is too short,
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EMPC1 may even lose its ability to keep the system close to the optimal operating points as seen in
Table 5. As for EMPC2, it still performs better with this short prediction horizon since it contains
terminal cost in its objective shown in Equation (42). Moreover, the power captured by the EMPCs
are about 2% more than that captured by the tracking MPC when N is 20 s. Furthermore, EMPCs get
lower fatigue than MPC. In addition, it is consistent as shown in Equation (42) that EMPC1 gets better
performance in mitigating drivetrain shaft transient loads than EMPC2.
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Figure 12. States ωa, ωg and θ for the proposed EMPC1 (black dash-dotted line), EMPC2 (red solid line)
and classical tracking MPC (green dashed line) under turbulent wind.
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Figure 13. States Tg, β and dβ/dt for the proposed EMPC1 (black dash-dotted line), EMPC2 (red solid
line) and classical tracking MPC (green dashed line) under turbulent wind.



Energies 2018, 11, 3127 18 of 23

0 50 100 150 200
0

2

4

P
e (

M
W

)

106

0 50 100 150 200
Time (s)

0

2

4

6

P
a (

M
W

)
106

Figure 14. Performance Pe and Pa for the proposed EMPC1 (black dash-dotted line), EMPC2 (red solid
line) and classical tracking MPC (green dashed line) under turbulent wind.

Table 4. Average economic performance for different prediction horizon at an average wind speed of 8 m/s.

8 m/s N = 20 s N = 15 s N = 10 s N = 8 s

TEMPC1
Pe

1.3276× 106 1.3276× 106 1.3228× 106 1.315× 106

TEMPC2
Pe

1.3261× 106 1.3261× 106 1.326× 106 1.3261× 106

TMPC
Pe

1.3249× 106 1.3249× 106 1.3249× 106 1.3248× 106

TEMPC1
Pa

1.4026× 106 1.4026× 106 1.3974× 106 1.3891× 106

TEMPC2
Pa

1.4013× 106 1.4013× 106 1.4013× 106 1.4012× 106

TMPC
Pa

1.3999× 106 1.3999× 106 1.3999× 106 1.3998× 106

TEMPC1
Load 0.0048 0.0048 0.0048 0.0045

TEMPC2
Load 0.0059 0.0059 0.0059 0.0060

TMPC
Load 0.0073 0.0073 0.0074 0.0073

Table 5. Average economic performance for different prediction horizon at an average wind speed
of 11 m/s.

11 m/s N = 20 s N = 15 s N = 10 s N = 8 s

TEMPC1
Pe

3.8701× 106 3.8644× 106 3.4858× 106 3.0743× 106

TEMPC2
Pe

3.8701× 106 3.8601× 106 3.8288× 106 3.8269× 106

TMPC
Pe

3.793× 106 3.793× 106 3.793× 106 3.7928× 106

TEMPC1
Pa

4.0924× 106 4.0922× 106 3.6867× 106 3.2482× 106

TEMPC2
Pa

4.0924× 106 4.0913× 106 4.051× 106 4.0491× 106

TMPC
Pa

4.013× 106 4.013× 106 4.013× 106 4.0128× 106

TEMPC1
Load 0.0013 9.06e-4 3.6e0–4 3.6e0–4

TEMPC2
Load 0.0017 0.0016 0.0017 0.0017

TMPC
Load 0.0022 0.0022 0.0022 0.0022
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4.3. Uncertain Information Scenario

In Section 4.2, all the wind speed information on the whole prediction horizon for controllers
design is assumed to be available. In this section, we will compare the economic performance of the
two EMPCs and the tracking MPC with a limited wind speed preview horizon which is possibly
shorter than the prediction horizon. The simulation results are listed in Tables 6 and 7. Nin f stands
for the limited wind speed preview horizon. We only show the ratio of the performance values of the
EMPCs to the tracking MPC here for brevity. It can be seen that a limited wind speed preview has
unfortunately a non-negligible effect on economic performance of all three controllers, especially the
EMPCs. If only the current wind speed is available, EMPCs perform no superiority over the tracking
MPC in the entire operation region.

Table 6. The rate of EMPCs to MPC with a limited preview horizon at an average wind speed of 8 m/s.

8 m/s Nin f = 15 s Nin f = 5 s Nin f = Current

TEMPC1
Pe

99.91% 99.90% 99.78%

TEMPC2
Pe

99.92% 99.90% 99.71%

TEMPC1
Pa

100.00% 99.99% 99.86%

TEMPC2
Pa

100.01% 100.00% 99.82%

TEMPC1
Load 69.91% 71.19% 92.73%

TEMPC2
Load 82.90% 86.13% 102.01%

Table 7. The rate of EMPCs to MPC with a limited preview horizon at an average wind speed of 11 m/s.

11 m/s Nin f = 15 s Nin f = 5 s Nin f = Current

TEMPC1
Pe

102.26% 101.26% 94.54%

TEMPC2
Pe

101.54% 101.26% 92.03%

TEMPC1
Pa

101.49% 101.22% 94.46%

TEMPC2
Pa

101.49% 100.21% 91.97%

TEMPC1
Load 77.50% 73.78% 130.30%

TEMPC2
Load 96.84% 95.71% 147.66%

Furthermore, we have considered the effects of wind speed measurement noise on the controller
performance and the results are shown in Tables 8 and 9. In the tables, σ stands for the standard
deviation of wind speed noise. From the results, it can be seen that the measurement noise also
negatively affects the control performance of all the controllers. When measurement noise is present,
the two EMPCs may give worse performance then the tracking MPC. From the above simulations,
we can see the potential of EMPCs to significantly improve the operation of wind turbines if the wind
speed can be measured and predicted accurately.
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Table 8. The rate of EMPCs to MPC with wind speed noise at an average wind speed of 8 m/s.

8 m/s σ = 0.2 σ = 0.5 σ = 1

TEMPC1
Pe

99.80% 99.61% 97.86%

TEMPC2
Pe

99.81% 99.61% 98.13%

TEMPC1
Pa

99.88% 99.71% 97.89%

TEMPC2
Pa

99.92% 99.77% 98.11%

TEMPC1
Load 57.88% 77.68% 77.95%

TEMPC2
Load 79.94% 86.08% 103.67%

Table 9. The rate of EMPCs to MPC with wind speed noise at an average wind speed of 11 m/s.

11 m/s σ = 0.2 σ = 0.5 σ = 1

TEMPC1
Pe

101.23% 99.29% 98.36%

TEMPC2
Pe

99.39% 97.24% 95.16%

TEMPC1
Pa

101.13% 99.52% 98.88%

TEMPC2
Pa

99.34% 97.46% 95.63%

TEMPC1
Load 77.50% 89.02% 121.83%

TEMPC2
Load 96.84% 124.59% 166.93%

4.4. Computational Times

In another set of simulations, we evaluate the computational times of the two EMPCs and the
tracking MPC. One hundred simulations have been run using different wind profiles and using both
the EMPCs and the tracking MPC. Different prediction horizons are also considered.

The relative computational times of the two EMPCs and the tracking MPC to the computational
time of a linear MPC are shown in Figure 15. From the figure, it can be seen that EMPC2 is more
computationally demanding. This may be due to the inclusion of the complicated aerodynamic power
coefficient Cp directly in the stage cost.
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Figure 15. Computational time for different prediction horizons.

5. Conclusions

In this paper, we focused on the comparison of a classical tracking MPC and two EMPCs for
a typical WECS. From the simulation results, we found that (a) when the WECS is operated in partial
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load subregions, the EMPCs and the tracking MPC may give similar performance; (b) when the WECS
is operated in the transition between the operating modes (i.e., partial load mode and full load mode),
the two EMPCs can improve the captured wind energy by about 2% in mode transitions which is
comparable to other strategies [11,25]; (c) the two EMPCs can decrease the structural fatigue nearly by
about 30% in the entire operating region; and (d) when there is uncertainty in wind speed prediction
or measurement, the performance of all control schemes decrease and the EMPCs tend to be more
sensitive to measurement noise. The relation between the two EMPCs was also investigated and the
results were useful in explaining the different behaviors of the two EMPCs. In summary, EMPC is
a promising optimal control strategy for WECSs and has the potential to significantly improve the
energy extraction while reducing system fatigue. Future research topics include the design of EMPCs
that is more robust to measurement noise and uncertainty in wind speed prediction.
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The following abbreviations are used in this manuscript:

MPC Model Predictive Control
EMPC Economic Model Predictive Control
WECSs Wind Energy Conversion Systems
MPPT Maximum Power Point Tracking
NREL National Renewable Energy Laboratory
TSR Tip Speed Ratio
HCS Hill-Climb Search
PI Proportional Integral
LQR Linear Quadratic Gaussian
LIDAR Light Detection And Ranging

Appendix A

Given that the aerodynamic power Pa = Taωa and electrical power Pe = ηTgωg, Equation (41)
can be re-expressed as:

LEMPC1 − LEMPC2 =
∫ tk+N

t
ηωa (τ)Ta (τ)− ηωg (τ) Tg (τ) dτ. (A1)

Combining with Equations (9), (11) and (12), it can be obtained that

LEMPC1 − LEMPC2 = η
∫ tk+N

t Jaωa (τ)ω̇a (τ) dτ + η
∫ tk+N

t Jgωg (τ)ω̇g (τ) dτ

+η
∫ tk+N

t ksθ (τ)θ̇ (τ) dτ + η
∫ tk+N

t ds θ̇(τ)2dτ

= η Jaω2
a (tk + N)− η Jaω2

a (tk) + η Jgω2
g (tk + N)− η Jgω2

g (tk)

+ηksθ2 (tk + N)− ηksθ2 (tk) + η
∫ tk+N

t ds θ̇(τ)2dτ.

(A2)

Since ωa (tk), ωg (tk) and θ (tk) are the initial conditions and may considered as constants,
then Equation (42) is obtained.
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