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Abstract: Research carried out over the last few decades has shown that nanomaterials for energy
storage and conversion require higher performance and greater stability. The nanomaterials
synthesized by diverse techniques, such as sol-gel, hydrothermal, microwave, and co-precipitation
methods, have brought energy storage and conversion systems to the center stage of practical
application but they still cannot meet the capacity and mass production demands. Most reviews
in the literature discuss in detail the issues related to nanomaterials with a range of structures
synthesized using the above methods to enhance the performance. On the other hand, there have
been few critical examinations of use of the electrophoresis process for the synthesis of nanomaterials
for energy storage and conversion. The nanomaterials synthesized by electrophoresis processes
related to colloidal interface science in the literature are compared according to the conditions
to identify promising materials that are being or could be developed to satisfy the capacity and
mass production demands. Therefore, a literature survey is of the use of electrophoresis deposition
processes to synthesize nanomaterials for energy storage and conversion and the correlations of
the electrophoresis conditions and properties of the resulting nanomaterials from a practical point
of view.

Keywords: electrophoresis; colloidal interface; li-ion batteries; supercapacitor; solid oxide fuel
cells; electrocatalysts

1. Introduction

Energy is essential in everyday life. In the future, sufficient and sustainable production of energy
will be a prime issue. Currently, more than 80% of the energy used by society is supplied by fossil
fuels, such as oil, coal and natural gas, none of which is renewable. Therefore, energy must be supplied
by sustainable sources before fossil fuels are depleted. Although currently energy is produced from
renewable natural sources, such as solar, wind, hydro, and geothermal heat, their energy sources are too
limited in time and space to make a significant impact [1–4]. The use of electrochemical energy storage
and conversion devices to allow the storage of surplus energy has attracted considerable attention.
Currently electrochemical energy storage and conversion devices have been actively pursued for
electric vehicle applications, but the devices still require durable and inexpensive sources to keep
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the maintenance cost low. On the other hand, it is almost impossible to find a device that fulfills all
the requirements for practical application. The development of electrochemical energy storage and
conversion devices of various types is a way to solve these problems and combine them in creative
methods. The lithium ion battery is a type of rechargeable battery based on lithium ions moving
between two electrodes [5–7]. During charging, lithium ions and electrons move from the cathode to
the anode with the reverse process occurring during discharge. Because of their high energy density
and efficiency, they are now used as a power supply for portable electronic devices. On the other
hand, lithium ion batteries still require improvements of the energy density, durability, cost, and
safety to be a practical power source for electric vehicles [8–10]. Supercapacitors are electrochemical
capacitors that have much higher capacitance compared to conventional capacitors [11–14]. The
supercapacitor is composed of two electrodes with a high specific surface area or redox active materials
separated by an electrolyte. One type of supercapacitor, which is charged from ion adsorption and
desorption, is known as an electric double layer capacitor. Another type of supercapacitor, which is
charged by Faradic reactions, is called a pseudo-capacitor. Supercapacitors are appealing devices for
power system applications but their energy density is much lower than that of lithium ion batteries.
In contrast, a fuel cell is an electrochemical energy conversion device that supplies energy by fuel
oxidation, hydrogen evolution reactions (HER), oxygen evolution reactions (OERs), and oxygen
reduction reaction (ORRs) [15–18]. In addition, the activity and stability of the electrocatalysts in fuel
cells need to be improved to increase their power density.

Over the past 20 years, considerable effort has been made to design advanced electrodes
and electrocatalysts for electrochemical energy storage and conversion devices [19–24]. Recently,
the application of electrophoresis techniques to design advanced electrodes for electrochemical
energy storage and conversion devices has increased because it can form uniform deposits with
control of the electrode thickness, nanostructured hybrid composites, and various 3D complex- and
porous-structured electrodes [25–32]. In addition, electrophoresis techniques can be scaled-up to large
product volumes and sizes. Electrophoresis is an important technology for colloidal processes [33,34].
Figure 1 presents a schematic diagram of the electrophoresis process.
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Figure 1. Schematic diagram of the electrophoresis process: (a) cathodic electrophoresis and
(b) anodic electrophoresis.

Charged colloidal or larger particles suspended or dispersed in a medium migrate towards the
electrode and deposit under an electric field. Two types of electrophoresis techniques can be defined
depending on the surface charge of the suspended particles, as shown in Figure 1. If the particles
are positively charged (Figure 1a), they will move towards the cathode, which is called cathodic
electrophoresis. In contrast, if the charge particles are negatively charged, they will be attracted
by the anode; this process is called anodic electrophoresis. Electrophoresis deposition (EPD) was
developed by Ruess in 1808 [33] and it was first used in particle applications for deposition. EPD
is largely used for the processing of traditional ceramics and restricted work was carried on the
EPD of engineering ceramics [35]. In the last 10 years, however, the interest in EPD for advanced
materials has increased significantly. In particular, the technique uses the fabrication of a coating,
thin and thick films, the shaping of bulk ceramic materials, and the infiltration of porous substrates
with nanostructured particles because of the many advantages, such as short formation time, simple
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apparatus, little restriction of the shape of substrates, and no requirement for a binder [36–39]. Recently,
studies for the design of advanced electrodes to be used as the electrodes in electrochemical energy
storage and conversion devices have increased significantly because of the excellent processing
technique for high performance. Therefore, there is a general scientific view that additional R&D
research on electrochemical energy storage and conversion devices is needed [10,34]. Nevertheless,
EPD has produced promising results for electrochemical energy storage and conversion devices.
Such articles at this stage are believed to stimulate further research in this area. This manuscript
provides a brief review of the mechanisms proposed to explain the principle of EPD as well as
the more recent attempts to design electrodes for electrochemical energy storage and conversion
devices. The advantages offered by EPD in not only developing the individual components, but
also designing the entire electrochemical energy storage and conversion devices will summarized.
A discussion will be attempted to correlate the various improvements achieved in the performance of
the electrochemical energy storage and conversion devices with the mechanisms and factors influencing
the EPD process. The review will conclude by summarizing the promising aspects of EPD and suggest
further developments in electrochemical energy storage and conversion devices technology using EPD.
The design approach will provide a new way of producing electrodes for high performance lithium
ion batteries, supercapacitors, and electrocatalysts for fuel cells

2. Mechanisms of Electrophoresis Process

The basic mechanisms of electrophoresis deposition (EPD) were modeled on
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and discussed by Sarkar and Nicolson
as the important reference in the electrophoresis technique [33,36]. According to Zhitomirsky’s
analysis, the proposed mechanisms can be divided into four categories: (1) flocculation by particle
accumulation, (2) particle charge neutralization, (3) electrochemical particle coagulation, and (4) an
electrical double layer (EDL) distortion and thinning mechanism [33,34,36,40–42].

2.1. Flocculation by Particle Accumulation

Harmaker and Verwey reported similarities of sediment formation by electrophoresis and
gravitation [36,43,44]. The main function of the application is to move the particles inside the electrolyte
towards the electrode [34]. The particles accumulate due to the pressure exerted on the incoming layer
and the outer layer, which is possible when deposition does not occur at the electrode [34]. This type of
deposition can explain the deposition of a coating on a membrane that does not act as an electrode [36].
Vanderperre reported that when the solid loading is increased, the zeta potential of the particles moves
towards the isoelectric point [45].

2.2. Particle Charge Neutralization

Grillon et al. suggested that charged particles are neutralized when they touch the electrode
(or deposit) and then generate static electricity [46]. This mechanism can be explained for the
single=particle and single later depositions and powder deposition by means of a chargeable salts by
adding salts to the suspension (e.g., the experiments described by Brown and Salt [47]). On the other
hand, this mechanism is invalid under the following conditions: (a) EPD for longer times; (b) when
particle-electrode processes are prevented, the semi-permeable membrane induces deposition between
the electrodes; and (c) when reactions occur at the electrode, which change the pH thereabout [34].

2.3. Electrochemical Particle Coagulation

This mechanism indicates the reduction of repulsive forces between the particles in suspension.
Koelmans discussed the coagulation caused by increasing electrolyte concentration around the
particles [48]. He suggested that the increase of ionic strength near the electrode is calculated when the
potential difference was applied, and then proposed that its behavior was due to an increase in the
electrolyte concentration around particles [36]. He confirmed that the ionic strength was similar to
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that needed to flocculate the suspension [36]. Therefore, Koelmans proposed that in this mechanism,
an increase in the electrolyte concentration produces a decrease in repulsion between the depositing
electrode and lowers the zeta potential, resulting in particle coagulation. Considering that it is essential
with a finite time for the increasing the electrolyte concentration next to the electrode, a certain time
must pass to achieve deposition. This time is reciprocally proportional to the square of the applied
voltage (t∞1/E2) in that a higher applied potential decreases the time required for deposition. This
mechanism is possible when an OH− ions are generated by an electrode reaction in a suspension
containing water. On the other hand, this mechanism is not suitable when the electrolyte concentration
does not increase near the electrode.

2.4. Electrical Double Layer (Edl) Distortion and Thinning

Sarker and Nicholson explained that the distortion of the particle double layer is related to the
invalidation of the electrochemical coagulation mechanism when the electrolyte concentration does
not increase near the electrode [33,36]. When positively charged particles and their shells are moving
towards the cathode electrode in the EPD cell, the double layer is distorted (thinner ahead and wider
behind) because of the fluid dynamics and the applied electric field [34].

As a result, the counter ions in the extended tail can react easily with other cations moving towards
the cathodic electrode due to the smaller coulombic force on the positively charged particles [36]. This
process results in a reduction of the double layer thickness. Therefore, once the incoming particles
come in with a thin double layer, the two particles come close sufficiently interact through London
Van der Waal attractive forces and coagulation; this mechanism is shown in Figure 2. Considering the
high concentration of particles near the electrodes or the high collision frequency, the distortion of the
double layer leading to coagulation is fully appreciated. This mechanism is also applied to incoming
particles with thin double layer heads which are already coagulated with particles in the deposit
occurs [34]. Nicholson proposed a new theory that the model suggested by Sarkar and Nicholson [33]
was incomplete and that the concentration of H+ in the cathode was reduced due to particle discharge
or other chemical reactions. As these particles move to the cathode, their zeta potential reduces
due to the increasing pH. Therefore, the particles are coagulated. This mechanism is general for all
suspensions involving H+ (or H3O+)
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Figure 2. Schematic representation of the deposition mechanism due to electrical double layer distortion
and thinning.

3. Principals of Electrophoresis Process

Charged particles in a suspension will migrate only in response to electrical signals. Ions
representing opposite charge are attracted toward the surface of the charged particles while ions
representing same charge are pushed out of the surface of the particles [35]. Charged particles in



Energies 2018, 11, 3122 5 of 81

solution are surrounded by ions of an opposite charge, causing an electric double layer of particles [49].
This model of the particle double layer is called the Stern model [33]. Figure 3 shows a schematic
representation of the double layer, showing the distribution of charged particles and potential drop
across the double layer [50]. If the particle has a negative charge, the ions of opposite charge are
attracted to the surface of the particle followed by the formation of a Stern layer and other ions, which
are distributed more broadly, to form a diffuse double layer, as shown in Figure 3. The particle surface
(ψ0) at the plane of shear between the Stern and diffuse layer (ψδ) is characterized by the zeta potential
(ζ) that is contained in all electro kinetics [51].

Energies 2018, 11, x  5 of 74 

 

across the double layer [50]. If the particle has a negative charge, the ions of opposite charge are 

attracted to the surface of the particle followed by the formation of a Stern layer and other ions, which 

are distributed more broadly, to form a diffuse double layer, as shown in Figure 3. The particle surface 

(ψ0) at the plane of shear between the Stern and diffuse layer (ψδ) is characterized by the zeta potential 

(ζ) that is contained in all electro kinetics [51]. 

 

Figure 3. Schematic representation of the double layer and potential drop across the double layer: (a) 

surface charge; (b) Stern layer; (c) diffuse layers of counter-ions. 

The potential (ψ) at a distance x from the Stern plane may be represented reasonably by the 

following linear form of the Poisson-Boltzmann Equation: 

𝜓 = 𝜓𝛿 𝑒𝑥𝑝( − 𝑘𝑥) (1) 

where k is the Debye-Hückel parameter and has the unit of (length)−1; 1/k is the distance at which the 

potential (ψ) drops to 1/e of its value at the Stern plane (ψδ) and this distance is called the double layer 

thickness or Debye length [34]. The Debye length thickness plays an important factor in the colloidal 

stability and for that matter in flocculation. The double layer thickness is controlled by the 

concentration and the number of charged ions in the medium. A high concentration of ions in solution 

generally decreases the thickness of the Debye length as well as the potential. The thickness of the 

Debye length is generally represented by the following equation: 

1

𝑘
= (

𝜀𝜀0𝑘𝑡

𝑒2 ∑ 𝑖𝑛𝑖𝑧𝑖
2)

1/2

 (2) 

where e is the electronic charge, ni is the concentration of ions with charge zi, ε is the relative dielectric 

constant of the solution, and ε0 is the dielectric constant in a vacuum. For aqueous solutions at 25 °C 

[34], the k is given in the following equation: 

𝑘 = 2.3 × 109 (∑ 𝑛𝑖𝑧𝑖
2)

1/2

 (3) 

where ni is the molar concentration and zi is the charge of ion I [34]. 

The main electrophoretic characteristic of the particle under the influence of an electric field is 

called the electrophoretic mobility, µ, which can be determined as the coefficient of proportionality 

between the electric field strength, E, and the particle velocity, ν [50]: 

𝜇 =
𝜈

𝐸
 (4) 

The electrophoretic mobility increases with increasing particle zeta potential (ζ) and decreases 

with increasing viscosity (η) of the media. Because µ and η are dependent on the particle size, the 

electrophoretic mobility of small particles is determined by having a much smaller core radius (r) of 

the particle than the Debye length of the counter ionic atmosphere (r < 1/k), which is defined by the 

Hückel Equation [52]: 

Figure 3. Schematic representation of the double layer and potential drop across the double layer:
(a) surface charge; (b) Stern layer; (c) diffuse layers of counter-ions.

The potential (ψ) at a distance x from the Stern plane may be represented reasonably by the
following linear form of the Poisson-Boltzmann Equation:

ψ = ψδexp(−kx) (1)

where k is the Debye-Hückel parameter and has the unit of (length)−1; 1/k is the distance at which
the potential (ψ) drops to 1/e of its value at the Stern plane (ψδ) and this distance is called the double
layer thickness or Debye length [34]. The Debye length thickness plays an important factor in the
colloidal stability and for that matter in flocculation. The double layer thickness is controlled by the
concentration and the number of charged ions in the medium. A high concentration of ions in solution
generally decreases the thickness of the Debye length as well as the potential. The thickness of the
Debye length is generally represented by the following equation:

1
k
=

(
εε0kt

e2 ∑ iniz2
i

)1/2

(2)

where e is the electronic charge, ni is the concentration of ions with charge zi, ε is the relative dielectric
constant of the solution, and ε0 is the dielectric constant in a vacuum. For aqueous solutions at
25 ◦C [34], the k is given in the following equation:

k = 2.3 × 109
(
∑ niz2

i

)1/2
(3)

where ni is the molar concentration and zi is the charge of ion I [34].
The main electrophoretic characteristic of the particle under the influence of an electric field is

called the electrophoretic mobility, µ, which can be determined as the coefficient of proportionality
between the electric field strength, E, and the particle velocity, ν [50]:

µ =
ν

E
(4)
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The electrophoretic mobility increases with increasing particle zeta potential (ζ) and decreases
with increasing viscosity (η) of the media. Because µ and η are dependent on the particle size, the
electrophoretic mobility of small particles is determined by having a much smaller core radius (r) of
the particle than the Debye length of the counter ionic atmosphere (r < 1/k), which is defined by the
Hückel Equation [52]:

µ =
2εε0ς

3η
(5)

The electrophoretic mobility of particles of size much greater than the Debye length of the counter
ionic layer (r > 1/k) is defined by the Helmholtz-Smoluchowski Equation [53,54]:

µ =
εε0ς

η
(6)

The first model of EPD kinetics was proposed by Hamaker in 1940 for electrophoretic cells with
planar geometry as shown in Equation (7) [55,56].

m = CsµSEt (7)

It is related to the deposited mass per unit area, m (g), with slurry properties, such as suspension
concentration, Cs (g·cm−3), and electrophoretic mobility, µ (cm2·s−1·V−1), with physical and electrical
conditions imposed on the system such as electric field, E (V·cm−1), deposition area, S (cm2), and
deposition time, t (s) [55]. The linear variation of deposited mass with deposition time is required to be
kept constant parameters of Equation (7) without change with time. This fact limits the application of
the Hamaker expression to short deposition times. The effectiveness of the microcrystalline deposition
process with efficiency factor, f ≤ 1, (i.e., if all the particles reaching the surface of electrode participate
in the formation of the deposits, f = 1) was quantified by Sarkar and Nicholson. The Hamaker equation
was used to quantify the effect of changes in variation of particle concentration on EPD kinetics.
Because the variation of bulk solid concentration in the suspension can be negligible in the early step
of the process, only a small portion of the powder is deposited. Thus, the infinitesimal intervals of
time in the Hamaker equation always holds. The equation can be expressed as:

dm
dt

= f µSEt (8)

The amount of powder extracted from the bulk suspension at variation of particle concentrations
increases for a longer period of time, and resulting in a decrease in Cs value. If the charged ions
under the assumption that sedimentation does not occurs are the mass of the powder deposited by
the EPD, the deposited mass is m (0) = 0 during the initial time, t = 0, which leads to the solution of
Equation (3) [56].

m(t) = m0(1 − e−
t
τ ) (9)

τ =
V

f µSE
(the volume of suspension : V

(
cm−3

)
(10)

This equation related to EPD kinetics has been widely applied by Sarkar and Nicholson [33] and
completed the first description proposed by Zhang et al. [57] considering the incorporation of changes
in particle concentration in EPD kinetics. Furthermore, the Sarkar and Nicholon model uses under
constant-voltage conditions. However, the resistance of the deposit is higher than that of the resistance
of suspension, and as a result the electric field strength is applied to the suspension. Thus, as shown in
the Sarkar and Nicholson model, the charged particle velocity correspond only to the applied electric
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field strength, ν = Eµ, and the effective electric field for a planar geometry was defined as E = ∆ψ/L.
The deposited mass considered these conditions be expressed as:

m = µESCd
∅d

∅d −∅s
t (11)

where ν (cm·s−1) is the electrophoretic rate of particles close to the electrode, ∅d is the volumetric
fraction of the deposit, Cd is the deposit concentration and ∅s is the volumetric fraction of the
suspension [53,56]. In addition, Sarkar and Nicholson proposed working under galvanostatic or
constant current conditions [33]. The voltage drop between the two electrodes increases over the
time, however, the voltage/unit distance in the suspension remains constant. Ma and Cheng have
defined the relationship between the kinetics parameter (k) and the applied current intensity through
experiments, as shown equation in the below.

k = ko(e
i

io − 1) (12)

where i (mA·cm−2) is the current density, and io (mA·cm−2) and ko (s−1) are considered the reference
conditions from which the expression predicts the kinetics constant under other applied currents,
facilitating more effective modelling and controlling of the process [56]. However, most of the
experimental shown in the literature describing the EPD process were performed under potentiostatic
or constant voltage conditions. On the few years ago, a mathematical description of the kinetics based
on the Hamaker model and Bisesheuvel correction for suspensions with high solid loading should
take into account changes in the suspension conductivity and the current density during EPD under
constant voltage conditions by the Anne group [56]. The electric field considering the conductivity of
the suspension can be expressed as shown equation in the below.

E =
I

SQs
(σs

(
S cm−1

)
(13)

the suspension conductivity depends on the conductivity of the suspension liquid medium)
Considering Hamaker model (Equation (8)), the equation can be expressed as below

dm
dt

= f µ
I

Qs
Cs

∅d
∅d −∅s

(14)

This equation applied EPD results obtained from an alumina suspension prepared using ethanol
as a dispersant in consideration of different additives. The proposed Equation (14) was verified
by experimental data collected during the deposition. Finally, the Ferrari group has proposed the
deposition kinetics that considering the relationship between colloidal parameters, and, for example,
the deposition kinetics taking into account the suspension concentration and resistivity during the
EPD process. This kinetics provides more accurate account of the experimental results obtained by
the collected for longer deposition times and for suspensions in which resistivity change significantly
during the deposition process. The kinetic equation describing this is as shown below

M(t) = Mo(1 −
1

1 + (ρs, 0
ρs

, ∞)(e
t

τ∞ −1)
) (15)

where ρs,0 is the initial resistivity of the suspension and ρs,∞ is the resistivity at infinite time, when
Cs = 0. Finally, notice that if ρs,∞ = ρs,0 (and hence ρs = ρs,∞ constant) the solution of this last
kinetics model (Equation (15)) reduces to the Sarkar and Nicholson model (Equation (9)). Furthermore,
if t << τ∞, this solution becomes that of the linear model proposed by Hamaker (Equation (7)). Thus,
Equation (15) includes previous models of EPD kinetics. Table 1 summarizes various equations,
corrections and experimental expressions proposed by different authors. The kinetic model of the
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theoretical electrophoresis demonstrate the particle motion generated near the electrode under various
conditions. Recently, further research is underway, such as determining the role of particles-substrate
interaction under an electric field, prediction of particle arrangement and design of micro and
nanopattern materials.

Table 1. Summaries of different equations, corrections and experimental expressions proposed by
different authors.

Equation Kinetics Proposed Equation Ref.

(7) Basic equation m = CSµSEt [55]

(8) Quantification of the deposition behaviour: the
sticking factor dm/dt = fµSECS [33]

(9) Considering the solid loading variation m(t) = m0(1 − e−t/τ) [33]
(11) Considering concentrated suspensions (Φs > 0.2) m = CSµSEt(Φd/(Φd − Φs)) [58]

(12) Experimental expression determining the variation
of the kinetics parameter vs. the current applied k = ko(ei/io − 1) [59]

(14) Considering the suspension resistivity variation m = fµ(I/σS)CS(Φd/(Φd − Φs)) [60]

(15) Considering the linear relationship of the
suspension resistivity and solid loading

m(t) = m0(1 − (1/1 +
(ρs,0/ρs,∞)(et/τ∞ − 1))) [61]

4. Factors Influencing Electrophoresis Deposition

The mechanism of the EPD involves two steps. The first step is that the charged particles must
moving to the electrodes under the influence of the electric field for deposition, and in the second step
the transferred particles must coagulate and deposit on the electrode. A number of parameters are
related to the suspension and physical characteristics, such as the electrical nature of the electrodes, the
electrical conditions (voltage/intensity relationship, deposition time, and etc.) that influence the EPD
process, and the quality of the deposited coating [53]. Some of the important ones are discussed below.

4.1. Key Parameter Related to the Suspension

4.1.1. Zeta Potential

The zeta potential of dispersed particles in a suspension is important factor for maintaining the
stability in the suspension by enhancing and uniforming the surface charge. This plays helps stabilize
the suspension by determining the intensity of the repulsive interaction among particles, the direction
and migration velocity of the charged particle during the electrophoresis process, and the quality of the
deposit. The overall system stability is determined by the interaction between the individual particles
in the suspension. Two mechanisms by electrostatic and van der Waals forces influence this interaction.
A high particle charge is needed to form high electrostatic repulsion to prevent agglomeration between
particles. In contrast, a low particle charge leads to coagulation [62]. Various charging agents, such
as acids, bases, and adsorbed ions or polyelectrolytes, can changed the zeta potential. Therefore, the
various additives acting through different mechanisms affect the size of the charge magnitude and its
polarity. The criteria for selection of charging agent is determined by the polarity and the deposition
rate of charged particles. Therefore, it is important to control the particle loading and the concentration
of solution and additives in the suspension to obtain the highest possible coating layer.

4.1.2. Particle Size

The particle size also is an important factor in the electrophoresis process. The dispersed particles
should remain suspended in a stable suspension. For ceramic particles, particle size between 1–20
µm leads to good deposition [63]. The main problem is that the charged particles in the suspension
tend to be deposited under the influence of gravity in a vertical system. In order to solve this problem,
the electrophoresis process needs to be higher in the movement of particles than in the movement
by gravity. In addition, the large particles dispersed in the suspension have a disadvantage that it is
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difficult to uniformly deposit the particles in the electric suspension. The electrophoresis process from
the sedimentation suspension leas to a gradient in the deposition, so that a thin or thick deposition
proceeds from the bottom when the electrode arranged in the vertical direction. In addition, when the
large particles occur during the electrophoresis process, very strong surface charge must be generated
or size of the electrical double layer region must increase. Although the gradient in deposition can be a
problem, it also can be applied in a special field.

4.1.3. Conductivity and Viscosity of the Suspension

The conductivity of a suspension determined by the amount of the coexisting ions is an important
factor in the electrophoresis process because the applied electric field in the electrophoresis process
leads to charged particles but mostly by the free coexisting ions (electrolyte). When the conductivity
of a suspension is too high, the particle mobility will be decreased by the amount of free ions in the
suspension, leading to a decrease in zeta potential [64]. In contrast, when charge and ionic conductivity
is low, the suspension acts as a resistor and causes a loss of stability [56]. In addition, the viscosity is
an important factor in the electrophoresis process. The viscosity of the suspension depends on the
amount, size and pH of the particles dispersed in the suspension. The suspension with low viscosity is
essential for the electrophoresis process, and optimal suspension concentrations can be determined
through experimentation.

4.1.4. Stability of a Suspension

The stability of a suspension is an important factor for a successful electrophoresis process. The
tendency and rate which the aggregation of charged particles occurs or avoids determines the stability
of the suspension. Therefore, the stability of a suspension varies depending on the charged particle
size and size distribution, zeta potential, Debye length of the solution and the presence of adsorbed
species. Particles less than 1 µm in diameter try to keep the suspended state for a long time due to
Brownian motion. In contrast, particles larger than 1 µm require continuous hydrodynamic agitation
to remain in suspension. Therefore, a stable suspension shows no flocculation or sedimentation of the
particles. On the other hand, as the suspension is stabilized, the repulsion force between the particles is
stronger than the electric field intensity, and deposition does not occur. The suspension stability is the
most important characteristic in the electrophoresis process, however, this is changed by experiment
and is not closely related to the fundamental parameters.

4.2. Key Parameters Related to the Process

4.2.1. Deposition Time

The yield of the thickness increases with increasing deposition time. Deposition is linear during
the initial deposition time. On the other hand, when the time is increased continuously, the deposition
rate is reduced and the plateau is reached through a very long deposition time. When a constant
voltage is applied in an electric field affecting electrophoresis process, the layer formation by charged
particles on the surface of electrode increases the deposition time and reduces the field strength.
Despite this, there is generally a linear relationship between the deposition mass and time during the
initial period of EPD [3]. Therefore, the optimal deposition time during EPD should be determined to
obtain the desired coating layer.

4.2.2. Applied Voltage

Generally, the deposition yield is increased with increasing applied potential. The coating layer
may receive distortion by rapid flow because a higher applied voltage may cause turbulence in the
suspension. Therefore, the lateral movement of the deposited particles is limited when a higher voltage
is applied. The limitation of this motion is due to particles already deposited on the surface by the
higher voltages, which causes more pressures on particle flux and movement. Therefore, the applied
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voltage for electrophoresis process affects the deposition rate and structure on the surface deposition
of charged particles.

4.2.3. Concentration of the Solid in Suspension

The concentration of solid in a suspension also plays an important role in multi-component EPD.
In some cases, different particle species can be deposited at different rates with the same surface charge
depending on the solids concentration of the suspension. Therefore, when the volume fraction of
solids is high, the particles in the suspension are deposited at the same rate, however, when the volume
fraction of solids is low, the deposition rate of the particles in the suspension is determined by the
electrophoretic mobility for each particles. Multi-component EPD is largely used to design electrodes
for the electrochemical energy storage and conversion devices, which will be discussed in more detail
in later section.

4.2.4. Conductivity of the Substrate

The uniformity and conductivity of the electrode for a substrate is an important factor in the quality
of film produced by EPD [53]. Generally, metal-based substrates are used to design electrochemical
energy storage and conversion devices. On the other hand, the electrodes for SOFCs are ceramic films.
Therefore, the deposition rate of charged particles in the EPD process is slow and a non-uniform film
can be obtained because of the high resistance of the substrates leading to the binder additive. High
quality films can be obtained by increasing the conductivity of the substrates substantially by removing
the binder. The deposition of charged particles on non-conducting substrates will be discussed in more
detail in the application of EPD for SOFC.

From the above discussion, the quality of the deposit and the kinetics of EPD are dependent
on many parameters. These individual parameters need to be controlled carefully during EPD. In
addition, their parameters are interrelated with each other. In particular, the quality of EPD depends
heavily on the suspension conditions. For an easy EPD process, a well-dispersed stable suspension
is required that is not an unstable suspension or agglomerated powder suspension. In general, a
higher measured zeta potential also provides a better dispersion of particles in the suspension because
it is closely related to the double layer thickness of the particles. Therefore, the parameters of the
suspension need to be considered carefully to achieve a suitable suspension in the EPD process. Once
the various parameters associated with suspension are determined, the parameters of EPD process can
be easily changed for the desired deposition. In particular, the most important parameters affecting
the EPD process are the voltage applied to the suspension, deposition rate and time and particle
concentration in the suspension. Although a high applied voltage leads to a high deposition rate, a
stable current density should be supplied to obtain a uniform film. In addition, increasing the particle
concentration and deposition time can lead to a higher deposition rate. From the next section, the
electrodes designed by considering the parameters related to the suspension and the process for the
application of the electrochemical energy storage and conversion devices were investigated in detail
and the properties in each of the areas for energy storage and conversion are reviewed.

5. Applications of the Electrophoresis Deposition for Nanomaterials of Li-Ion Batteries

Lithium-ion batteries have been used as energy storage materials since their invention in the 1970s,
and are currently the most promising energy source for portable devices and vehicles [65–67]. The
electrodes used in Li-ion batteries are manufactured through the following process: (1) mixing of an
active, conducting, and binding material in an organic solvent to make a paste; (2) painting of the paste
on a metal current collector, such as Cu, stainless steel, and Al; (3) evaporating the organic solvent;
and (4) pressing the electrode. These processes should be optimized to obtain high-performance
Li-ion batteries. In particular, the high discharge capacity at high-rate use is attained under optimized
conditions to fabricate the electrodes for Li-ion batteries. Moreover, the cost of making the batteries
also needs to be reduced. Thus far, considerable effort has been made to develop and produce new
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electrodes with higher performance for future Li-ion batteries [1]. The EPD technique is a new approach
to prepare electrodes for Li-ion batteries over traditional electrode materials containing active materials
mixed with conducting carbon on a range of substrates because unlike other coating techniques, the
material to be processed by EPD does not require defined properties; hence, there is wide variety
of materials that can be coated and deposited [68–70]. Strongly coupled electrode materials form
substrates with higher specific capacity, enhanced charging-discharging rate capability, and improved
cycling stability due to the uniform distribution of active materials, appropriate density of electrodes,
and enhanced electron transport resulting from the strong adhesion between the active and conductive
materials and substrates.

5.1. Cathode Materials

Most cathode active materials are oxide-based materials that have lower electrical conductivity.
To design electrodes with high electrical conductivity and performance, the multi-component EPD
process is largely carried out with various parameters, such as the zeta-potential, conductivity of the
substrate, and additives applied in suspensions for the EPD process. As shown in Figure 4a, LiCoO2,
which has a layered structure, is a typical cathode material of commercial Li-ion batteries. Although
most of the Li can be extracted to give a theoretical capacity of 274 mAh·g−1, a little over half of the
capacity is practically reversible for insertion/deinsertion (4.2 V vs. Li/Li+), which gives a specific
capacity of 150 mAh·g−1 [71–73].
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Kanamura et al. fabricated LiCoO2 composite electrodes, where I2 was added to produce
charged active materials in solution through the chemical reaction of I2 with acetone [30,74]. The
multi-component EPD process was conducted in an acetone solution containing various amounts of
conducting materials, I2, PTEF, and LiCoO2 at 100 V for 1 min. The EPD process was repeated until
the deposited mass was increased to 10 mg. They examined the effects of EPD with the amount of
conductive material in the suspension and the size of the particles. The resulting LiCoO2 composite
electrode showed excellent rate performance. A specific capacity of 142 mAh·g−1 was obtained at
a rate of 0.1 C. The discharge capacity of the LiCoO2 composite electrode prepared by EPD was
comparable to that of the electrode fabricated by a conventional process. The total fabrication time for
the electrodes was <5 min. Compared to LiCoO2, LiMn2O4 (Figure 4b) is an attractive cathode material
for Li-ion batteries because Mn is less expensive, more abundant, and environmentally benign than
Co. In addition, LiMn2O4 exhibits higher rate capability and thermal stability than LiCoO2 [65–67].
Kanamura et al. also prepared LiMn2O4 composite electrodes by EPD [74]. A small LiMn2O4 particle
size of <1 µm compared to that (>10 µm) of LiCoO2 was used as the active material. EPD was
conducted at 400 V for 1 min and the process was then repeated until the deposited mass was increased
to 10 mg. The resulting LiMn2O4 composite electrode fabricated by EPD exhibited lower performance
than that of the electrode prepared by the typical process due to the lower electronic conductivity
of the active material, and because small LiMn2O4 particles in suspension for EPD deposits on the
substrate more effectively than conductive powders. This suggests that larger active material sizes
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above >10 µm were suitable for the electrode of LiMn2O4 in the EPD process due to the connection
for electrical conductivity inside the electrode matrix. Caballere et al. also fabricated LiNi0.5Mn1.5O4

electrodes as another spinel cathode material [75]. They reported the EPD kinetics to improve the
reliability of the process, as shown in Figure 5a. The results showed that the substrate material itself
played a critical role in the deposit formation, and the incorporation of carbon black helped stabilize
the suspension and decrease the electrophoretic mobility. Moreover, citric acid as a dispersing agent
not only played a key role in stabilizing particle surfaces by adsorption, but is also a major source of
ions and hence is responsible for preserving the suspension conductivity.Energies 2018, 11, x  12 of 74 
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(a) EPD kinetics of the LiNi0.5Mn1.5O4 deposition on various substrates; (b) Top view of the
LiNi0.5Mn1.5O4/carbon composite electrode; (c) Charge-discharge curves for the EPD deposits cycled
over the voltage range, 3.5–5.0 V at a C/6 rate; first charge and discharge (black), second charge and
discharge (white); (d) Coulombic efficiency of LiNi0.5Mn1.5O4/carbon composite electrode with the
number of cycles. Standard electrode ( ), electrode fabricated by EPD (�) (charge/discharge rate C/6).

The electrodes optimized by the results of the formulation of EPD kinetics could further improve
their electrochemical performance compared to the electrode by a typical process. In subsequent cycles,
the coulombic efficiency of the electrode prepared by EPD remained at very high levels (95–97%).
Ferrari et al. also prepared a LiNi0.5Mn1.5O4 electrode by EPD. Citric acid and polyvinyl pyrrolidone
(PVP) were used to stabilize the active and conductive materials in acetone, and polyvinyl butyral (PVB)
was used as a binder to increase the film density [76]. In addition, the EPD kinetics of the suspension
were optimized with the amounts of citric acid as a dispersing agent. The film density was increased
with the connection between the active particles and addition of PVB as the binder. Prasanna et al. used
Li[Ni1/3Co1/3Mn1/3]O2 as the active material for the cathode electrode [77]. EPD was carried out at
100 V for 5 min to fabricate the thin electrode. The conditions of a suspension for EPD were optimized
by varying three controllable input factors, namely the weight of the active material, conductive agent,
and binder. The electrode prepared with the optimal parameters showed a discharge capacity of
147.18 mAh·g−1 and a capacity retention ratio of 97.11%. Applying EPD to prepare an electrode could
improve its electrochemical performance further compared to the casting method as a typical process
to make the electrode because its method increased the thickness compared to the EPD process. Typical
casting methods increase the thickness due to the use of polymeric binders to bond the active material
to the current collector. However, only the active material can be adhered to the current collector by the
immigration of the ions in the suspension by the current applied from both electrodes using the EPD
method, resulting in a thinner thickness than the typical process. An increase in electrode thickness will
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lead to an increase in internal resistance and stress accumulation by volume expansion and contraction
during the lithiation and delithiation process. A thin EPD-prepared electrode could improve the
capacity retention ratio [78,79]. The general formula, LiMPO4 (M: Fe, Co, Mn, and Ni) (Figure 6c),
has attracted considerable interest over the past fifteen years since it was first suggested as a cathode
material for Li ion batteries [1]. LiFePO4 is widely used commercially for its various advantages such
as excellent cycle life, high rate capability, high thermal and chemical stability, low over-potential, low
cost, and environmental friendliness [71–73,80,81]. Nair et al. used LiCoPO4 with a nanosized (200 nm)
flake-like structure as the active material for the cathode electrode [82]. The LiCoPO4 film without
conductive agents was fabricated by EPD. The nanosized particles agglomerated to minimize the
surface energy through EPD. The resulting LiCoPO4 film prepared by EPD showed a dense structure
and a specific capacity of 103 mAh·g−1 with a coulombic efficiency of 70% after 10 cycles. Recently,
all-solid-state batteries have attracted significant attention around the world because of their high
safety, reliability, and energy density [83–87]. Over the past 20 years, all-solid-state batteries fabricated
using thin film techniques, such as physical vapor deposition and chemical vapor deposition, have
been investigated thoroughly [83–87]. On the other hand, these techniques have disadvantages, such
as high cost and long formation times. The EPD process to make thin and thick film electrodes has
attracted increasing interest in recent years because of the short formation time, simple apparatus, and
few restrictions on the shape of the substrates. Quan et al. used EPD and a hydrothermal reaction
followed by a liquid state reaction to synthesize LiCoO2 thin films with nanosheet restacking, as shown
Figure 6 [88].

Energies 2018, 11, x  13 of 74 

 

all-solid-state batteries have attracted significant attention around the world because of their high 

safety, reliability, and energy density [83–87]. Over the past 20 years, all-solid-state batteries 

fabricated using thin film techniques, such as physical vapor deposition and chemical vapor 

deposition, have been investigated thoroughly [83–87]. On the other hand, these techniques have 

disadvantages, such as high cost and long formation times. The EPD process to make thin and thick 

film electrodes has attracted increasing interest in recent years because of the short formation time, 

simple apparatus, and few restrictions on the shape of the substrates. Quan et al. used EPD and a 

hydrothermal reaction followed by a liquid state reaction to synthesize LiCoO2 thin films with 

nanosheet restacking, as shown Figure 6 [88].  

 

Figure 6. LiCoO2 thin film prepared by EPD as the cathode for Li ion batteries: (a) Synthesis of 

nanosized LiCoO2 by nanosheet restacking and subsequent hydrothermal method; (b) SEM image of 

the surface of the films with 5 min EPD; (c) Charge-discharge curves of 5 min deposited sample at 

various currents. 

The resulting LiCoO2 thin film showed a higher specific capacity; 62% of the capacity was 

retained at a 400 C-rate compared to that at a 20 C-rate. Such high performance was attributed to the 

small size grain size and large surface area of the LiCoO2 thin film with nanosized particles. Mazor 

et al. used EPD to deposit the synthesized LiFePO4 nanoparticles directly on the surface of the 3D-

substrate to fabricate 3D-microbatteries [89]. The disadvantages of LiFePO4 are its low electronic and 

ionic conductivity, which could impede electron transport and Li-ion diffusion within the active 

materials and limit the charging-discharging performance [71–73]. Copper sulfide-coated LiFePO4 

nanoparticles were used because of their high electronic conductivity [90]. The EPD process was 

conducted in an acetone solution containing various amounts of conductive materials, PTEF, and 

CuS-coated LiFePO4 nanoparticles. The EPD of the 3D-substrate as a working electrode was carried 

out at 120 V for 1 min. The LiFePO4 thin film coated on the 3D-substrate was observed by SEM, as 

shown in Figure 7a–d at high magnification. The 3D-LiFePO4 thin film as the cathode electrode 

prepared by EPD showed a peak-pulse-power capability of 200 mW cm−2 and stable electrochemical 

behavior for more than 200 cycles (Figure 7f). These results were enhanced significantly compared to 

that of the 2D-LiFePO4 thin film. The EPD process provided a uniform distribution, which resulted 

in lower polarization, shorter transport, and diffusion path lengths, leading to relatively high specific 

capacity. CuS assisted in the high electron conductivity and allowed better access of Li+ to the active 

material sites. 
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nanosized LiCoO2 by nanosheet restacking and subsequent hydrothermal method; (b) SEM image
of the surface of the films with 5 min EPD; (c) Charge-discharge curves of 5 min deposited sample at
various currents.

The resulting LiCoO2 thin film showed a higher specific capacity; 62% of the capacity was retained
at a 400 C-rate compared to that at a 20 C-rate. Such high performance was attributed to the small
size grain size and large surface area of the LiCoO2 thin film with nanosized particles. Mazor et al.
used EPD to deposit the synthesized LiFePO4 nanoparticles directly on the surface of the 3D-substrate
to fabricate 3D-microbatteries [89]. The disadvantages of LiFePO4 are its low electronic and ionic
conductivity, which could impede electron transport and Li-ion diffusion within the active materials
and limit the charging-discharging performance [71–73]. Copper sulfide-coated LiFePO4 nanoparticles
were used because of their high electronic conductivity [90]. The EPD process was conducted in an
acetone solution containing various amounts of conductive materials, PTEF, and CuS-coated LiFePO4

nanoparticles. The EPD of the 3D-substrate as a working electrode was carried out at 120 V for 1 min.
The LiFePO4 thin film coated on the 3D-substrate was observed by SEM, as shown in Figure 7a–d
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at high magnification. The 3D-LiFePO4 thin film as the cathode electrode prepared by EPD showed
a peak-pulse-power capability of 200 mW·cm−2 and stable electrochemical behavior for more than
200 cycles (Figure 7f). These results were enhanced significantly compared to that of the 2D-LiFePO4

thin film. The EPD process provided a uniform distribution, which resulted in lower polarization,
shorter transport, and diffusion path lengths, leading to relatively high specific capacity. CuS assisted
in the high electron conductivity and allowed better access of Li+ to the active material sites.Energies 2018, 11, x  14 of 74 
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Figure 7. 3D-LiFePO4 thin film prepared by EPD as the cathode for Li ion batteries: (a) Planar image of
LiFePO4-coated 3D sample; (b) cross-section of the channels; (c) enlarged image of (a); (d) enlarged
image of (b); (e) The electrochemical cycling performance of sample c (2D-LiFePO4 thin film), sample d
(3D-LiFePO4 thin film), and sample f (CuS coated 3D-LiFePO4 thin film) at various C-rates and voltage
cutoffs; (f) Polarization curves of samples (c,d,f).

Huang et al. fabricated a binder-free and additive free LiFePO4/reduced graphene oxide
composite electrode by a one-step EPD process [91]. EPD was carried out in an IPA-based suspension
containing graphene oxide and Mn(NO3)2·6H2O. Finally, the composite electrode was treated thermally
to reduce graphene oxide under a H2/Ar atmosphere. The sample (7.5 wt.% reduced graphene
oxide, 91.5 wt.% LiFePO4, and 1 wt.% Mn(NO3)2·6H2O) exhibited high performance; the discharging
capacity was 163.7 mAh·g−1 at a low rate of 0.1 C compared to the composite electrodes fabricated
by the conventional method (132.8 mAh·g−1). The results were attributed to the uniform and dense
deposition with an intimate interface between the active materials and reduced graphene oxide due
to the influence of an electric field. EPD contributed to the improved capacity and enhanced the rate
performance and cyclability of the samples due to the additional advantage of generating composite
electrodes free of binders and other additives.

5.2. Anode Materials

The interest in EPD is increasing, particularly in the field of nanotechnology, considering that
nanoparticle suspensions can be manipulated by EPD to produce advanced nanostructured coatings
and nanoscale films with enhanced properties suitable for anode electrodes of Li-ion batteries [53,92].
The goal is usually the development of mechanically robust nanocomposite coatings, and functional
nanostructured films for the anode electrodes of Li-ion batteries. EPD can be considered to have
contributed favorably to the enhanced electrochemical performance in the electrode by offering full
realization of the active materials without conductive additives or a cohesive polymer binder.

5.2.1. Carbon Based Anode Materials

Commonly, graphite used as the anode material for the commercial Li-ion batteries has its own
advantages such as high abundance, low cost, good stability, and high chemical stability. During
the charging process of the lithium battery, Li-ions are intercalated into the graphite with a layered
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structure to form LiC6 [1]. The theoretical specific capacity is 372 mAh·g−1 during this electrode
reaction and the flat potential profile is only 0.2 V below that of lithium. When the same cathode
material is used, graphite with a lower potential than lithium as an anode material can be used to have
a wide voltage range and high capacity. First, binder-free graphite prepared by EPD is one of the most
studied anode materials for Li-ion batteries [93–95]. Ui et al. used EPD to fabricate binder-free anode
electrodes of four types of carbon materials, such as artificial graphite, natural graphite, soft carbon,
and hard carbon [96]. EPD was carried out at various voltages. A small amount of soft carbon and
hard carbon was observed at low deposition voltages, but it increased suddenly at voltages higher
than 250 V. The discharge capacities of these electrodes prepared by EPD were 296–395 mAh·g−1 and
the charge-discharge efficiencies were more than 90% for 30 cycles. This study also demonstrated that
EPD can be applied successfully to the deposition of carbon materials with different particle shapes
and grain sizes without any other binders [97]. In related studies, Lu et al. reported the preparation of
binder-free graphite electrode by EPD [98]. The electrochemical properties of the electrodes prepared
by EPD and conventional graphite electrode including PVDF as a binder were compared. EPD using
Cu foil as a working electrode was conducted at 24 V. The capacity of the binder-free graphite electrode
was 220 mAh·g−1, which is twice as large as the 100 mAh·g−1 of the conventional graphite electrode at
a 0.5 C-rate, as shown in Figure 8. XRD showed that copper-oxide was coated on the graphite particles
during the EPD process. The copper-oxide coating on the graphite particles led to enhanced capacity
because they changed to metallic Cu, which forms a modified solid electrolyte interphase (SEI) layer
during the charge/discharge process.
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binder-free graphite; (b) XRD pattern of binder-free graphite; (c) C-rate performance of binder-free
graphite; (d) Electrochemical impedance spectra of binder-free graphite before and after the
electrochemical evaluation.

When the initial lithiation state, a solid electrolyte interphase (SEI), which is a stable passivating
layer, can be formed at the interface between the anode and the electrolyte due to the electrochemical
instability at the anode/electrolyte interface [99–105]. SEI formation is one of the most important and
fundamental reactions of Li-ion batteries and is critical to the reversible cycling performance [105].
The characterization of SEI components is difficult with a conventional graphite electrode because the
electrode contains a polymer binder material. The binder-free graphite electrode is required to achieve
a better understanding of the SEI. Abraham et al. employed the EPD process to fabricate a binder-free
graphite anode and elucidated the anode SEI in various electrolytes [105]. The binder-free graphite
obtained an initial specific capacity of 400, 360, and 400 mAh·g−1 in the LiPF6/EC, LIPF6/EMC,
LIPF6/EC/EMC (3:7 v/v) electrolytes, respectively (Figure 9b). Transmission electron microscopy
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(TEM) with energy dispersive X-ray spectroscopy on the edge planes of binder-free graphite electrode
during the first lithiation (Figure 9c–e). The results suggested that when an electrolyte composed of
LiPF6/EC was utilized, the composition of the anode SEI was constant during the entire charging
process, suggesting that the initially formed SEI close to the graphite surface is identical to the SEI at
the electrolyte interface. Moreover, the SEI composition was also unchanged with increasing number
of cycles up to at least five. All the extracted electrodes contained the same two components, lithium
ethylene decarbonate (LEDC) and lithium fluoride (LiF) (Figure 9f). The SEI is located primarily on
the edges of the graphite and was relatively thin at ~50 nm. Kang and Xiao et al. also used the EPD
process to prepare a binder-free graphite anode, and the SEI layers formed on the graphite electrode in
lithium cells containing LiF2BC2O4, LiBF4, and LiB(C2O4) electrolytes were examined [106,107].Energies 2018, 11, x  16 of 74 
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Figure 9. Binder-free graphite prepared by EPD as the anode for Li ion batteries: (a) Morphology
of binder-free graphite; (b) Voltage versus capacity plots with LiPF6/EC, LIPF6/EMC, and
LIPF6/EC/EMC (3:7 v/v) electrolytes. TEM images of binder-free graphite anode cycled to 0.05
V vs. Li/Li+; (c) LiPF6/EC; (d) LiPF6/EMC; (e) LiPF6/EC/EMC, respectively. The red spots indicate
the areas examined by EDX; (f) Schematic figure of SEI formed on graphite anodes during the first cycle.

Nie et al. also employed the EPD process to fabricate a binder-free graphite anode electrode
to examine the graphite anode SEI in electrolytes including LiTFSI, LIFSI, and LiDFOB dissolved in
ethylene carbonate (EC) [108]. The SEI layers on graphite during the entire charging process could be
responsible for the electrochemical performance of the graphite anode. Graphene is a relatively new
and promising material for use in energy storage applications because of its large surface area; good
flexibility; good chemical and thermal stability; wide potential windows; rich surface chemistry; and
extraordinary electrical, thermal and mechanical properties [109–114]. Lee et al. reported a graphene
nanosheet electrode prepared by EPD. EPD was carried out in a suspension of IPA containing nickel
nitrate salt [115]. The electric field was set to 100 V·cm−1 for 10 min. The resulting electrophoretically
deposited graphene nanosheet electrode showed a reversible specific capacity of 932 mAh·g−1 at a rate
of 0.2 C. Stable reversible capacities were reached at 200 mAh·g−1 after 20 cycles. Seo et al. used EPD
to deposit MWCNTs/graphene nanosheet composite directly on Al foil to fabricate an anode electrode,
as shown in Figure 10a [116]. The suspension for EPD were prepared using Ni(NO3)2 in isopropyl
alcohol (IPA). EPD was carried out at 100 V for 10 min. The MWCNTs/graphene nanosheet (40:60



Energies 2018, 11, 3122 17 of 81

v/v) anode showed an initial specific capacity of 2200 mAh·g−1, which decreased to 458 mAh·g−1

after 10 cycles (Figure 10b). In contrast, the capacity of the graphene nanosheet electrode without
MWCNTs decreased from 1700 mAh·g−1 to 282 mAh·g−1, and the capacity of the MWCNTs without
the graphene nanosheet decreased from 1000 mAh·g−1 to 170 mAh·g−1 within 10 cycles (Figure 10b).
The results suggest that in the MWCNTs/graphene nanosheet composite electrode, the MWCNTs
could serve as a spacer between the graphene nanosheet, providing a much higher porosity and
efficient diffusion pathways for the electrolyte ions, as shown in Figure 10c.Energies 2018, 11, x  17 of 74 
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of the MWCNTs/graphene nanosheet composite electrodes at various current rates; (c) Typical
HR-TEM image of 60G40C composites. The inset in the figure shows a schematic illustration of
the MWCNTs/graphene nanosheet composites with uniform mixing.

5.2.2. Metal Oxide-Based Anode Materials

Replacing the carbon anode materials with higher-capacity anode materials could improve the
specific capacity and energy of Li-ion batteries because this material has disadvantages, such as low
stability and energy density. Metal oxides, which typically provide a capacity that is more than
two times larger than that of carbon materials with higher potential, have attracted considerable
interest [117–122]. Li-ion storage and release with these materials are based on the following
conversion reaction:
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where M is a metal, such as Sn, Co, Ni, Fe, Ti, Cu, and Mn, and the final product consists of a
homogeneous distribution of metal nanoparticles embedded in a Li2O matrix. Based on the conversion
reaction, transition metal oxides have theoretical specific capacities, as high as >1000 mAh·g−1.
On the other hand, their materials cause poor cyclic performance arising from the huge volume
expansion and severe aggregation of metal oxides that decrease the reversible capacity during
the charge-discharge cycles. Another drawback is the large voltage hysteresis between charge
and discharge together with the poor energy efficiency. Nanoscale materials are attractive anode
materials because they exhibit better adaptability to the strain arising from Li insertion/removal
thereby improving the electrochemical cyclability. Moreover, the large surface area of nanomaterials
allows for high charging/discharging rates because of the increased Li-ion flux through the liquid
electrolyte/nanosized electrode material interface [123–125]. In particular, nanoscale transition metal
oxides have been studied as alternative anode materials owing to their high capacity and excellent
cycle reversibility. Various other transition metal oxides, such as Fe3O4, Fe2O3, Co3O4, SnO2, TiO2, and
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Mn3O4, produced improved energy densities and high power density beyond the bulk values [126–130].
A homogeneous composition and a monodisperse morphology is crucial for maximizing the nanoscale
advantages. On the other, the size distribution and morphology of nanoparticles used in the electrode
for Li-ion batteries cannot be controlled easily using conventional methods, such as casting or drop
coating. Recently, EPD has attracted considerable attraction because the process can be applied to
produce high-quality dense nanoparticle films with built-in charge transfer pathways without the need
for binders that are free of conducting materials for anode electrodes. Importantly, the anode electrodes
prepared by EPD with conducting additives or cohesive polymer binders allows an examination of
the origins of the irreversible capacity loss during the whole battery operation [131–138]. Ha et al.
prepared a nanoparticle film by the EPD of colloidally synthesized, monodisperse cobalt nanoparticles
that were transformed to hollow Co3O4 through the nanoscale Kirkendall effect [139]. EPD was carried
out for 10–30 min depending on the concentration and voltage. The Co3O4 nanoparticle films formed
by EPD showed a higher density than that of the films prepared by conventional slurry and drop
casting methods. The EPD film exhibited little or no de-adhesion of nanoparticles from the adhesion
test compared to the films fabricated by conventional slurry and drop casting methods, as shown in
Figure 11b. This excellent mechanical stability might provide a critical benefit for building a battery
without additives. The resulting Co3O4 nanoparticle films formed by EPD showed a high reversible
specific capacity of 1820 mAh·g−1 at a rate of 0.05 C, and retained a capacity of 890 mAh·g−1 after
50 cycles (Figure 11c). The EPD voltage did not influence the cycling performance significantly within
the range from 150 to 600 V, as shown in Figure 11d. On the other hand, the battery capacity depended
strongly on the film thickness due to the limitation of the electrical conductivity of the oxide particles.
TEM showed that after the first lithiation process, the hollow Co3O4 nanoparticles were no longer
individual hollow nanoparticles. Moreover, after delithiation, the nanoparticles were even smaller than
hollow nanoparticles. They suggested that these small nanoparticles can reversibly particles system,
5–10 nm may be a stable size for reversible lithiation and delithiation with pulverization. EPD is a
critical solution-processing technique for achieving good battery performance for nanoparticles films.

Kim et al. employed EPD to examine the origins of the irreversible capacity loss by probing
the changes in the electronic and structural properties of additive-free hollow structured Co3O4

nanoparticles [140]. The Co3O4 nanoparticles were assembled into monolayer scale and thick films up
to 400 nm in thickness using EPD in a strong electric field. The nanoparticles film exhibited a specific
capacity of 1300 mAh·g−1 in the first discharge at a current density of 100 mA·g−1. A stabilized specific
capacity of approximately 800 mAh·g−1 was observed after three cycles. The Co3O4 nanoparticle
film showed smaller capacity loss than the drop-cast film electrode. Wang et al. prepared a V2O5

nanoparticle film by EPD (Figure 12a) with a capacity of 300 mAh·g−1 after 50 cycles when cycled
between 0.4 and 1.6 V (Figure 12c) [134]. The porous structured V2O5 nanoparticle film prepared
by EPD led to Li+ intercalation capacity and enhanced cyclic stability. Wu’s group reported the
preparation of a monodisperse macroporous architecture of the NiO film as the anode electrode [138].
EPD was used to deposit the monolayer polystyrene sphere followed by the electrodeposition of NiO
(Figure 12b). The film was immersed in a toluene solution to remove the PS template and annealed
at 400 ◦C. The macroporous NiO film as an anode electrode reached 1620 mAh·g−1 at a rate of 1 C
and had a high capacity of 990 mAh·g−1 at a rate of 15 C, which was approximately 2.7 times higher
than that of the bare NiO film at the same rate (Figure 12d). A two-step process involving EPD and
electrodeposition is a feasible technique for obtaining a monodispersed macroporous architecture
electrode with enhanced capacity.
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5.2.3. Metal Oxide/Carbon Hybrid-Based Electrodes

Although nanostructured transition metal oxides have been developed for use as anodes in
Li-ion batteries, researchers have focused mainly on carbonaceous materials, such as graphite,
carbon nanotubes, and graphene, as buffer carriers for effectively suppressing the pulverization and
capacity fading of metal oxide anodes during the charge-discharge cycles [141–144]. Carbonaceous
materials/metal oxide nanoparticles composites are expected to improve the stability over repeated
charge-discharge cycling because carbon materials restrain the volume change in the active materials
and enhance the conductivity of active materials. Generally, to fabricate an electrode for Li-ion
batteries, a slurry containing a mixture of the active materials, conductive additives, and binder
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based on poly (vinylidene fluoride) (PVDF) is used. This means that an additional process is needed
to combine the active materials with conducting additives and binders. In particular, the use of
binders always degrades the performance of Li-ion batteries [145–147]. To solve this problem, EPD has
attracted attention because it does not require extra binders or conductive additives for fabricating an
electrode, and it can lead to a controllable and prominently improved energy density. The carbonaceous
materials/metal oxide nanoparticles composite electrodes have been fabricated by EPD. Ui et al. used
EPD to fabricate binder-free SnO2 nanoparticles/acetylene black (AB) electrodes [148]. EPD was carried
out at 100 V for 10 s in acetone. The weight percentage of AB in the deposited film increased with
increasing concentration of AB particles in acetone. The composition of the co-deposited film could be
controlled easily by changing the concentration of AB particles. The resulting SnO2 nanoparticles/AB
electrode showed an initial specific capacity of 887 mAh·g−1 at a rate of 0.1 C and a capacity after
50 cycles at 504 mAh·g−1. Carbon nanotubes (CNTs) are used frequently as materials for composites
with metal oxides. Metal oxide/CNTs can improve the electrochemical performance better than pure
metal oxide nanoparticles due to the advantageous effects of the CNTs, such as a large surface area
and high electrical conductivity. Xiao et al. used EPD to deposit directly MnO2-MWCNTs composites
synthesized via a facile chemical bath deposition process. The resulting MnO2-MWCNTs composite
film showed a specific discharge capacity of 741 mAh·g−1 for the first cycle and 407 mAh·g−1 for
the 20th cycle [149]. EPD does not require the addition of binders and conductive additives, and
leads to enhanced energy density of the electrode. Kim and co-workers developed two processing
approaches involving the EPD of MWCNTs [150,151]. They used EPD to fabricate a binder-free
MWCNTs film to synthesize metal oxide nanoparticles and nanorods by chemical vapor deposition
(CVD), as shown in Figure 13a. SnO2 nanoparticles were deposited uniformly on the CNT surface by
CVD (Figure 13b). The resulting binder-free SnO2-MWNCTs composite electrode showed a reversible
capacity of 836 mAh·g−1 in the first cycle and 470 mAh·g−1 after 1000 cycles (Figure 13c) as well as
a binder-free CoO-MWNCT composite with a reversible capacity of 600 and 550 mAh·g−1 at a rate
of 715 mA·g−1 after 50 and 100 cycles (Figure 13e), respectively, because the CNT film prepared by
EPD provided several beneficial factors, such as facile electron transport, minimization of aggregation
of the nanoparticles, and alleviation of huge volume expansion. EPD proved to be a more suitable
technique for the production of MWCNTs films with better packing and alignment than spray or deep
coating techniques without the addition of crosslinking molecules or binders.
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Figure 13. (a) Schematic illustration of the two-step process for the SnO2-CNT electrode; (b) SEM
image of binder-free SnO2 nanoparticles-CNT electrode; (c) Cycling performance of binder-free
SnO2 nanoparticle-CNT electrode; (d) SEM image of binder-free CoO nanoparticle-CNT electrode.
(e) Charge-discharge curves of CoO nanoparticle-CNT electrode.
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Recently, EPD has been used successfully to deposit the binder-free graphene oxide-based
graphene or graphene-based films, including nanosized metal oxides for use as the anode
electrode [152–155]. Rangasamy et al. fabricated a binder-free, multi-layered Si-CuO quantum
dot-wrapped graphene electrode by EPD [152]. In this work, well dispersed aqueous suspensions of
graphene oxide were prepared (Figure 14a). The materials were deposited on Cu foil by EPD with a
constant voltage of 10 V for 1 min and a second EPD was then carried out in suspensions of water and
HF, including Si quantum dots (QD) by applying voltage of 10 V for 1 min. The multi-layered electrode
was applied by annealing at 400 ◦C for 30 min under an Ar atmosphere for a further reduction process
for graphene oxide. The annealed graphene/Si-CuO QD multi-layered film electrode exhibited an
initial specific capacity of 2760 mAh·g−1 at a rate of 0.5 C, which decreased gradually to 350 mAh·g−1

at a rate of 5 C with 12% retention, as shown in Figure 14b. The low-cost two-step process did not
require the addition of binders and conductive additives, and led to reduced GO layers coupled to
metal oxide layers to enhance the energy density of the electrode. Wang and co-workers proposed
anchored nanosized metal oxide particles to the graphene surface using a facile one step EPD process
and followed by thermal annealing [153,154]. This strategy avoided the use of harsh chemicals for
reducing GO, and was free from binders or additives for fabricating Li-ion batteries. During EPD,
the metal ions were reduced electrochemically to metal nanoparticles and then converted to metal
oxide nanoparticles after annealing, producing a good final dispersion in the hybrid deposit, as
shown in Figure 14c,e. The rate capability and cycling stability of their electrodes were improved
significantly because highly conducting graphene offered conducting channels for nanoparticles and
the nanoparticles allowed a large contact area between the electrode materials and the electrolyte.
Thus, EPD is a convenient technique to obtain, in a single step, layers or composites of graphene and
metal oxide nanoparticles with high capacity.
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Figure 14. (a) SEM image of a graphene/Si-CuO QD multi-layered film electrode; (b) Cycling
performance of a graphene/Si-CuO QD multi-layered film electrode; (c) SEM image of
graphene/ZnFe2O4 nanoparticle electrode; (d) Cycling performance of a graphene/ZnFe2O4

nanoparticle electrode; (e) SEM image of a graphene/CoFe2O4 nanoparticle electrode; (f) Cycling
performance of a graphene/CoFe2O4 nanoparticles electrode.

Lithium can react with metallic/semi-metallic elements and metal alloys, such as Si, Sn, Ge,
Bi, Cu–Sn, and Ni–Sn, showing high capacity, while their applications face the same challenge of
large volume changes during Li alloying/dealloying processes as metal oxides, which leads to severe
capacity fading [156–160]. Carbonaceous materials/small metal nanoparticles composites are also
expected to show improved stability over repeated charge-discharge cycling. EPD was used to fabricate
binder-free metal-composite electrode films to enhance the performance [161–164]. Hwang et al. used
EPD to prepare MWCNTs film electrodes followed by vapor-phase transport and nucleation of Ge
nanoparticles on pre-deposited MWCNTs networks [161]. A uniform film was obtained when EPD
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was carried out at 100 V for 2 min. The specific capacities and irreversibility between the discharge
and charge capacities were stabilized after the first few cycles. A reversible capacity of more than
810 mAh·g−1 was achieved, even after 200 cycles, which is approximately 2.2 times larger than
that of a carbon-based anode electrode. Seo et al. developed Sn-MWCNTs nanocomposite anode
films, in which the Sn nanoparticles were assembled on the MWCNTs film prepared directly by
EPD [162]. The electrolytic deposition for Sn nanoparticles was conducted to synthesize Sn-MWCNTs
nanocomposite anode film. The nanocomposite anode film showed better cycle performance and
maintained higher reversible capacity. At the first discharge, the electrode showed a high specific
capacity of 2100 mAh·g−1 and was stabilized irreversibly around 700 mAh·g−1 after 100 cycles.
Interconnected MWCNTs nanoscale networks with large surface areas formed by EPD help to alleviate
the effects of the huge volume change during the Li-alloying/de-alloying process. Recently, another
approach to reduce the large volume expansion during charge/discharge cycling was suggested: the
application of three-dimensional (3-D) porous structures [165–168]. EPD of a 3-D porous structure has
been explored to simplify the synthetic approach and reduce the preparation time of composite anode
electrodes [169–173]. This strategy integrates both the 3-D porous structure and composite coating.
Carter et al. deposited single-walled carbon nanotubes (SWCNTs) directly on 3-D Ni foam by EPD [173].
The EPD for SWCNTs was carried out in polar NMP solvents without binders and surfactant-based
dispersions. The 3-D SWCNTs anode electrode without the surfactant showed a higher specific capacity
of 2210 mAh·g−1 than that of 3-D SWCNTs anode electrode with the surfactant (1840 mAh·g−1) after
200 cycles at a rate of 0.5 C. Such high performance was attributed to the morphology of the electrode
and the absence of a surfactant led to higher average energies for electrolyte decomposition and
metal storage and lower average energies for replenishing the electrolyte with Li metal. Cohn et al.
developed two processing approaches to graphene-SWCNTs 3D-porous anode electrodes involving
the EPD of SWCNTs [171]. The CVD process was used to deposit multi-layered graphene on 3D-Ni
foam and EPD was then carried out in N-methylpyrrolidon (NMP) suspension to form a 3D-porous
graphene-SWCNTs anode electrode (Figure 15a). The resulting 3D-porous graphene-SWCNTs anode
electrode showed a high reversible specific capacity of 2640 mAh·g−1 at a rate of 0.5 C, which retained
236 mAh·g−1 at 75 C. In contrast, a lower specific capacity and cycling performance were observed for
the 3D-porous electrodes of graphene because the irreversible capacity led to strong binding between
the chemical species and sp3 carbon atoms. The results suggest that as SWCNTs enable reactivity with
the electrolyte to chemisorb Li species, and graphene materials provide a surface topology capable
of reaching high storage capacities, as shown in Figure 15d. Another type of 3-D porous graphene
electrode containing Sn nanoparticles as active materials was obtained by EPD [160]. For EPD, a
suspension including GO and SnCl2·2H2O was used. The EPD conditions were 5 V and 30 s, and
graphene/Sn composites were deposited on 3-D Ni foam (Figure 15e). The 3D-porous graphene-Sn
composite electrode exhibited a specific capacity of 964 mAh·g−1 at a current density of 500 mA·g−1,
which retained 520 mAh·g−1 after 60 cycles compared to that of the 3D-porous Sn electrode (Figure 15f).
The enhancement was attributed to graphene. EPD is a feasible technique for obtaining composite films
on 3D-porous substrates with enhanced capacity. In addition, the time required for the preparation of
the previously reported hybrid composite electrode was usually longer than 2 h, which was shortened
to 30 s in this work. Furthermore, the electrode is binder-free, whereas an extra conducting agent and
binder are usually necessary for the fabrication of other electrodes [174–177].
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Figure 15. (a) Photograph of the 3D-porous graphene-SWCNTs electrode; (b) TEM image of the
3D-porous graphene-SWCNTs electrode; (c) Cycling performance of the 3D-porous graphene-SWCNTs
electrode; (d) Schematic illustration of the improved capacity of the 3D-porous graphene-SWCNTs
electrode; (e) Synthetic strategy illustration of the 3D-porous graphene/Sn composite electrode;
(f) Cycling performance of the 3D-porous graphene/Sn composite electrode.

The details of the Li-ion electrode manufactured by applying the EPD process are summarized in
Tables A1 and A2.

6. Applications of the Electrophoresis Process for Nanomaterials of Supercapacitors

Supercapacitors are an important type of energy storage device due to the high power performance
and excellent cycling stability as a result of their high power density, fast charging-discharging
rate, and excellent cycle stability [178–180]. Generally, there two types of supercapacitor materials
with different energy storage mechanisms [181]. One is the electrical double layer capacitor (EDLC)
based on the adsorption and desorption of ions. Therefore, it is strongly dependent on the surface
area of the electrode materials that is accessible to the electrolyte ions. Another mechanism is a
pseudo-capacitor based on the fast and reversible faradic processes that take place due to electro-active
species [182,183]. Like batteries, supercapacitors are composed of two electrodes and an electrolyte.
Although symmetrical supercapacitors have two identical electrodes made from the same materials,
asymmetrical supercapacitors are comprised of two different electrodes including a positive electrode
and a negative electrode. Binder materials are unavoidably used to fabricate the electrodes in those
paste-coating methods, such as dipped, casted, and sprayed coatings, and they might cover the surface
of the electrode materials or block the open porosity network. Recently, the EPD process was reported
to be an attractive method for preparing electrodes because the process can be performed without
binder materials. The following sections provide an overview of recent scientific and technological
improvements of various configurations and electrodes prepared by EPD.
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6.1. Carbon-Based Materials

Carbon-based materials ranging from activated carbon to carbon nanotubes (CNTs) are the
most widely considered EDLC electrode materials because of their high surface area and somewhat
controllable pore size, depending on the method of activation (chemical or physical activation). As one
of the most versatile electrode fabrication methods for carbon-based supercapacitors, EPD has been
studied widely [184–186]. Nandhini et al. prepared nanoscale ball-milled activated carbon electrodes
by EPD carried out at 100 V in an IPA suspension, including nickel nitrate, which afforded a nanoscale
ball-milled activated carbon electrode in the sub-100 nm range with the highest specific capacitance
of 1071 F·g−1 at a cyclic voltammetry (CV) scan rate of 100 mV·s−1 in 0.1 M KOH electrolyte [184].
The micro-supercapacitor by rational design of the device architecture and structure of the electrode
showed that it could approach the power density of conventional electrolytic capacitors. Owing to
restriction to form electrodes in micro-devices using conventional methods, Pech et al. employed
EPD to fabricate the electrode for micro-supercapacitors [185]. Onion-like carbon (OLC) was used
as the electrode material (Figure 16a). The micro-supercapacitor was fabricated by EPD carried
out at 50 V on interdigital gold electrodes patterned on a Si wafer (Figure 16b). The OLC-based
micro-supercapacitors showed ultra-high power handling capability and could be cycled at very
high scan rates (Figure 16c), offering a specific capacitance of 0.9 mF·cm−2 at 100 V·s−1, which is
comparable to the values reported in the literature at much lower scan rates (1–100 mV·s−1) for
electrochemical double-layer micro-capacitors (0.4–2 mF·cm−2) [187,188]. The structure of the OLCs
and the binder-fee electrode fabrication by EPD play an important role in the high performance of the
micro-supercapacitor. In addition, the short distance between the micro-electrodes results in a decrease
in the mean ionic diffusion path between the electrodes. Carbon nanotubes have attracted attention
for supercapacitor electrode applications because of their unique pore structure, superior electrical
properties, and good mechanical and thermal stability [189–192]. CNTs are usually considered to
be the ideal high-power electrode material because of their good electrical conductivity and readily
accessible surface area. Moreover, their high mechanical resilience and open tubular network make
them a good support for active materials.Energies 2018, 11, x  24 of 74 
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Figure 16. (a) TEM image of OLC produced at 1800 ◦C; (b) Schematic diagram of the
micro-supercapacitor (25 mm2); (c) CV scans at different scan rates for a micro-supercapacitor with 16
interdigital electrodes and tested in 1 M NEt4BF4 in propylene carbonate (PC).
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The EPD of CNTs has been expanded continuously due to the effective manipulation of CNTs
(both single-walled and multi-walled) for applications to supercapacitors [193–196]. Du et al. used EPD
to prepare MWCNTs electrodes for supercapacitor applications [193]. The resulting MWCNTs electrode
fabricated by EPD showed a pore network MWCNTs film with a high specific surface area. Therefore,
the capacitance of 21 F·g−1 and power density of 20 kW·kg−1 showed no degradation after 100 cycles
at 500 mV·s−1 in a KOH electrolyte. In particular, hydrogen treatment of the MWCNTs electrode
prepared by EPD decreased the resistance of electrode remarkably compared to an argon treatment.
Clearly, a considerable amount of oxygen-containing species on the nanotubes were removed by the
hydrogen treatment. The resulting hydrogen treatment showed a very low equivalent series resistance
(ESR). Moore et al. examined SWCNTs electrodes deposited electrophoretically on stainless steel
and compared them with the electrodes prepared by drop coating and high voltage electro-sprayed
(HVES) [195]. The electrodes prepared by EPD had higher specific surface areas than that by the
other coating processes because EPD suggested a unique pore network SWCNTs film. The SWCNTs
electrode prepared at 30 V for 60 min showed a high specific capacitance of 26.50 mF·cm−2 at 20 mV·s−1.
Dinh et al. fabricated a MWCNTs electrode by EPD for an all-solid-state micro-supercapacitor [196].
The MWCNTs electrode showed a specific capacitance of 1.8 mF·cm−2 in a PVA-H3PO4-SiWA solid
electrolyte. The MWCNTs electrode prepared by EPD showed good capacitance in a solid electrolyte.
Various carbon materials, including graphene have been used to form an EDL capacitive material owing
to its high surface area and electrical conductivity [197–199]. Wang et al. reported the preparation
of reduced graphene and MWCNTs composite electrodes for capacitors [200]. The graphene oxide
and MWCNTs composite was deposited electrophoretically on carbon cloth and then treated by
hydrogen thermal reduction to obtain reduced graphene. Compared to pristine graphene coated
on carbon cloth, including polymeric binders, the reduced graphene/MWCNTs deposited on the
carbon cloth by EPD showed significantly enhanced specific capacitance, improved rate capability,
lower device resistance, and higher power densities due to their porous structure and the synergetic
effect between graphene and MWCNTs. EPD proved to be a suitable process for the production of
graphene/MWCNTs composite electrodes compared to casting and sprayed methods, while avoiding
the addition of polymeric binders. Nam et al. developed another reduced graphene/carbon black
spacer composite, in which a binder-free composite was deposited electrophoretically [201]. The
relative amount of reduced graphene oxide and carbon black in the deposit was adjusted by the zeta
potential with a suspension concentration and pH for the EPD process. EPD was carried out at 6 V for
10 min at pH 9 in a suspension containing a reduced graphene oxide/carbon black weight ratio of 9:1.
The composite electrode showed a specific capacitance of 138.4 F·g−1 at a CV scan rate of 10 mV·s−1

and 133.3 F·g−1 at a galvanostatic current density of 2 A·g−1 in a TEA BF4 electrolyte because the
electrode incorporates carbon black particles inside the reduced graphene oxide sheets as spacers,
meaning that the interlayer distance of reduced graphene/carbon black can adequately accommodate
the electrolyte ions. Recently, 3D-architecture electrodes for supercapacitors have been fabricated
because the structure effectively prevents the aggregation of graphene and maintains their high specific
surface area, resulting in good capacitive performance [202,203]. Because EPD can deposit graphene
materials on complicated 3D-porous electrodes without aggregation, Zhang et al. deposited graphene
oxide directly on 3D-porous Ni form by EPD [203] and reduced the prepared electrode by a hydrogen
treatment (Figure 17a,b). The EPD process was conducted at 50 V for 13 min in a water suspension.
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Figure 17. (a) SEM image of bare nickel foam; (b) SEM image of 3D porous graphene electrode prepared
by EPD; (c) CV curves at various scan rates of 3D porous graphene electrode prepared by EPD; (d) Cycle
performance of 3D porous graphene electrode prepared by EPD at a current density of 1 A·g−1.

This 3D-porous reduced graphene electrode exhibited a maximum specific capacitance of
110 F·g−1 at a lower scan rate of 10 m·V−1 (Figure 18c) as well as no decrease in the initial specific
capacitance after 2000 cycles at a galvanostatic current density of 1 A·g−1 in 6 M KOH electrolyte
(Figure 17d). Thus, EPD provided 3D-porous graphene films suitable for supercapacitor electrodes.
Graphene oxide is used widely as an electrode material. On the other hand, it needs to be treated further
by chemical, electrochemical, or thermal reduction to regain conductivity. Despite this, post-reduction
treatment would destroy the film structure due to the decomposition of oxygen-containing functional
groups. To solve this problem, Liu et al. deposited reduced graphene oxide directly by AC-EPD to
produce a binder-free electrode for flexible supercapacitors (Figure 18a) [204]. AC-EPD was carried
out using positive and negative pulse signals, whose frequency and peak-to-peak voltage (Vpp) at
5 Hz and 60 V. As a result, the process led to synchronization of the formation and reduction of
graphene oxide film (Figure 18b). The reduced-graphene oxide electrodes were prepared at different
duty ratios and reactive times (1, 2, and 3 h). XPS showed that the O 1s peak intensity in an electrode
with a 60% duty ratio and 3h reaction time decreased significantly compared to that in graphene
oxide (Figure 18c,d). After the reaction, the intensities of all C 1s peaks of carbon binding to oxygen
decreased gradually with time or decreasing duty ratio. This can be explained by the fact that a smaller
duty ratio means a longer negative pulse time for reducing graphene oxide and restoring the structure
within the graphene nanosheets. The capacitor assembled at a 60% duty ratio and 3 h reaction time
showed a specific capacitance of electrode of 157 F·g−1, which was larger than the 145 F·g−1 obtained
for an 80% duty ratio and 3 h reaction time at a scan rate of 10 mV·s−1 as well as a long cyclic life
with approximately 91.3% specific capacitance retention after 2000 cycles at a scan rate of 100 mV·s−1

(Figure 18f). AC-EPD is a promising method for the environmentally friendly production of graphene
electrodes for supercapacitors.
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Figure 18. (a) Flexible graphene paper supercapacitor; (b) SEM image of a graphene electrode prepared
at a 60% duty ratio for 3 h; (c) XP spectra of graphene oxide; (d) XP spectra of graphene electrode
prepared at a 60% duty ratio for 3 h; (e) Specific capacitance of graphene electrode prepared at a 60%
duty ratio for 3 h at 10 mV·s−1; (f) Cycle performance of the graphene electrode prepared at a 60% duty
ratio for 3 h at 100 mV·s−1.

6.2. Metal Oxide-Based Materials

Pseudo-capacitive materials are faradic in origin, involving fast and reversible electrochemical
redox reactions between the electrolyte and electro-active species on the electrode surface [205,206].
While the pseudo-capacitance can be higher than the EDL capacitance, it suffers from the drawbacks
of a low power density due to poor electrical conductivity, leading to a lack of stability during
cycling. Although the lack of stability can be improved by adding carbon materials, the metal
oxide-based supercapacitors that have a nanostructure were fabricated by EPD without carbon and
binder additives for pore and particle networks (high power), and mechanical stability (long cycle
life). The most commonly known electrode materials include ruthenium oxide, manganese oxide,
nickel oxide, and vanadium nitride as well as electrically conducting polymers, such as polyaniline,
and oxygen or nitrogen containing surface functional groups [207–211]. In particular, amorphous
hydrous ruthenium oxide (RuO2·xH2O) exhibited a much higher specific capacitance (720 F·g−1)
due to the mixed proton–electron conductivity in RuO2·xH2O [207,212,213]. Jang et al. prepared a
RuO2·xH2O electrode by EPD without a binder and conducting additive [213]. EPD was carried out
at 50 V, followed by annealing at 250 ◦C. The highest specific capacitance was 734 F·g−1 at a cyclic
voltammetry (CV) scan rate of 1 mV·s−1 in an aqueous sulfuric acid solution [213]. This study suggests
that particle contact was improved significantly by heat-treatment at 250 ◦C, providing high electronic
conductivity between the contact of particles and good mechanical strength. In addition, this group
examined the effects of PTEF during EPD [207]. EPD was carried out in 2% PTEF and 10% water
in ethanol using 50 V for 1 min. The specific capacitance of the electrode without PTEF decreased
rapidly, showing only 5% of the initial capacitance after 50 cycles due to the poor mechanical stability
of the electrode. On the other hand, with PTEF addition, the cyclability was improved by up to
43% after 200 cycles because PTEF acted as a binder to maintain the electrode layers without heat
treatment in a 1.0 M sulfuric acid electrolyte. MnO2 is another attractive pseudo-capacitive material
due to its reversible redox capability, low cost, high abundance, and environmental compatibility
compared to the other transition metal oxide systems. Various structured MnO2 electrodes prepared
by EPD have been developed to enhance the electrochemical performance [208–211,214–217]. Chen
et al. synthesized MnO2 powders by spray pyrolysis [208,209]. The spray pyrolyzed MnO2 powders
exhibiting hollow spherical structures were deposited electrophoretically at 100 V for 10 min in a
water-based suspension. The electrode prepared by EPD showed reversible electrochemical behavior
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in a 1.0 M Na2SO4 electrolyte with a high specific capacitance of 275 F·g−1 at a scan rate of 25 mV·s−1

with a cycling efficiency of 85% after 300 cycles due to the relatively high surface area of the electrode
fabricated by EPD. The specific surface area for the reaction in the electrodes can be controlled by EPD
under the conditions of suspensions, substrates with various structures, applied times, and voltages.
In addition, EPD has been used to fabricate electrodes for pseudo-capacitors using nanostructures,
such as nanofibers [210], nanoneedles [211], nanowires [214], nanorods [215], and nanostars [216].
Ranjusha et al. reported the preparation of a thin film electrode of α-MnO2 nanowires by EPD [214].
The α-MnO2 nanowires were first synthesized by a hydrothermal method, as shown in Figure 19a,
and EPD was then carried out to fabricate a thin film electrode at 40 V for 1 h.
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Figure 19. (a) TEM image of α-MnO2 nanowires synthesized by hydrothermal method for
24 h; (b) SEM image of the electrophoretically deposited layer of α-MnO2 nanowires; (c) Cycle
performance of α-MnO2 nanowires-based electrode in 0.1 M KOH electrolyte at different scan rates;
(d) Specific capacitance variation with respect to the number of cycles for α-MnO2 nanowires and
particles-based electrodes.

The prepared thin film electrode had a coating thickness of ~20 µm and showed a specific
capacitance of 1050 and 347 F·g−1 at a scan rate of 1 and 50 mV·s−1, respectively, as shown in Figure 19c.
The nanowire-based electrode prepared by EPD showed an increase in capacitance at the end of the
3000th CV cycle, as shown in Figure 19d. This results indicate that the porous microstructure with a
high specific area was electrochemically advantageous. Because the porous microstructure produced
by the EPD process can provide a substantially larger spatial clearance for electrode expansion and
contraction during cycling. Santhanagopalan et al. employed high voltage electrophoretic deposition
(HVEPD) to align and deposit the α-MnO2 nanorods synthesized by a hydrothermal method [215].
Moreover, they reported the approach of HVEPD to prepare electrodes that might be scalable or
applicable to flexible substrates, such as rod coating and pasting nanomaterials, as shown in Figure 20a.
The α-MnO2 nanorods were dispersed in IPA solution containing the Mg salt to prevent bundle
formation during HVEPD, and the Ni salt was used to improve the electrical contact between the
nanorods and the stainless steel substrate. The amount of ions coated on the nanorod surface, ionic
mobility, and the optimum ionic mass in the dispersion solution vary depending on the type of
precursor salts. It is necessary to adjust the salt concentration in order to provide sufficient charge
on the nanorods and to deposit an appropriately thick coating layer on the substrate. On the other
hand, because of the excessively added Ni content, excess of charging agent and precursor result in
unstable dispersion of the suspension, deteriorated alignment, and reduced specific capacitance. The
deposition voltage, time, and amounts of precursors were optimized for the optimal alignment of
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the α-MnO2 nanorods. HVEPD was carried out with various holding layers on the substrate surface
at 800 V for 30 s. In particular, the aligned α -MnO2 nanorods electrode with the Ni holding layer
showed a specific capacitance of 8501 µF·cm−2 and a specific capacitance retention of 92% after 2000
cycles at a current density of 0.25 mA·cm−2.Energies 2018, 11, x  28 of 74 
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Figure 20. (a) Schematic and working mechanism of continuous HVEPD setup; (b) FE-SEM image of
aligned nanoforests of α-MnO2 nanorods with Ni holding layers; (c) Galvanostatic charge discharge
curves at 0.25 mA·cm−2 current for the three types of samples; (d) Decrease in the device capacitance
over 2000 cycles for the three types of samples.

These results were attributed to adhesion between the nanorods and substrate by HVEPD with
a holding layer. The aligned α-MnO2 nanorods electrode with a Ni holding layer prepared by a
continuous HVEPD for scaling up the electrodes showed galvanostatic charge-discharge curves for
parts of the long strip with a similar area to a small rigid sample. EPD proved to be suitable process
for the mass-production of the electrode with better packing and alignment. In addition to RuO2

and MnO2, NiO is another attractive pseudo-capacitive material for use as an electrode material
in alkaline electrochemical capacitors. NiO [218,219], NiO nanowire [220], nickel hydroxide [221],
and NiMoO4 [222] electrodes were prepared by EPD to enhance the electrochemical performance
of pseudo-capacitors.

6.3. Polymer/Carbon Composite Based Materials

Conducting polymers, such as polyaniline (PANI), polypyrrole (PPy), 1-pyrenebuturic acid
(PBH), and polyethylenedioxythiophene (PEDOT), are important materials in pseudo-capacitors. The
incorporation of carbonaceous materials, such as MWCNTs and graphene sheets into these polymers
could form hybrid materials with enhanced specific capacitance, rate capability, and cycling stability.
EPD has been expanded to prepare conducting polymer-based hybrid electrodes for supercapacitor
applications [222–230]. Li et al. prepared MWCNTs films by EPD and coated them with PPy by an
in-situ electropolymerization method [223]. EPD was carried out 20 V to fabricate MWCNTs films.
The PPY-MWCNTs hybrid electrode recorded a specific capacitance of 224 F·g−1 at a scan rate of
2 mV·s−1 in a 0.5 M Na2SO4 electrolyte. Su et al. employed EPD to prepare a PBH-MnO2-MWCNTs
hybrid electrode [224]. EPD was performed from aqueous MWCNTs, MnO2, and PBH suspension
at 10 V. The film mass was 0.3 mg·cm−2. The deposit prepared from a 2 g·L−1 MnO2 suspension,
containing 0.5 g·L−1 and 0.1 g·L−1 PBH, showed a specific capacitance of 250 and 90 F·g−1 at scan
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rates of 2 and 100 mV·s−1, respectively, and was higher than that of the electrode without MWCNTs
(40 F·g−1 at a scan rate of 2 mV·s−1) in a 0.5 M Na2SO4 electrolyte. Shi et al. used EPD to prepare a
PPy nanofiber/MWCNTs hybrid electrode [225]. EPD was performed from an aqueous MWCNTs
and PPy nanofiber suspension containing malachite green oxalate salt (MG). In a 0.5 M Na2SO4

electrolyte, the resulting PPy-MWCNTs hybrid electrode containing MG as a dispersant exhibited
a higher specific capacitance than the PPy-MWCNTs hybrid electrode without MG, as shown in
Figure 21a,b. In particular, The PPy-MWCNTs (10 wt.%) hybrid electrode prepared by EPD in
suspension including 30 mg·cm−2 of MG showed a maximum capacitance of 4.62 F·cm−2 at a scan
rate 2 mV·s−1 as well as high capacitance retention after 1000 cycles (Figure 21c,d. The results suggest
that the adsorption of MG on the surface of the MWCNTs and PPy nanofiber during EPD allowed the
efficient dispersion of both materials and the fabrication of a hybrid electrode.
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(mass) values obtained from the CV data versus scan rate; (c) Cycle performance of the PPy–MWCNTs
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hybrid electrode dispersed using MG of 30 mg·cm−1 (inset shows CVs. at a scan rate of 50 mV·s−1).

Subramanian et al. fabricated a hybrid electrode of graphene/PPy by EPD. The graphene
sheets were deposited electrophoretically on the surface of the Ti plate at 20 V for 30 min and
PPy was then deposited by an in situ polymerization method, affording a hybrid supercapacitor
electrode with a specific capacitance as high as 1510 F·g−1 at a scan rate of 10 mV·s−1 in a LiClO4

electrolyte [227]. Shi et al. prepared a PPy-graphene hybrid electrode by EPD in a suspension of
PPy-graphene containing safranin (SAF) at 30 V for 15 min [228]. In a 0.5 M Na2SO4 electrolyte, the
resulting PPy-graphene hybrid electrode exhibited higher specific capacitance and lower capacitance
reduction at a high scan rate than the graphene-MWCNTs hybrid electrode prepared by EPD. Tong et al.
prepared a binder-free layered graphene/PANI hybrid electrode by EPD in an aqueous suspension
containing PANI/graphene nanosheets [230]. EPD was carried out at a voltage of −20 V for 20 min,
as shown in Figure 22a,b. The PANI/graphene nanosheets were fabricated with the amount of
graphene from 300 (PG300) to 30 (PG30). The layered graphene/PANI hybrid electrode (PG300)
showed a high gravimetric capacitance of 384 F·g−1 at a constant current density of 0.5 A·g−1 and
maintained up to 84% of its capacity over 1000 cycles at a constant current density of 2 A·g−1 in a 1 M
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H2SO4 electrolyte. The layered graphene/PANI hybrid electrode (PG300) recorded a higher specific
capacitance than PG30, pure PANI, and graphene, as shown in Figure 22c,d. Overall, EPD appears to
be an effective method for the deposition of organic molecules and composites and has applications
for supercapacitors.Energies 2018, 11, x  30 of 74 
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Figure 22. (a) Sketch of the electrophoretic deposition for the preparation of the layered
polyaniline/graphene electrode; (b) SEM image of the fracture surface of the layered
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6.4. Metal Oxide/Carbon Composite Based Materials

Pseudo-capacitive materials include, but are not limited, to metal oxides, metal hydroxides, and
conducting polymers. As the pseudo-capacitance arises from reversible redox reactions, it is desirable
to increase the surface area of the active materials to reduce the diffusion length of the electrons
and allow a higher flux of electrons and ions. Hybrid materials with CNTs and graphene sheets are
useful pseudo-capacitive materials because most metal hydroxides, metal oxides, and conducting
polymers have low electrical conductivity. Capacitance decay could be due to the agglomeration of
active materials or fractions of the active materials losing electrical contact with the current collectors.
Recently, EPD has been applied to prepare composites and functional nanostructured electrodes for
supercapacitors because they can provide well-dispersed pseudo-capacitive materials that lead to
electrodes with high specific surface areas, a three dimensional network, and high contact with the
current collectors. MnO2-based-electrodes are attractive pseudo-capacitive materials because of their
reversible redox capability, low cost, high abundance, and environmental compatibility. Various hybrid
electrodes of MnO2-carbonaceous materials have been developed by the EPD process to enhance the
electrochemical performance [149,231–242]. MnO2-MWCNTs hybrid electrodes were prepared by
EPD in a suspension of MnO2 nanoparticles containing MWCNTs. The hybrid electrodes prepared by
EPD showed higher specific capacitance compared to the electrodes without MWCNTs in a Na2SO4

electrolyte [232,233]. Fang et al. synthesized a MWCNTs/α-MnOOH coaxial nanocable hybrid
electrode by EPD [238], which was carried out in an ethanol based-MWCNTs suspension including
an aqueous Mn(NO3)2 solution at 50 V for 150 s. The film electrode was treated thermally at 200 ◦C.
The specific capacitance of the MWCNTs/α-MnOOH coaxial nanocable hybrid electrode reached 202
F·g−1 at a constant current density of 0.65 A·g−1, which was much higher than that of bulk MnO2

and comparable to that of the MWCNTs film electrode. After 1200 galvanostatic cycles, the specific
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capacitance retained 205 F·g−1, exhibiting excellent long cycle life stability in a 0.1 M Na2SO4 electrolyte.
Ranjusha et al. employed EPD to prepare a MnO2 nanowire/carbon nanobead hybrid electrode [239].
The hybrid electrode was deposited electrophoretically at 40 V for 15 min in a MnO2 nanowire/carbon
nanobead uniformly dispersed suspension. The hybrid electrode was deposited electrophoretically in
the suspension containing 10 wt.% carbon nanobeads recorded a specific capacitance of 625 F·g−1 at a
50 mV·s−1 CV scan in a 0.1 M KOH electrolyte. The hybrid electrode prepared by EPD showed no
such peeling or disintegration of the electrode in the electrolyte at the end of the 10,000 cycles due to
the presence of carbon nanobeads that could be beneficial because it could increase the elastic modulus
of the electrode overlay to prevent peeling or delamination under cycling. ICP-AES showed that only
0.01 and 0.02 ppm Mn was present in the electrolyte at the 1st and 10,000th cycle, respectively, which
reflects the structural stability of these film electrodes prepared by EPD. Zhitomirsky et al. examined
the effects of charging additives for the EPD process in ethanol or water-based suspension containing
MnO2 and MWCNTs. Dopamine (DA) [232], calconcarboxylic acid (CCA) [237], chromotrope FB
(CFB) [237], pyrocatechol violet (PV) [240], m-crexol purple (CP) [240], and celestine blue dye [241]
were used as charging additives. In the case of dopamine, the addition of dopamine to the suspension
resulted in the adsorption of protonated DA on the MnO2 surface, which led to improved particle
stability and increased particle charge. As a result, an increase in deposition yield and the effective
dispersion of MnO2 and MWCNTs for EPD were observed [232]. The highest specific capacitance of
the MnO2-MWCNTs hybrid electrode (material loading of 2 mg·cm−2) was 650 F·g−1 at a scan rate
of 2 mV·s−1 in a 0.5 M Na2SO4 electrolyte. In the case of CCA and CFB, CCA as a charging additive
was more efficient than CFB because the salicylate type of bonding involving COOH and OH groups
played an important role in the adsorption of CCA molecules on the surface of MnO2 particles and π-π
interactions on the surface of the MWCNTs. The results revealed higher deposition in a suspension
containing CCA compared to that with CFB during EPD at a deposition voltage of 60 V. The maximum
specific capacitance of the MnO2-MWCNTs hybrid electrode (material loading of 0.15 mg·cm−2) was
290 F·g−1 at a scan rate of 2 mV·s−1 in a 0.5 M Na2SO4 electrolyte. In the case of PV, the additive as a
charging agent of PV was attributed to the π-π interaction and catecholate type bonding of the surface
of MnO2 and MWCNTs, respectively [240]. The use of PV as a charging additive has the advantages
of a uniform distribution of individual components and a low binder content in the composite in the
EPD process. A high specific capacitance of the hybrid electrode (material loading of 40 mg·cm−2)
prepared by the EPD process (at 100 V for 2 min) in a suspension, including PV as the charging
additive, showed 148 F·g−1 at a scan rate of 2 mV·s−1 in a 0.5 M Na2SO4 electrolyte. A hybrid capacitor
electrode, combining redox-active pseudo-capacitive oxides of MnO2 [234,242] and Mn/Mo mixed
oxides [235] with the MWCNTs framework was prepared by EPD. The electrodes were based on the
deposition of MWCNTs films by EPD in a suspension containing water-based MWCNTs, followed by
electrochemical deposition [235,242] and redox deposition [234]. Their hybrid electrodes showed high
specific capacitances of 869 [234], 408 [235], and 540.7 [242] F·g−1 in 0.65 M K2SO4 or 0.5 M Na2SO4

electrolytes, respectively. Soumya et al. fabricated a PbO2 nanoparticles-CNTs/graphene asymmetric
hybrid electrode by EPD with a specific capacitance of 250 F·g−1 at a scan rate of 5 mV·s−1, which
was much higher than that of the PbO2/graphene asymmetric electrode by EPD [242]. In addition to
MnO2-carbonaceous materials, NiO or Ni metal-carbonaceous materials have been fabricated by EPD
and assessed as electrodes for pseudo-capacitors [243–247]. Wu et al. prepared a NiO-carbon nanofiber
hybrid electrode by EPD at 10 V for 30 s in an IPA-based suspension containing vapor-grown carbon
nanofibers and Ni(NO3)2 followed by a thermal treated to form a NiO-carbon nanofiber composite
electrode at 300 ◦C for 3 h in air [243]. The NiO-carbon nanofiber hybrid electrode showed much higher
cycling stability (approximately 91% capacitance retention) than pure NiO because of the interactions
between NiO and the carbon nanofibers that stabilized the active materials and the high conductivity
of carbon nanofibers in the composite electrode. Lin et al. prepared Ni-decorated activated-carbon
electrodes by one-step EPD [245]. The EPD of the composite electrodes were carried out at 15 V for
various periods of time to obtain the required weight. The suspension including activated-carbon was
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used with various concentrations of nickel nitrate. The effective specific capacitance of the composite
electrode deposited using 0.4 mM nickel nitrate measured using a supercapacitor device (Figure 23b)
was 142 F·g−1 at a scan rate of 50 mV·s−1 and the value decreased moderately to 110 F·g−1 (78%
capacitance of 50 mV·s−1) in a KOH electrolyte (Figure 23c). The Ni-decorated activated-carbon
electrode by one-step EPD exhibited stable capacitance during cycling with very little degradation
occurring over 200 test cycles, as shown in Figure 23d.Energies 2018, 11, x  32 of 74 
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Figure 23. (a) Schematic diagram of the proposed Ni-decorated activated-carbon deposition in the EPD
process; (b) Specific capacitance of Ni-decorated activated-carbon electrodes deposited with various
concentrations of nickel nitrate; (c) Specific capacitance of a Ni-decorated activated-carbon electrode
deposited at a concentration of 0.4 mM nickel nitrate; (d) Variation of the specific capacitance with the
cycle number for the Ni-decorated activated-carbon electrode deposited using 0.4 mM nickel nitrate.

Wu et al. reported the hybrid electrode of Ni/1,4-bezenedicarboxylic (BDC) powder carbonized
at various temperatures prepared by EPD [247]. EPD was carried out at −60 V for 10 s in a suspension
containing Ni-BDC powder carbonized at 800 ◦C and IPA. The hybrid electrode reached as much
as 886 F·g−1 at a discharge current density of 1 A·g−1 that only decreased slightly to 746 F·g−1 at
30 A·g−1 in a 1 M KOH electrolyte. Lin et al. proposed a novel electrode structure of 3D-porous CNT
network by an EPD-supported nickel oxide nanonet, as shown in Figure 24a [246]. They developed
two processing approaches involving EPD of MWCNTs. In the first step, a 3D porous CNT film was
deposited electrophoretically up to a mass loading of 0.22 mg at −60 V and nickel oxide nanonet was
then formed between the adjacent CNTs by hydrothermal synthesis. The well-dispersed nickel oxide
nanonet provided a large faradaic capacitance of 1511 F·g−1 at a high current density of 50 A·g−1 as
well as high capacitance retention of 92.4%, which was superior to that of the NiO electrode with the
CNTs network (59%), as shown in Figure 23d.
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Figure 24. (a) Schematic diagram of a novel electrode structure of 3D porous CNT networks with an
attached nickel oxide nanonet for supercapacitor applications; (b) SEM image of the CNT film with the
attached NiO nanonet; (c) CV scans of the NiO without CNTs, NiO/CNTs, and bare CNTs electrodes
at a scan rate of 10 mV·s−1; (d) Relationship between the specific capacitance and discharge current
density of the NiO without CNTs and NiO/CNT electrodes.

In addition, the hybrid materials with the graphene nanosheets also are useful pseudo-capacitive
materials. EPD is a useful technique for depositing hybrid materials with graphene nanosheets. A
number of variants of EPD have been used to form deposits suitable for electrodes, including graphene
oxide deposition, direct deposition of a graphene sheet, exfoliated graphene oxide reduced before
deposition, graphene oxide platelets reduced by the EDP conditions, as well as graphene oxide layers
modified by transition metal oxide interfaces, such as MnO2, NiO, and Ni(OH)2. As a typical example,
a two-step process, which involved the EPD of graphene oxide and the subsequent deposition of
metal oxide by in situ electrochemical deposition [248–252]. Xia et al. developed a two-step process
including EPD [248]. In this study, a well-dispersed graphene oxide suspension was prepared in
isopropyl alcohol. The material was deposited on a nickel foam substrate using a constant voltage of
100 V for 20 s. Subsequently, the highly porous NiO films were deposited by chemical bath deposition
(CBD) in an electrolyte containing nickel sulfate, potassium persulfate, and aqueous ammonia and
then annealed at 300 ◦C for 1 h in argon. The graphene sheet/porous NiO hybrid electrode exhibited
excellent capacitance of 400 and 324 F·g−1 at constant current densities of 2 and 40 A·g−1, respectively,
which is higher than those of the porous NiO electrode (279 and 188 F·g−1 at 2 and 40 A·g−1) in 1 M
KOH electrolyte. Wu et al. prepared a multilayered graphene nanosheet and MnO2 nanowire hybrid
electrode by a 2 step process with EPD [249]. The graphene nanosheets were deposited on the substrate
by EPD and MnO2 nanowires were then fabricated on the graphene nanosheets films by anodic
deposition. The capacitance of the multilayered graphene nanosheets and MnO2 nanowires hybrid
electrode reached as high as 252 F·g−1 at a low current density of 2 A·g−1, which decreased slightly to
179 F·g−1 at a very high current density of 100 A·g−1 in a 1 M Na2SO4 electrolyte. In addition, they
prepared the tubular graphene nanoribbons film by EPD and MnO2 nanoparticles was then attached
to the film by electrochemical deposition [250]. The specific capacitance of the tubular graphene
nanoribbons with the attached MnO2 hybrid electrode reached 266 F·g−1, which is much higher than
that of the graphene nanoribbons material (88 F·g−1) at a discharge current density of 1 A·g−1. The
specific capacitance of the hybrid electrode prepared by a 2 step process with EPD is comparable to
that of the hybrid material by electrostatic layer-by-layer self-assembly (263 F·g−1) [253] and higher
than that of the Mn3O4/graphene nanocomposite hybrid material (175 F·g−1) [254]. Ghasemi et al.
deposited MnO2 nanoparticles [251] and nickel-cobalt hexacyanoferrate nanostructure [252] on the
surface of graphene nanosheets by EPD. Their hybrid electrodes had a higher specific capacitance than
the graphene nanosheet electrode. A range of hybrid electrodes of metal oxide-graphene nanosheets
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was developed by EPD in a single step to enhance the electrochemical performance and reduce the
time needed for synthesis [253–256]. Wu et al. prepared a NiO-attached graphene oxide nanosheet
hybrid electrode by single step EPD [253]. EPD was carried out in a graphene oxide suspension
consisting of IPA and the nickel nitrate additive to obtain the nickel attached graphene oxide hybrid
electrode. The EPD of nickel-attached graphene oxide was performed in the presence of nickel nitrate.
When the graphene oxide sheet arrives at the substrate, the nickel ions adsorbed at the surface of
the graphene oxide sheet can be reduced electrochemically to metallic nickel because the graphene
sheet has high electrical conductivity, which allows electrons to flow from the substrate to the outer
layer of the graphene sheet, as shown in Figure 25a. As a result, the nickel-attached graphene oxide
sheet continues to deposit layer-by-layer (Figure 25b). Subsequently, the hybrid electrode was treated
thermally at 300 ◦C for 1 h in air, resulting in the conversion of deposited nickel nanoparticles to nickel
oxide nanoparticles. The specific capacitance of the NiO attached graphene oxide hybrid electrode
(460 F·g−1) was much higher than those of the bare graphene oxide electrode (13 F·g−1) and NiO
(40 F·g−1) electrode at a constant current density of 10 A·g−1, as shown in Figure 25c. The capacitance
retention of the hybrid electrode after 3000 cycles remained almost unchanged, whereas that of the
bare graphene oxide decreased with increasing number of cycles (Figure 25d).Energies 2018, 11, x  34 of 74 
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Figure 25. (a) Schematic formation of nickel-attached graphene oxide in the EPD process; (b) SEM
image of NiO-attached graphene oxide hybrid electrode after heat treatment; (c) Galvanostatic
charge/discharge curves of graphene oxide, NiO, and NiO-attached graphene oxide hybrid electrodes
at a current density of 10 A·g−1 in 0.5 M KOH electrolyte; (d) Relationship between the capacitance
retention and the cycle number of graphene oxide, NiO, and NiO-attached graphene oxide hybrid
electrodes at 10 A·g−1.

Graphene nanosheets and metal nanoparticles have been used as nano-building blocks for
assembly into hybrid structures with promising performance in supercapacitors. On the other hand, in
most graphene and metal nanoparticles hybrid structures, the graphene sheets and metal nanoparticles
do not enable control of the reaction process, orientation of the building blocks, and organization on the
nanoscale. The EPD build-up has been used to prepare multilayered reduced graphene oxide/metal
nanoparticle hybrid electrodes because this assembly strategy can effectively control the orientation of
graphene nanosheets and metal nanoparticles and the organization at the nanoscale [254]. Niu et al.
used electrophoretic layer-by-layer assembly to construct a multilayered reduced graphene oxide/Au
nanoparticles hybrid electrode [254]. First, graphene oxide was deposited electrophoretically at 30 V
for 8 min in a DMF suspension with graphene oxide and a second EPD was carried out in a DMF
suspension with Au nanoparticles at 30 V for various times. The process was repeated to fabricate the
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multilayered graphene oxide-based hybrid electrode, as shown Figure 26a,b. The specific capacitance
was related strongly to the Au nanoparticles deposition time in the EPD process (Figure 26c). When the
Au nanoparticles deposition time was more than 120 s, the specific capacitance of the hybrid electrode
decreased with increasing deposition time because the Au nanoparticle layers provided support to
the reduced graphene oxide layers to avoid the self-aggregation of reduced graphene oxide, which
increased the active electrochemical surface area further (Figure 26d). They attributed the reduced
specific capacitance of the hybrid electrode when the density of Au nanoparticles was too large to the
slightly supportive effect of Au nanoparticles on the reduced graphene oxide layers, which led to a
reduction of the active electrochemical surfaced area.Energies 2018, 11, x  35 of 74 
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Figure 26. (a) Schematic diagram of the process for producing multilayered reduced graphene
oxide/Au nanoparticles hybrid electrode; (b) Cross-section SEM image of multilayered reduced
graphene oxide/Au nanoparticles hybrid electrode; (c) Schematic diagram of the optical image
and multilayered reduced graphene oxide/Au nanoparticles hybrid electrode supercapacitor;
(d) Specific capacitance of multilayered reduced graphene oxide/Au nanoparticles hybrid electrode
supercapacitors with different Au nanoparticles deposition times at different scan rates; (e) Variation of
the capacitance stability of the hybrid electrode supercapacitor with the number of cycles.

The specific capacitance of the supercapacitor applying the hybrid electrodes was approximately
65 F·g−1 at a constant current density of 1 A·g−1 in an organic electrolyte. As shown in Figure 26e, after
the first cycle, there was a slight decrease in the specific capacitance and the specific capacitance was
stable up to 500 cycles. Zhang et al. fabricated a reduced graphene oxide/Ni(OH)2 hybrid electrode
using a one-step EPD process [254]. EPD was carried out in a graphene oxide-based suspension
containing Ni(NO3)2 for various voltages and times. Nickel ions decorated the graphene oxide
deposits on the electrode under an applied potential and the nickel ions transform to Ni(OH)2 through
the EPD process. They suggested that the reduced graphene oxide/Ni(OH)2 hybrid electrode could be
produced and their electrochemical properties were dependent on the EPD conditions. In particular,
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a suitable applied potential, stable colloidal suspension, higher concentration of Ni(NO3)2, and
the appropriate deposition time were the key parameters for the high-quality electrode and high
electrochemical performance. Therefore, the conditions suggested for the EPD process are 5 V for
1 min in 50 mL of a water-based suspension containing 20 mg of graphene oxide and 20 mg Ni(NO3)2.
The hybrid electrode fabricated by the optimized EPD process exhibited a specific capacitance of
1404 F·g−1 at a constant current density of 2 A·g−1 and retained 1004 F·g−1 at 20 A·g−1. The details of
the supercapacitors manufactured by applying the EPD process are summarized in Table A3.

7. Applications of the Electrophoresis Deposition for Solid Oxide Fuel Cells

Solid oxide fuel cells (SOFCs) have attracted considerable attention as new electric power
generation systems because of their high-energy conversion efficiency, clean power generation, and
versatile nature of the technology for the direct conversion of chemical energy to electrical energy [257].
Commonly, a SOFC consists of a solid electrolyte layer containing an oxidizer electrode (cathode) and
a fuel electrode (anode). The electrodes need to be porous, at least permeable to the oxidizer at the
cathode and fuel at the anode, while the electrolyte layer must be dense to prevent the leakage of gas
across the layer. Almost all SOFCs currently being developed employ an yttria stabilized zirconia
(YSZ) electrolyte, with a strontium doped lanthanum manganite (La0.8Sr0.2MnO3 (LSM)) cathode and
a mixed nickel/YSZ cermet anode, and use doped lanthanum chromite (LaCrO3) as the interconnect.
The motivation for the reduced operating temperature SOFCs to 800 ◦C or less includes a decrease in
the degradation of the cell components [258,259]. On the other hand, the conductivity of the electrolyte
and the electrode kinetics will be decreased significantly with a lower operating temperature. This
problem can be overcome by lowering the electrolyte resistance, the electrolyte thickness, or using
alternative materials with higher ionic conductivity at lower temperatures. Although a previous study
showed that LaGaO3-based oxides [260] and cerium oxide doped with gadolinium (GDC) [261,262]
exhibits high oxide ion conductivity and are useful as electrolytes in intermediate temperature SOFCs,
the thickness of the electrolyte is still an important key to develop technology of SOFCs. To fabricate
more efficient and less expensive thin film SOFCs, an enhanced method to fabricate a porous electrode
and non-porous electrolyte is needed. The EPD process can be used fabricate thin, dense and gas
tight electrolytes as well as porous electrodes for SOFC applications. To fabricate dense and gas tight
electrolytes as well as porous electrodes, the EPD process was carried out with various parameters,
such as zeta-potential, conductivity of the substrate, and additives applied to suspensions for EPD
process. Ishihara et al. published the first account of EPD for the production of zirconia electrolytes for
SOFCs [263–265]. In these studies, a yttria-stabilized zirconia (YSZ) electrolyte film was deposited on a
porous La0.85Sr0.15MnO3 (LSM) cathode in an acetylacetone suspension using at least six deposition
steps, each followed by a sintering step. Will et al. reported the EPD processing of thin YSZ on porous
substrates (NiO/YSZ), which were prepared by tape casting. In this study, emphasis was placed
on the kinetics of the deposition process (including a direct determination of the deposited layer
thickness during the EPD process) and not on achieving the optimal values of the SOFC for maximum
performance [266]. Because the substrates for EPD are restricted to conductive materials, NiO was
reduced to metallic Ni by heat treatment in 10% H2 and 90% Ar at 700 ◦C before the EPD experiments.
Besra and Liu et al. demonstrated that dense YSZ thin films could be fabricated on a porous NiO-YSZ
substrate in an acetylacetone suspension by EPD, followed by sintering [264,267]. The deposition
conditions with time and voltage for EPD were optimized, as shown in Figure 27a,b. The SOFC cell
constructed on these sintered bi-layers of TSZ/NiO-YSZ exhibited a maximum power density of
611 mW·cm2 at 850 ◦C (Figure 27d). In addition, the deposition of YSZ on a non-conducting porous
NiO-YSZ substrate showed that when saturated with the solvent, the porous substrate can allow the
development of a conductive path between the electrical contact and the particles in suspension, as
shown in Figure 27c.
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Figure 27. (a) Deposition characteristics of yttria-stabilized zirconia (YSZ) on porous NiO–YSZ as a
function of the deposition time for a constant applied voltage of 300 V (solid lines) and 50 V (dashed
lines); (b) Amount of yttria-stabilized zirconia (YSZ) deposited after 1 min as a function of the applied
potential on NiO–YSZ substrates sintered at different temperatures; (c) Conceptual representation of
the possible electrophoretic deposition mechanism on non-conducting substrates; (d) Performance
characteristics of a solid oxide fuel cell with the configuration, NiO–YSZ/YSZ/LSM–YSZ, as a function
of the operating current density.

Basu et al. [268] and Hosomi et al. [269] applied EPD to deposit a dense YSZ electrolyte on
non-conducting porous doped LaMnO3 and NiO-YSZ substrates. They used a carbon interlayer
on the ceramic substrates prior to the deposition of YSZ by EPD, followed by sintering. The lower
surface roughness and better packing density of the coatings produced using the graphite interlayers
were attributed to the more controlled deposition and equipotential electric-field distribution formed
on the porous substrate when the interlayer is present. In particular, the SOFC cell constructed
on these sintered YSZ/NiO-YSZ bi-layers exhibited a maximum power density of 2.01 W·cm2 at
800 ◦C [269]. Ji et al. confirmed the packing mechanism of the YSZ particles in the acetylacetone
suspension after adding I2 [270]. The results showed that the packing density of YSZ particles
was increased further when the deposit was immersed in pure acetylacetone with the application
of a constant electric field because the suspension containing iodine increased the charge density
of H+ ions, resulting in a decrease in the zeta-potential. Majhi et al. fabricated dense YSZ thin
films on a porous scratched NiO-YSZ substrate in an acetylacetone suspension by EPD, followed by
sintering at 1200 ◦C for 2 h [271]. The SOFC cell constructed on these sintered bi-layers exhibited
an open circuit voltage (OCV) of 1.03 V and a maximum power density of 624 mW·cm2 at 800 ◦C.
Ji et al. prepared a dense YSZ thin film on a porous NiO-YSZ substrate in an isopropanol suspension
containing iodine by EPD at 10 V for 60 min [272]. When the concentration of I2 was 0.5 g·L−1, the
weight of YSZ deposited on the substrate reached the maximum. The SOFC cell constructed on these
sintered bi-layers exhibited an open circuit voltage (OCV) of 1.0 V and a maximum power density
of 440 mW·cm2 at 900 ◦C. Dense YSZ thin films on porous LSM-YSZ and NiO-YSZ substrates were
deposited electrophoretically in ethanol-based suspensions [273–275]. The optimal solvent rate (3:1
and 2:2 (acetone:ethanol)) by adding I2 was required to achieve smooth, homogeneous, crack-free
YSZ coatings by EPD. Zou et al. prepared a dense YSZ film on a porous NiO-YSZ substrate by
EPD, followed by sintering [276]. EPD was carried out at 30 V for 90 s in a suspension of ethanol
containing polyethylene glycol (PEG). The SOFC cell constructed on these sintered bi-layers exhibited
a maximum power density of 850 mW·cm2 at 900 ◦C. Dense YSZ films were fabricated by EPD in
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various suspensions, such as n-propanol, n-butanol, ethylene glycol [277,278], tetramethylammonium
hydroxide [279], isopropanol [280], and water-based ammonium polyacrylate [281]. On the other hand,
despite both economic and environmental disadvantages, instead of water-based suspensions, organic
suspensions were used as the carrier to avoid the detrimental effects of the electrolysis of water on
the quality of the deposited film [277,278]. Cherng et al. suggested aqueous EPD to fabricate dense
YSZ films [281]. EPD carried out in water-based suspensions containing ammonium polyacrylate
(PPA-NH4). The added dispersant, PAA-NH4, dissociates into PAA− and NH4

+ in water, with the
former adsorbed onto the surface of YSZ particles, resulting in a negative zeta-potential. Therefore,
the particles remain suspended electrostatically and can move and deposit onto the substrate under
a DC electric field. The deposition rate increased with increasing current density and decreasing
PPA-NH4 concentration. With increasing concentration of PPA-NH4 and dissociated PAA− and
NH4

+ in suspension, the electrical resistance of the suspension decreased, resulting in the potential
drop across the electrodes and an increase in the electric field strength for EPD. This lowered the
driving force for electrophoresis and lowered the deposition rate. Zhitomirsky and Petric reported the
EPD of La0.85Sr0.2Ga0.875Mg0.125O3−x (LSGM) and La0.8Sr0.2Co0.2Fe0.8O3−δ (LSCF) on the substrate of
(Ce0.8Gd0.2)O1.9 (CGO) on Ni foils and a porous Ni–YSZ substrate prepared by tape casting [282,283].
The aim of the work involved finding a common solvent/binder/dispersant system for EPD of these
materials. The ethyl alcohol, phosphate ester (PE) and polyvinyl butyral (PVB) were identified as a
suitable solvent, dispersant, and binder, respectively, for EPD. In addition, self-supported dense films,
EPD process was used to fabrication of thickness of 40–80 µm on a graphite substrate from LSGM
and then sintered at high temperature [284]. The SOFC cell constructed on these sintered anode and
cathode-layers exhibited a maximum power density of 0.5 W·cm2 at 700 ◦C. Boccaccini et al. deposited
LSCF electrophoretically on a porous CGO substrate [285]. To obtain a porous LSCF film, the best
results were achieved at an applied voltage of 20 V for 2 min with a suspension containing acetylacetone,
iodine, and starch. EPD was demonstrated to be a simple and useful method for fabricating a porous
LSCF electrode on a CGO substrate. Bozza et al. used EPD to fabricate dense LSGM films on the
substrate of the La0.4Ce0.6O2-x (LDC) electrode followed by sintering at high temperatures [286,287].
The conditions for EPD were optimized in a common acetone/water/I2 system for the EPD of these
materials. The SOFC cell constructed on these sintered by-layered LDC/LSGM recorded a power
density of 780 mW·cm2 at 700 ◦C [287]. Moreover, the La0.8Sr0.2Ga0.8Mg0.115Co0.085O3−δ (LSGCM)
electrolyte was deposited by EPD in the acetone/water/I2 system [288]. EPD was carried out at 60 V
for 2 min. The LSGCM/LDC bi-layer obtained by EPD was co-fired at 1400 ◦C for 2 h. A dense and
crack-free 8 µm film supported on a porous skeleton of LDC was obtained. Bi-layered films, such as
NiO-YSZ/YSZ, YSZ/Sm0.2Ce0.8O1.9 (SDC), and LSM/LSM-YSZ, were also fabricated by a 2 step EPD
process to minimize the ohmic losses of SOFC cells [289–291]. Liu et al. reported the best NiO:YSZ
ratio in acetylacetone-based suspension for EPD as well as the condition to fabricate dense YSZ films
by EPD, which were subsequently co-fired. It was confirmed that the sample cracking occurred
when the high NiO content was significantly reduced as the NiO content to 60% in the suspension.
When the NiO content is reduced to 50%, some crack-free samples can be obtained, however, the film
composition was not desirable for SOFC applications [289]. The best results were achieved in the
suspension with a NiO/YSZ ratio of 40:60 at a short deposition time and applied voltage (200 V for
3 min). The SOFC cell constructed NiO/YSZ (40:60)-supported dense YSZ displayed a peak power
density of 434 mW·cm−1 at 800 ◦C [289]. Matsuda deposited a bi-layered YSZ/SDC electrolyte film
electrophoretically. YSZ was deposited directly on a porous NiO-YSZ substrate. After EPD of YSZ,
SDC was deposited on the as-deposited YSZ film on the porous substrate at 600 V in an ethanol-based
suspension. The SOFC cell was constructed on the bi-layered electrolyte films composed of 4 µm
YSZ and 1 µm SDC films. A maximum power density of 0.6 W·cm−2 was obtained at 700 ◦C [290].
Reducing the operating temperature of the SOFCs to below 800 ◦C is important to reduce degradation
of the cell components. On the other hand, the electrolyte conductivity decreased significantly with
decreasing operating temperature. To solved these problem, it is only necessary to reduce the thickness
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of the electrolyte or to lower the electrolyte resistance with an alternative material with a high ionic
conductivity at a low temperature. Following these reports, Cheng attempted to use the EPD method
on dense SDC deposited on a porous NiO-SDC substrate [292]. Highly dense SDC films were obtained
at 60 V for 1 min in a mixed suspension of acetone and ethanol. The SOFC cell constructed on these
sintered recorded a maximum power density of 155 mW·cm2 at 500 ◦C as well as an open circuit
potential of 0.92 V. Zunic et al. employed EPD to deposit a dense proton conducting electrolyte of
BaCe0.9Y0.1O3−x (BCY10) on a NiO-BCY10 substrate to use intermediate temperature SOFCs [293,294].
A highly dense BCY10 film on the NiO-BCY10 substrate was deposited at 60 V compared to at 10
to 50 V for 1 min. The SOFC cell constructed from NiO-BCY10/BCY10/LSCF-BCY10 displayed a
maximum power density of 208 mW·cm−1 at 650 ◦C [295]. Although EPD could produce various
thin and gas-tight electrolyte or electrode films, this method is not suitable for mass production due
to complicated multi-deposition and sintering steps, time-consuming, and excessive high cost. In
addition, it was confirmed that an electrolyte or electrode and acceptable fuel cell performance could
not be obtained without the multiple deposition steps. Therefore, Cherng et al. used consecutive
EPD to deposit a porous NiO-YSZ, dense YSZ, and a porous LSM onto a thin wire electrode, followed
by stripping, drying, and a single co-sintering [295–297]. The effects of the three major EPD process
variables, such as the current density, solid loading, and surfactant concentration were investigated.
The deposition rate increased with increasing current density and solid loading but decreased with
increasing surfactant PAA-NH4 concentration, and the porosity decreased with increasing deposition
rate [297]. As shown in Figure 28a, a tubular SOFC was made by consecutive EPD and co-sintering at
1250 ◦C. The optimal power density at 800 ◦C reached 368.8 mW·cm−2 for the anode with 70 wt.% and
degraded to lower values at higher NiO contents (Figure 28b).
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consecutive EPD and single-step co-sintering; (b) Electrochemical performance of such micro-tubular
SOFCs with various anode compositions.

Subsequently, Droushiotis et al. used EPD to fabricate dense YSZ on the un-sintered NiO-YSZ
hollow fibers in an ethanol-based suspension. The YSZ-coated NiO-YSZ fibers were co-fired at high
temperatures. The SOFC cell prepared using the YSZ-coated NiO-YSZ fibers delivered a peak power
density of 0.2 W·cm−2 at 800 ◦C [298]. As shown in the literature, there still remains a need to be
addressed until the commercial utilization for SOFC using the EPD process is feasible. Optimization of
process parameters such as a suitable solvent and development of a suitable EPD chemistry remains an
important topic [34]. Through optimization, it is possible to manufacture homogeneous, uniform, and
crack-free films. In addition, oxidation-resistant metallic alloys, such as Crofer22 APU, E-Brite, and
SS430 are used as interconnect materials because of the easy fabrication, low material cost, significantly
better mechanical properties, and higher electrical and thermal conductivity. On the other hand,
the evaporation of volatile Cr species (Cr3 or Cr2(OH)2 is a serious problem associated with these
chromia-forming alloys, which leads to rapid performance degradation. Recently, EPD has been used
to produce the desired (Mn, Co)3O4 spinel coatings on SOFC interconnects because of its deposition



Energies 2018, 11, 3122 41 of 81

efficiency, cost-effectiveness, and ease of operation compared to other coating methods [299–301].
Smeacetto et al. deposited a (Mn, Co)3O4 spinel coating layer by EPD at 50 V and various deposition
times in a suspension of ethanol and water (a volume ratio of 60/40 (EtOH/H2O), followed by sintering
at 1000 ◦C for 2 h. The inner and central layer of the (Mn, Co)3O4 spinel coating were obtained after
a 20 s deposition time in the suspension, as shown in Figure 29a. The area specific resistance (ASR)
of the (Mn, Co)3O4 spinel coating layer fabricated by EPD was measured in real SOFC stacks. The
results showed that the increase rates of the spinel coating layer prepared by EPD are 0.53 mΩ·cm2 per
1000 h. Therefore, the ASR value after 40,000 h operation would be ~40 mΩ·cm2 by making a simple
assumption of increased ASR values. Generally, the target for ASR of each single SOFC component
was estimated to be ~100 mΩ·cm2 so that the prepared coating fulfills the criteria of the sufficient
protective nature of the coating.
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The details of the SOFCs manufactured by applying the EPD process are summarized in Table A4.

8. Applications of EPD for Nanomaterials of Electrocatalysis

Electrocatalysis is important for reducing the overpotential for a number of reactions vital
to renewable energy applications, including fuel cells, metal-air batteries, and water splitting
cells [302–307]. Significant efforts have been devoted to the development of electrocatalysts for
fuel oxidation, hydrogen evolution reactions (HER), oxygen evolution reactions (OER), and oxygen
reduction reaction (ORR). The goal of their electrocatalysts was to obtain high activity and stability at
low cost. The controlling size and surface structures of the electrocatalysts particles are important for
achieving the optimal catalytic effects. Unlike other liquid state synthesis processes that could take a
long time and poison the active sites on the catalyst surface by the surfactant or other capping agents,
the EPD process could be used to tune the morphology and size of the catalyst particles on various
carbonaceous materials, such as carbon black, carbon nanotubes, and graphene as well as impart higher
porosity and better catalyst particle distribution on the substrates by depositing electrocatalysts to
enhance the catalytic effects by controlling the applied voltage and time, pH of the suspension, and the
kinds of the suspensions. In addition, the high interfacial stability for electrical conductivity between
the electrocatalysts and substrates could increase charge transport in electrocatalysis. Noble metals,
including Pt, Au, Pd, and Ru, are well-known catalysts for oxidation reactions of methanol, ethanol,
and formic acid. Electrocatalysts of these metals formed by EPD on various materials and substrates
have shown higher activity than commercially available metal/carbon catalysts or electrodes prepared
by conventional processes, such as screen printing and decal process in fuel oxidation reactions.
Typically, Pt/carbon catalysts were deposited electrophoretically on a carbon electrode or Nafion
membrane for the oxidation reactions of methanol and hydrogen [308–316]. The performance of the
electrocatalyst depends on the composition of the suspension and the conditions of the EPD process.
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Morikawa et al. deposited Pt/C catalysts on the both surfaces of Nafion membranes using HVEPD for
different deposition times. An ethanol-based suspension was used due to the high voltage of EPD
used (a constant voltage: 1000 V) [309]. The performance of a membrane electrode assembly (MEA)
prepared by HVEPD was higher than that fabricated by a conventional hot-press method. These results
were attributed to the higher uniformity of the electrocatalyst on the surface of Nafion prepared by
the EPD process compared to the conventional process. Jeng et al. employed EPD to deposit uniform
Pt-Ru electrocatalysts synthesized by a modified polyol process on carbon paper. The EPD operations
were performed at an applied DC voltage of 5 V for 30 min in a HClO4-based suspension with a Nafion
solution and electrocatalyst. The electrode fabricated by EPD exhibited a higher methanol oxidation
reaction than the electrode prepared by the conventional process. Girishkumar and Louh et al. used
a 2 step EPD process to enhance the catalytic effects [310,311]. The first step EPD was used to form
a porous layer of SWCNTs of carbon black to enhance the distribution of electrocatalysts, which led
to high catalytic effects. Subsequently, the electrocatalysts were deposited electrophoretically on a
porous layer prepared by first-step EPD. The resulting MEA applied multilayer electrodes showed
significantly higher catalytic activity towards the hydrogen oxidation reaction and oxygen reduction
reaction than that of the applied a commercial Pt/C catalyst. Therefore, EPD could be a simple and
versatile technique to design the MEA-applied electrocatalysts for fuel cells. In more recent studies,
Felix et al. deposited an electrocatalyst on carbon paper by EPD. They examined the catalyst suspension
and the conditions for the EPD process [314]. The optimal suspension conditions were obtained when
the catalyst particles were deposited in a suspension with a Nafion solution, a pH of 8–10 and an
applied voltage was 100 V. The resulting MEA prepared by EPD showed superior performance with a
peak power increase of approximately 73% at similar platinum (Pt) loadings as well as lower charge
transfer resistance for the MEA compared to the MEA fabricated by conventional hot-press process.
The results indicated that the EPD process supplied a high pore area and a better dispersion of Pt
particles within the catalyst layer on the carbon electrode. In addition, they studied suspensions
containing the Pt/C catalyst, polytetrafluoroethylene (PTEF) and NaCl for EPD to fabricate MEA for
use at high temperatures [316]. Stable catalyst suspensions were obtained at NaCl concentrations
0.1 mM and an applied voltage of 100 V. The carbon paper electrode deposited electrophoretically
in the suspension showed a ~12% increase in peak power at a slightly lower Pt catalyst loading of
~4wt.% as well as lower charge transfer resistance compared to the electrode prepared by an ultrasonic
spray because the electrode fabricated by EPD had higher porosity than that the electrode obtained
by the ultrasonic spray method. A comparison of the PTFE and Nafion solution in the catalyst layer
of the electrodes fabricated by EPD revealed PTEF to have better performance and be more suitable
for use at high temperatures (160 ◦C). A nano-architectured Pt catalyst layer was prepared by the
pulsed electrophoretic deposition (PED) [317–319]. Yu et al. synthesized branched Pt nanoparticles on
a carbon black electrode by PED [317]. PED was carried out in a suspension at various pH containing
Pt nanoparticles colloid at a duty cycle {ton/(ton + toff)} of 25% and a tcycle(ton + toff) time fixed to 1 s. The
Pt-carbon black electrode showed higher mass activity and specific activity for the methanol oxidation
reaction than a commercial Pt/C catalyst. Recently, Adibish et al. employed PED to synthesize Pt/C
catalyst electrodes at different deposition times and duty cycles [318]. The electrochemical active
surface area (ECSA) of the Pt/C electrode synthesized by PED showed the highest value when the
deposition time was 10 min and the duty cycle {ton/(ton+ toff)} was 25%. With increasing deposition
time, the ECSA was decreased because of the relatively low active surface area of the Pt catalyst
caused by the coagulation of Pt nanoparticles. Carbonaceous materials, such as carbon nanotube [319],
C60 [319], carbon nanofibers [320], and graphene nanosheets [321–325], which have a high specific
surface area, have been used as the supports for loading Pt nanoparticles because their materials can
supply high catalytic activity by enhancing the catalytic surface area. The EPD process was employed
to deposit their materials on the electrode and synthesize Pt nanoparticles. Kamat et al. synthesized
branched Pt nanoparticles on C60 and single-walled carbon nanotubes (SWCNTs) as supports by EPD
and electrochemical deposition (ECD) [324,325]. The amounts of SWCNTs and C60 on the electrodes
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were optimized according to the EPD conditions for methanol oxidation. The higher catalytic activity
was attributed to the larger surface area provided by the supporting architecture and the decreased
overpotential for the methanol oxidation reaction. Qin produced Pd nanoparticles deposited carbon
nanofibers by PED for ethanol oxidation in alkaline media [320]. The carbon nanofibers were deposited
electrophoretically to form a 3D network structure, which led to a large number of available Pd
active sites for ethanol oxidation and the Pd nanoparticles were then deposited on the electrode
that had a 3D network structure of carbon nanofibers by PED. The Pd nanoparticles decorating
the carbon nanofiber electrode showed good electrocatalytic activity toward ethanol oxidation in a
KOH electrolyte. In addition, the Pt nanoparticles formed on graphene nanosheets showed higher
activity than commercially available metal/carbon catalysts in fuel oxidation reactions. Seger et al.
synthesized branched Pt nanowires on graphene oxide (GO) by a solution phase reaction, in which
NaBH4 was used to reduce the Pt precursor and GO nanosheets [321]. The Pt-reduced graphene
electrocatalysts were deposited electrophoretically on carbon paper with a constant voltage for various
deposition times. The Pt-reduced graphene electrocatalyst-based fuel cell delivered a maximum
power of 161 mW·cm−2 compared to 96 mW·cm−2 for the unsupported Pt-based fuel cell. The
electrocatalyst on the graphene nanosheets was useful to achieve relatively better performance in fuel
cell applications. Liu employed EPD and ELD to synthesize uniform Pt nanoparticles on reduced GO
nanosheets, affording an electrocatalyst with a 2 times higher peak current density for the methanol
oxidation reaction than a Pt catalyst without reduced GO supports [322]. Wallace et al. fabricated
novel electrocatalytic electrodes by the EPD of graphene and Pt nanoparticles sequentially or via a
single-step EPD of graphene: Pt composite nanoparticles onto the electrode [323]. Through fabrication
optimization, the process time of the single-step EPD of graphene:Pt composite was shorter than
that of the layer-by-layer approach (seconds compared to minutes). The electrocatalytic electrode
by the single-step EPD showed an almost 10 times higher Pt electrochemically active surface area
for electrocatalysis. The oxygen reduction reaction at the cathode is vital for fuel cells. The sluggish
kinetics of the ORR at the cathode seriously limits the power output and efficiency of fuel cells. Thus far,
Pt and its alloys have been the most active ORR catalysts, despite their high cost. EPD has been used to
fabricate the electrode for Pt-based ORR catalysts [310,312,319,325]. Seger et al. reported a higher ORR
activity than the electrode-applied commercial catalyst when Pt-SiO2 nanoparticles were assembled
onto a carbon paper electrode by EPD [312]. Zheng et al. synthesized branched Pt nanoparticles
on carbon nanofibers by EPD [319]. The Pt-carbon nanofiber nanocomposite electrocatalyst showed
higher mass activity and specific activity for the oxygen reduction reaction than a commercial Pt/C
catalyst. Kamat et al. reported a fuel cell with a Pt supported on a SWCNTs film as the cathode
catalyst outperforming that with an unsupported Pt cathode catalyst [325]. Non-precious metal ORR
catalysts have been pursued actively because of the scarcity and prohibitive price of noble metals for
the large scale application of fuel cells [326–328]. Chi et al. employed EPD to deposit ZnCo2O4 on
a nickel substrate [329]. EPD was conducted at a voltages of 10 and 30 V for 1–5 min. The effects of
the electrophoresis variables, including the deposition time and applied voltages, were discussed. A
longer deposition time resulted in compact and homogeneous surfaces at low applied voltages. The
electrode deposited at 10 V for 5 min showed the best electrocatalytic properties compared to the
other electrodes and the overpotential for OER at a given current density of 100 mA·cm−2 was 0.203 V.
The effects of nanoparticle deposition on the catalytic activity of Co3O4 nanoparticles for the oxygen
reduction reaction (ORR) and oxygen evolution reaction (OER) were evaluated for two deposition
methods: dropcasting and EPD [330]. EPD of Co nanoparticles was conducted by immersing the glass
carbon electrode into a 1 mg·mL−1 suspension of Co nanoparticles in hexane at 300 V for 30 s, followed
by an annealing process to complete the conversion of Co to Co3O4 at 230 ◦C for 2 h. The kinetic
characteristics of the electrode prepared by EPD was enhanced significantly compared to the dropcast
electrode. The electrode prepared by EPD showed a smaller slope of 96 mV per decade compared to
109 mV per decade for the drop-cast electrode, as shown in Figure 30b. A smaller slope is indicative of
more favorable kinetic characteristics.
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Figure 30. (a) ORR polarization curves for the Co3O4 nanoparticle thin film electrode deposited by EPD
(pink) and dropcast (blue and green); (b) Tafel plots of the dropcast and EPD thin film electrodes derived
by the mass-transport correction of corresponding RDE data (Rotation speed: 1600 RPM); (c) ORR
polarization curves for Co3O4 nanoparticle thin film electrode deposited by EPD (pink) and dropcast
(blue) after adjusting for the surface area; (d) OER polarization curves for the Co3O4 nanoparticle thin
film electrode deposited by EPD (pink) and dropcast (blue) after adjusting for the surface area.

These Tafel slopes were related to the geometrical area of the electrode. Considering the ORR
and OER comparisons, as shown in Figure 30c,d, the electrode fabricated EPD was ~2 times more
active than the drop-cast electrode for the ORR and OER because the electrode produced by EPD
exhibited better current conduction and was denser. Bryan et al. used EPD to deposit graphene
thin films before the deposition of a thin layer of Co3O4 nanoparticles by chemical bath deposition
(Figure 31a) [331]. The by-layer composite electrode showed a higher catalytic current than Co3O4

layers without graphene layers, with an OER onset potential of 0.82 V (NHE), while the graphene
electrode did not exhibited any catalytic activity towards the OER, as shown Figure 31b. In addition,
The OER occurred at a lower overpotential when the number of bi-layers increased, which was
attributed to the larger catalytic surface area of the graphene layer fabricated by EPD (Figure 31c). The
ORR current density of the by-layer composite electrode obtained at −0.3 V (0.2 mA·cm−2) was one
order of magnitude higher than that of the graphene electrode (0.02 mA·cm−2). Therefore, the by-layer
composite electrode fabricated by a 2 step process including EPD can be used as a bi-functional catalyst
for both the OER and ORR, which can be applied potentially as an electrocatalyst for both water
electrolysis and fuel cells for energy conversion and storage systems.
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Figure 31. (a) Fabrication scheme of a bi-layer composite electrode; (b) Linear sweep voltammograms
of by-layer composite electrode (red), Co3O4 nanoparticles electrode (blue), graphene electrode (black).
The inset shows the magnified ORR region; (c) Cyclic voltammograms obtained at a scan rate of
10 mV·s−1 with different numbers of bi-layers in a bi-layer composite electrode; (d) Tafel plot generated
from water oxidation using the bi-layer composite electrode of 9 layers.

The details of the electrocatalysts manufactured by applying the EPD process are summarized in
Table A5.

9. Summary

Systematic efforts have been made to design and synthesize advanced nanomaterials for
electrochemical energy storage and conversion by EPD [32,139,185,215,240,331]. The electrodes for
electrochemical energy storage and conversion devices have been studied to enhance the stability
and efficiency, which are the prime issues in electrochemical energy storage and conversion devices.
An application of EPD for such electrodes can be found in advanced ceramic materials, coatings
for thin and thick films, multilayered composites, functionally graded materials, hybrid materials,
self-supported components, micro-patterned assemblies, and nanotechnology. Because EPD is an
automated process, a variety of parameters, such as applied voltage, frequency, concentration of the
dispersed species, and deposition time can be controlled to yield a better response under the optimized
conditions [33,34,40,59]. Accordingly, advanced nanomaterials with improved characteristics have
recently been designed and manufactured by EPD. Moreover, EPD process is simple to install and can
be used to deposit a variety of areas and thicknesses by adjusting a variety of parameters. Especially, it
is possible to deposit various electrode materials in nanometer thickness which is more cost effective
compared to other processes. From this review, it is clear that EPD can yield better performance for
practical applications in electrochemical energy storage and conversion devices. The following are
some of the possible future directions of research for the development of nanomaterials designed and
manufactured by EPD for electrochemical energy storage and conversion devices.
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1. EPD was assessed to produce nanomaterials in energy storage devices. Oxide-based active
materials are used comprehensively for the cathode electrode but their active materials have low
electrical conductivity. Therefore, hybrid materials containing active and carbon materials without
a binder material led to a degradation of the performance of the nanomaterials synthesized by
well controlled EPD process. The hybrid materials were deposited on substrates with various
structures because EPD does not influence the form of the substrates. EPD can used to deposit
thin and thick films for all-solid-state-based cathode electrodes without organic additives to
improve safety.

2. When designing anode materials by EPD, the aim should be to minimize the volume expansion,
which leads to performance degradation during lithium intercalation, and enhance the activated
sites. In this regard, studies of EPD have been conducted to design uniform coatings for thin
and thick films, multilayered composites, and hybrid materials. Such electrodes designed by
EPD can be increased without sacrificing the performance. A study of the high performance and
stability of the nanomaterials designed by EPD appears to be very promising for finding new
nanomaterials with the optimal activity towards practical applications.

3. An enhancement of the specific surface area or activated sites of nanomaterials for supercapacitor
applications is the main concern. Recent studies found that the use of EPD to design and
manufacture electrodes enhances the specific capacitance for supercapacitors. The uniform thin
and thick films, multilayered composites, and hybrid materials have been designed by EPD to
increase the specific capacitance. In particular, the specific surface area and activated sites for
high specific capacitance can be improved using graphene nanosheets and carbon nanotubes
during the EPD process. A high electrical conductivity can lead to enhanced specific capacitance.

4. The electrodes for solid oxide fuel cells generally need to be porous to permeate the fuel, while the
electrolyte layer must be dense to prevent the leakage of gas across the layer. Electrodes have been
designed with a variety of parameters, such as applied voltage, concentration of the dispersed
species, and deposition time, to form highly porous and dense electrodes. The use of EPD can
raise the energy density more than when a conventional process is used. Recently, EPD has been
used to produce laminated ceramics because of its deposition efficiency, cost-effectiveness and
ease of operation compared to other coating methods, such as lithography, self-assembly, dip
coating and screen printing, and spin coating.

5. Nanostructured electrocatalysts based on noble metals have been studied comprehensively
for the oxidation reactions of methanol, ethanol and formic acid, and the oxygen reduction
reaction. The use of EPD to design electrocatalysts or electrodes is another cost effective way to
achieve fuel cell commercialization. Recently, non-precious metal electrocatalysts for the oxygen
reduction reaction have been pursued actively to reduce the prohibitive price of noble metals.
The nanostructured electrocatalysts fabricated by EPD for catalytic activity could be an effective
way to use fuel cells.

10. Outlook

The application of EPD for electrochemical energy storage and conversion devices has increased
rapidly and improved the performance of existing electrochemical electrodes significantly. Further
efforts will be needed to fully investigate the mechanism and properties of the EPD process.
In particular, a better understanding of electrophoresis in colloidal systems and the effects of
parameters, such as applied voltage, time, and suspension during the EPD process, is needed. Such
understanding will allow better control of the morphology and structure of the nano-materials and
could lead to new materials. In addition, EPD should be studied under modulated electric fields,
such as pulsed direct current and alternating current to design electrodes with various structures
for electrochemical energy storage and conversion devices because EPD under modulated electric
fields can impart improved characteristics compared to those obtained by classical EPD, including
well-oriented microstructures [50,332]. In addition, it leads to high reproducibility because EPD under
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modulated fields can be automated. Accordingly, attention should be paid to the design and fabrication
of 2D and 3D structures for the novel generation of future advanced applications in electrochemical
energy storage and conversion devices. Finally, future efforts should be devoted to the development of
currently unknown nano-materials and their applied electrodes designed by a range of EPD processes
to potentially revolutionize batteries, supercapacitors, and fuel cells.
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Appendix A

Table A1. Overview of cathode electrodes designed by EPD showing the nanomaterials for Li-ion batteries and EPD conditions investigated.

No.
Materials

Suspension Medium
EPD Conditions Specification

(Charge/Discharge Capacity) Ref.
Coating Substrate Voltage Time

1 LiCoO2 Al foil Acetone, I2, PTEF, and ketjen
black (C·A) 100 1 min

A specific capacity of 142 mAh·g−1,
maintained a capacity of 120 mAh·g−1

after 20 cycles
[30]

2 LiMn2O4 Al foil Acetone, I2, PTEF, and ketjen
black (C·A) 400 1 min

A specific capacity of 110 mAh·g−1,
maintained a capacity of 75 mAh·g−1

after 20 cycles
[74]

3 LiNi0.5Mn1.5O4 Al foil and SS
Acetone or ethanol,
polyethyleneimine (PEI), citric
acid, and ketjen black (C·A)

0.15–4 µA·cm−1 10 min
A specific capacity of 122 mAh·g−1 with
coulombic efficiency of 95–97% after
50 cycles

[75]

4 LiNi0.5Mn1.5O4 Al disk Aceton, PVP, citric acid, PVB, and
carbon black (C·A) 100 5 min A specific capacity of 130 mAh·g−1,

maintained the capacity after 20 cycles
[76]

5 Li[Ni1/3Co1/3Mn1/3]O2 Al foil Aceton, PVDF, and I2, denka
black (C·A) 60 V 1 min

A specific capacity of 147.18 mAh·g−1,
97.11% capacity retention after 50 cycles
at 0.2 C-rate.

[77]

6 LiCoPO4 Ti plate IPA and LiCl 60 V 30 min
A specific capacity of 103 mAh·g−1 with
coulombic efficiency of 55% after
10 cycles

[82]

7 LiCoO2 Au 1-butanol and cobalt hydroxide
nanosheet 20 µA·cm−1 5–40 min

A utilization efficiency of the discharge
capacity sustained 74% efficiency over
200 C-rate

[88]

8 LiFePO4 3D-Ni disk
Acetone, I2, PVDF, non-ionic
surfactant triton X-100 and ketjen
black (C·A)

60–100 V 1–2 min
A peak-pulse-power capability of 200
mW·cm−2 and an energy density of
6–10 mWh·cm−2

[89]

9 LiMnPO4 Al foil Isopropanol and nickel nitrate 50 V 60 min
A specific capacity of 83 mAh·g−1, 86%
capacity retention after 30 cycles at 1 C
rate

[90]

10 LiFePO4/reduced
graphene oxide Carbon cloth IPA, Mg(NO3)2·6H2O 90 V - A specific capacity of 174.7 mAh·g−1 at

0.2 C
[91]

C·A: conductive agent.
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Table A2. Overview of the anode electrodes fabricated by EPD showing the nanomaterials for Li-ion batteries and EPD conditions investigated.

No.
Materials

Suspension Medium
EPD Conditions Specification

(Charge/Discharge Capacity)
No.

Coating Substrate Voltage Time

1 Si nanoparticles/AB Cu foil Citric acid monohydrate, acetone 120 V 5–60 s
An initial capacity of 3150 mAh·g−1 and
remained the capacity of 2175 mAh·g−1 after
50 cycles at 0.1 C-rate

[92]

2
Artificial graphite, natural
graphite, soft carbon, and
hard carbon

Mo foil
Acetonitrile, triethylamine (TEA),
tetramethylguanidine (TMG), and
pyridine (Py).

0–500 V 10–60 s A reversible capacities of 296–395 mAh·g−1 with
a coulombic efficiency of 90% after 30 cycles

[96]

3 Graphite Cu foil
Acetonitrile, triethylamine (TEA),
tetramethylguanidine (TMG), and
pyridine (Py).

24 V 15 min A reversible capacities of 330 mAh·g−1 at 0.2 C,
maintained the capacity after 30 cycles

[98]

4 Graphite Cu foil Acetonitrile and triethylamine (TEA) 50 V 2 min
An initial capacities were 400, 360, and
400 mAh·g−1 at LiPF6/EC, LIPF6/EMC,
LIPF6/EC/EMC (3:7 v/v), respectively

[105]

5 Graphite Cu foil Acetonitrile and triethylamine (TEA) 32 V 1 min An initial capacities were 450 and 550 mAh·g−1

at LiPF6 and LiF2BC2O4, respectively
[106]

6 Graphite Cu foil Acetonitrile and triethylamine (TEA) 32 V 1 min
An initial capacities were 450, 520, 620, and
620 mAh·g−1 at LiPF6, LiBOB, LiBF4, and
LiF2BC2O4, respectively

[107]

7 Graphite Cu foil Acetonitrile and triethylamine (TEA) 32 V 1 min
An initial capacities were 375, 370, and
320 mAh·g−1 at LiTFSI, LIFSI, and LiDFOB
dissolved in EC, respectively

[108]

8 Graphene nanosheet Stainless steel Ni(NO3)2 in isopropyl alcohol (IPA) 100 V 10 min
A reversible discharge capacity of 392 mAh·g−1

in initial cycle and stabilized the capacity of
200 mAh·g−1 after 20 cycles at 0.2C.

[115]

9 MWCNTs/Graphene
nanosheet Al foil Ni(NO3)2 in isopropyl alcohol (IPA) 100 V 10 min

A specific discharge capacity of 2200 mAh·g−1

in initial cycle and stabilized 458 mAh·g−1 after
10 cycles at 0.2C

[117]

10 MoOx nanoparticles Stainless steel Methanol 300 V 1–2 min A reversible capacity of 630 mAh·g−1 and 93%
capacity retention after 150 cycles at 0.5 C rate

[131–133]

11 V2O5 nanoparticles ITO Water 5 V -
A specific capacity of 300 mAh·g−1 of
50 µAh·cm2 and maintained the good capacity
after 50 cycles

[134]

12 TiO2 nanosheet Pt coated Si wafer Water 5 V - A specific capacity of 190 mAh·g−1 at
3.85 µAh·cm2 [135]
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13 TiO2 nanosheet Pt coated Si wafer Water 5 V - A reversible capacity of 170 mAh·g−1 when
cycled between 0.8 and 3.2 V

[136]

14 TiO2 nanoparticles 3D-Al Ethanol, PE169, and Butvar 50 V 1–2 min - [137]

15 Polystyrene sphere/NiO2 Stainless steel water 60 V 2 min A specific capacity of 1620 mAh·g−1 at 1 C-rate
and 990 mAh·g−1 at 15 C-rate

[138]

16 Hollow structured Co3O4
nanoparticles Cu foil Hexane 150–600 V 10–30

min

A reversible specific capacity of 1820 mAh·g−1,
remained the capacity of 890 mAh·g−1 after
50 cycles at 0.05 C-rate

[139]

17 Hollow structured Co3O4
nanoparticles SiO2/Si Hexane 1500 V -

A specific capacity of 1300 mAh·g−1 in the first
discharge as a current density of 100 mA·g−1

and stabilized 800 mAh·g−1 after 3 cycles
[140]

18 SnO2 nanoparticles-AB Cu foil Aceton and Acetylene Black 100 V 10 s
A initial capacities were 887 mAh·g−1 at 0.1
C-rate and remained the capacity of 504
mAh·g−1 after 50 cycles

[140]

19 MnO2-MWCNTs Ni foil Ethanol and sulfuric acid 50 V 5 min
A specific capacity of 741 mAh·g−1 for first cycle
and 407 mAh·g−1 after 20 cycle at 120 mA·g−1

current density
[149]

20 SnO2-MWCNTs Stainless steel Isopropyl alcohol (IPA) and Ni salt 100 V 10 min
A reversible capacity of 780, 510, and 470
mAh·g−1 at 1 C-rate after 100, 500, and
1000 cycles, respectively

[150]

21 CoO-MWCNTs Stainless steel Isopropyl alcohol (IPA) and Ni salt 100 V 2 min
A reversible capacity of 600 and 550 mAh·g−1 at
the rate of 715 mA·g−1 after 50 and 100 cycles,
respectively

[151]

22 Multi layered
Graphene-Si-CuO Cu foil 1 step: water

2 step: water and HF 10 V 1 min
A initial capacity of 2869 mAh·g−1 at 0.5 C-rate
and the capacity retention of 71% after
100 cycles at 1 C-rate

[152]

23 Graphene-ZnFe2O4
nanoparticles Cu foil Fe(NO3)3·9H2O and Zn(NO3)2·6H2O

suspension 60 V 5 min
A initial capacities were 910 mAh·g−1 at
200 mA·g−1 and remained the capacity of
881 mAh·g−1 after 200 cycles

[153]

24 Graphene-CoFe2O4
nanoparticles Cu foil Fe(NO3)3·9H2O and

Co(NO3)2·6H2O suspension 60 V 400 s
A specific capacity of 865 mAh·g−1 at
1000 mA·g−1 and remained the capacity after
200 cycles

[154]

25 Graphene-TiO2 nanotubes TiO2 nanotubes - 4 V 30 min An initial capacity of 1100 mAh·g−1 when
cycled between 0.01 and 3V at 0.1 mA·g−1 [155]
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26 Ge-MWCNTs Stainless steel Isopropyl alcohol (IPA) and Ni salt 100 V 2 min
A reversible capacity of 1240, 960, 810, 620 and
490 mAh·g−1 at 0.5, 1, 2, 3, and 5 C-rates,
respectively

[161]

27 Sn-MWCNTs Stainless steel Isopropyl alcohol (IPA) and Ni salt 100 V 2 min
A specific capacity of 2100 mAh·g−1 and
irreversibility stabilized around 700 mAh·g−1

after 100 cycles
[162]

28 Graphene-Sn nanoparticles Cu foil Isopropyl alcohol (IPA) and
Mg(NO3)2·H2O 300 V 30 min

A specific capacity of 733, 535, 466, 417, and
417 mAh·g−1 at 100, 200, 500, and 1000 mA·g−1,
respectively

[163]

29 Si nanoparticles Cu foil Acetonitrile and triethylamine (TEA) 32 V 1 min An initial capacities of 1800 and 1700 mAh·g−1

at LiPF6/EC and LiPF6/FEC, respectively
[164]

30 Carbon nanoparticles Dendritic Sn
foams Ethanol and sulfuric acid 70 V 10 s

A reversible capacities of about
600–300 mAh·g−1 at 99.1 mA·g−1 with a
coulombic efficiency of 90% after 30 cycles

[169]

31 Sn-garphene Ni form HCl, SnCl2·H2O 5 V 30 s
An initial capacity of 964 mAh·g−1 and
remained the capacity of 520 mAh·g−1 after
60 cycles

[170]

32 Graphene-SWCNTs Ni form NMP 40 V - A reversible capacity of 2640 mAh·g−1 and
236 mAh·g−1 at 0.5 and 75 C, respectively

[171]

33 SWCNTs Ni form NMP 30 V -
A reversible capacity of 2210 mAh·g−1 with
energy efficiencies up ~50% and cycling
behavior greater than 500 cycles

[173]

34 Ge-acetylene black Ni form Isopropyl alcohol (IPA)
GeCl4

100 V 2 min A specific capacity of 924 mAh·g−1 after
100 cycles at 0.1 C-rate

[177]

35 Reduced graphene oxide Stainless steel Water 30 V -
A specific discharge capacity of 1120 mAh·g−1

as a constant current density of 1 mA·cm−2 and
85% capacity retention after 50 cycles

[333]

36 Li4Ti5O12 Cu foil Acetonitrile, Ketjen Black, I2, and
polyethyleneoxide 100 V 2 min A specific capacity of 149 mAh·g−1 at 0.1 C-rate

and 85% of its theoretical capacity
[334]

37 A-Fe2O3-carbon nanofiber Stainless steel Ni(NO3)2 and isopropyl alcohol
(IPA) 40 V 30 s A specific capacity of 1850 and 970 mAh·g−1 at 1

and 10 C-rate, respectively
[335]
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38 β-Ni(OH)2 Cu foil Ni(OH)2, carbon black, and
ethylic 5 mA·cm−2 10–30

min
An initial capacity of 1400 mAh·g−1 and remained the capacity
of 600 mAh·g−1 after 30 cycles

[336]

39 Carbon nanofiber/Mn3O4
coaxial nanocalbles Carbon nanofiber Mg(NO3)2·6H2O 10 V 120 min

An initial capacity of 1690 mAh·g−1 at a current density of
100 mA·g−1 and remained the capacity of 760 mAh·g−1 after
50 cycles

[337]

40
Carbon Carbon
nanofiber/NiO core-shell
nanocables

Carbon nanofiber Ni(NO3)2·6H2O 10 V 120 min An initial capacity of 1400 mAh·g−1 and remained the capacity of
825 mAh·g−1 after 50 cycles at a current density of 200 mA·g−1 [338]

41 Flower-like Co3O4/carbon
nanofiber core shell Carbon nanofiber Co(NO3)2·6H2O 10 V 120 min An initial capacity of 1446 mAh·g−1 and remained the capacity of

911 mAh·g−1 after 50 cycles at a current density of 200 mA·g−1 [339]

42 Ge/CNTs Cu foil
Ni(NO3)2·6H2O and IPA 100 V 2 min An initial capacity of 1442 mAh·g−1 and remained the capacity

of 810 mAh·g−1 after 100 cycles at a current density of 0.2 C-rate
[340]

GeCl4 including ionic liquid - -

43 Fe3O4/CNTs/rGO Cu foil Acetone and I2 100 V 15 s A specific capacity of 540 mAh·g−1 at a very high current density
of 10 A·g−1 [341]

Table A3. Overview of the electrodes fabricated by EPD showing the nanomaterials for supercapacitors and EPD conditions investigated.

No.
Materials

Suspension Medium
EPD Conditions Specification

(A specific Capacitnace)
Ref.

Coating Substrate Voltage Time

1 Nanoscale activate
carbon Ti foil Isopropyl alcohol (IPA) and Ni

salt 100 V - A specific capacitance of 1071 F·g−1 at 100 mV·s−1 and area
capacitance of 0.48 F·cm−2 [184]

2 Onion like carbon Au coated Si wafer Ethanol, water, MgCl2 active
carbon 50 V - A specific capacitance of 0.9 mF·cm−2 at 100 V·s−1 [185]

3 Onion like carbon Au coated Si wafer Ethanol, water, and MgCl2 50 V - A specific capacitances of 1.1 mF·cm−2 and 0.84 mF·cm−2 at
20 and −50 ◦C at 10 mV·s−1, respectively

[186]

4 SWCNTs Ni form NMP 40 V - A specific capacitance of 83 F·g−1 at 0.1 A·g−1 with energy
density of ~25 Wh·kg−1 [171]

5 MWCNTs Ni foil Ethanol and Mg(NO3)2·6H2O 40–50 V - A maximum specific capacitance 21 F·g−1 at a scan rate of
500 mV·s−1 and no degradation after 100 cycles

[192]

6 MWCNTs Ni foil Ethanol and Mg(NO3)2·6H2O 40–50 V - A maximum specific capacitance 21 F·g−1 at a scan rate of
0.78 mA·cm−1 and no IR drop due to the hydrogen treatment

[194]
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7 SWCNTs Stainless steel Water 10–50 V 1–60 min
Specific capacitances of 0.16, 3.12, 5.16, 7.40, 12.53, 18.57 and
26.50 mF·cm−2 at 20 mV·s−1 for 0, 3, 5, 8, 15, 30 and 60 min of
EPD processing times, respectively

[195]

8 MWCNTs Au coated Si wafer Water 50 V 30–60 s A specific capacitance of 1.8 mF·cm−2 in the
PVA-H3PO4-SiWA solid electrolyte

[196]

9 MWCNTs ITO coated glass IPA and Mg(NO3)2 80 V 30 s A specific capacitance of 60 F·g−1 at a scan rate of 2 mV·s−1

in 0.5 M Na2SO4 electrolyte
[235]

10 MWCNTs Micro-device Water 100 V 30 s A specific capacitance of 0.2 mF·cm−2 at a scan rate 10 V·s−1

in 0.5 M Na2SO4 electrolyte
[342]

11 Aligned MWCNTs Stainless steel Mg(NO3)2·6H2O in isopropyl
alcohol (IPA) 150 V 1 min A maximum capacitance of 512 µF·cm−2 at a constant current

density of 2 mA·cm−2 [343]

12 Graphene ITO glass Water 150 V 45 s
A specific capacitance of 156 F·g−1 was achieved at
750 mA·g−1 and the capacitive retention was about 78% after
400 cycles in Na2SO4 electrolyte

[344]

13 Graphene-MWCNTs Graphite paper Acetone, Ethanol, and
Al(NO3)3·9H2O 30 V 5 min A maximum capacitance of 87 F·g−1 at a scan rate of

5 mV·s−1 in 60graphene/40MWCNTs electrode
[345]

14 Graphene Cu foil Water 5 Hz, 60 V 1–3 h
A specific capacitance of 157 F·g−1 at a scan rate of
10 mV·s−1 and 91.3% specific capacitance retention after
2000 cycles at a scan rate of 100 and 1414 mV·s−1

[204]

15 Reduced
graphene-MWCNTs Carbon cloth Water 6 V 10 h A maximum capacitance of 151 F·g−1 at 1 A·g−1 and 99.1%

specific 16 capacitance retention after 2000 17 cycles
[200]

16
Reduced
graphene-carbon
black

Stainless steel Water (pH 9) 6 V 10 min
A specific capacitance of 1,818,218 F·g−1 at a scan rate of
1 mV·s−1 and 100.9% specific capacitance retention after
1000 cycles at a current density of 10 A·g−1

[201]

17 Reduced graphene Ni form Water 50 V 13 min
A specific capacitance of 110 F·g−1 at a scan rate of
10 mV·s−1 and no reduction of the initial specific capacitance
after 2000 cycles at a current density of 1 A·g−1

[203]

18 Graphene Ni form Ethanol 50 V - A specific capacitance of 164 F·g−1 at a scan rate of 10 mV·s−1 [346]

19 Graphene oxide Ni plate Alcohol and acetone 20–50 V 2–20 min A maximum capacitance of 254 and 205 F·g−1 at a scan rate
of 10 and 100 mV·s−1, respectively

[347]

20 Graphene oxide Carbon cloth Water 6 V 10 h
A specific capacitance of 114.4 F·g−1 at a scan rate of
100 mV·s−1 and >95% specific capacitance retention after
1000 cycles at a constant current density of 2 A·g−1

[348]
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21 Graphene-MWNCTs Ti plate Water and safranin (SAF) 30 V 15 min A specific capacitance of 141.2 and 52.8 F·g−1 at scan rates of 2
and 100 mV·s−1, respectively

[228]

22 Graphene nansheets Ni foam Ethanol 50 V - A specific capacitance of 139 and 100 F·g−1 at a constant
current densities of 3 and 6 A·g−1, respectively

[349]

23 Graphene oxide SS Anhydrous alcohol 10 V 60 min A specific capacitance of 117 F·g−1 at a scan rate of 100 mV·s−1 [350]

24 RuO2·xH2O Ti plate Ethanol 50–200 V 10–600 s A specific capacitance of 734 and 608 F·g−1 at a scan rate of 1
and 50 mV·s−1, respectively

[213]

25 RuO2·xH2O Ti plate Ethanol, water, and PTEF 50 V 1 min A specific capacitance of electrode prepared 2% PTEF and 10%
water is 599 F·g−1 at a scan rate of 10 mV·s−1 [207]

26 Ruthenic acid
nanosheets ITO coated PET DMF, methanol, ethanol, or

acetonitrile 5 V 2–60 min A specific capacitance of 620 F·g−1 at a scan rate of 2 mV·s−1 in
0.5 M H2SO4 electrolyte

[351]

24 Spray pyrolyzed
MnO2 powders Graphite Water 100 V 10–20 min A maximum capacitance of 275 F·g−1 at a scan rate of

25 mV·s−1 and 234 F·g−1 after 100 cycles
[208]

28 Spray pyrolyzed iron
added MnO2

Graphite Water 100 V 10–20 min
A specific capacitance of 232 F·g−1 at a scan rate of 25 mV·s−1

and 78% specific capacitance retention after 1200 cycles at a
scan rate of 100 29 mV·s−1

[209]

29 MnO2 nanofibes SS foil Water and Sodium alginate 5–50 V 1–10 min
A maximum capacitance of 412 F·g−1 at a scan rate of 2 mV·s−1

and no reduction of the initial specific capacitance after
1000 cycles

[210]

30 MnO2 nano particles Graphite Ethanol and H2SO4 100 V 20 min
A maximum capacitance of 236 F·g−1 at a scan rate of
25 mV·s−1 and 70% specific capacitance retention after
275 cycles

[211]

31 MnO2 nanowire Ti foil IPA 40 V 1 h
A maximum capacitance of 1050 F·g−1 at a scan rate of
1 mV·s−1 and 750 F·g−1 of the specific capacitance at a current
density of 1 mA·g−1

[214]

32 α-MnO2 nanorod SS foil IPA, Mg(NO3)2·6H2O, and
NiCl2·6H2O 800 V 30 s

A maximum capacitance of 8500 µF cm2 and 92% specific
capacitance retention after 2000 cycles at a current density of
0.25 mA·cm−2

[215]

33 MnO2 Nano/Micro
hybrids Ti foil IPA 40 V 15 min

A specific capacitance of 1100 F·g−1 at a scan rate of 5 mV·s−1

and no reduction of the initial specific capacitance after
10000 cycles at a scan rate of 200 mV·s−1

[216]
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34 MnO2 SS Graphite Ethanol and PE 10–100 V 1–15 min A maximum capacitance of 377 F·g−1 at a scan rate of 2 mV−1

(loading amount: 50 µg·cm−2) in 0.1 M Na2SO4 electrolyte
[352]

35 Aligned β-MnO2 nanorod Stainless steel Mg(NO3)2·6H2O in isopropyl
alcohol (IPA) 150 V 1 min A maximum capacitance of 689 µF·cm−2 at a constant current

density of 2 mA·cm−2 [245]

36 NiO SS foil IPA and iodine, nickel nitrate or
cobalt nitrate 10 V 30 s

A specific capacitance of 180 F·g−1 at a scan rate of
10 mV·s−1 and no change of specific capacitance retention
after 4000 cycles at a constant current density of 8 A·g−1 in
0.5 M KOH electrolyte

[218]

37 NiO SS foil IPA, Iodine, and water 10 V 30 s
A specific capacitance of 112 F·g−1 at a scan rate of 10 mV·s−1

and 90% specific capacitance retention after 5000 cycles at a
constant current of 4 A·g−1 in 0.5 M KOH electrolyte

[219]

38 NiO nanowires Ti foil IPA and nickel nitrate 40 V 60 min
A specific capacitance of 750 F·g−1 at a scan rate of 1 mV·s−1

and 12% capacitance fades after 1000 cycles in 0.1 M NaOH
electrolyte

[220]

39
MnO2
nanoparticles-cationic
celestine blue dye

Ni plaques Ethanol 20 V 1–8 min
A specific capacitance of 0.34 F·cm−2 at a scan rate of
2 mV·s−1 and high capacitance retention of 88.5% in the scan
rate of 2–100 mV·s−1 in 0.5 M Na2SO4 electrolyte

[241]

40 Polystyrene sphere/nickel
hydroxide SS foil IPA 60 V 30 s A specific capacitance of 800 F·g−1 at a discharge current

density of 10 A·g−1 in 0.5 M KOH electrolyte
[211]

41 NiMoO4 Ni foil IPA 40 V 15 min A specific capacitance of 972 F·g−1 at a scan rate of 1 mV·s−1

in 1 M NaOH electrolyte
[222]

42 Hybrid materials SS foil Water 30 Hz
200 V 30 s A specific capacitance of 172 F·g−1 and good cyclability at

7 mA·cm−2 over 1100 cycles
[353]

43 PPY-MWCNTs SS foil Water 1 mA·cm−2 -
A specific capacitance of 224 F·g−1 at a scan rate of 2 mV·s−1

in 0.5 M Na2SO4 electrolyte (Pulsed electrophoretic
deposition)

[223]

44 PBS-MnO2-MWCNTs SS foil Pt coated
wafer Water 1–10 V 1–10 min A specific capacitance of 250 and 90 F·g−1 at a scan rate of 2

and 100 mV·s−1 in 0.5 M Na2SO4 electrolyte, respectively
[224]

45 PPy
nanofiber-MWCNTs-MG SS Water 30 V -

A maximum capacitance of 4.62 F·cm−2 at a scan rate of
2 mV·s−1 in 0.5 M Na2SO4 electrolyte (a material loading of
30 mg cm−2)

[225]



Energies 2018, 11, 3122 56 of 81

Table A3. Cont.

No.
Materials

Suspension Medium
EPD Conditions Specification

(A specific Capacitnace)
Ref.

Coating Substrate Voltage Time

46 PPy coated MWCNTs SS Water and CHR-BS 50–150 V -
A maximum capacitance of 179 F·g−1 at a scan rate of
2 mV·s−1 in 0.5 M Na2SO4 electrolyte (a material loading of
10 mg cm−2)

[226]

47 Graphene-PPy Ti plate IPA and nickel nitrate 20 V 30 min
A maximum capacitance of 1510 F·g−1 and area capacitance
of 151 F·cm−2 at a scan rate of 10 mV·s−1 in LiClO4
electrolyte, respectively

[227]

48 Graphene-PPy
nanofibers Ti plate Water and safranin (SAF) 30 V 15 min A specific capacitance of 354.2 and 225.6 F·g−1 at scan rates of

2 and 100 mV·s−1, respectively
[228]

49 Graphene-PANI
nanofibers Au DMF and Mg(NO3)2·6H2O 80 V 30 min A specific capacitance of 667.5 µF·cm−1 at a constant current

density of 15 µA·cm−1 in 0.5 M Na2SO4 electrolyte
[229]

50 Layred
graphene-PANI Ni plate Water -20 V 20 min

A specific capacitance of 384 F·g−1 at a constant current
density of 0.5 A·g−1 and 84% specific capacitance retention
after 1000 cycles at a current density of 2 A·cm−2 in 1 M
H2SO4 electrolyte

[230]

51 Mn oxide-MWCNTs Graphite Water 100 V 10–20 min

A specific capacitance of 260 F·g−1 at a constant current
density of 25 mV·s−1 and 88% specific capacitance retention
after 500 cycles at a current density of 25 mV·s−1 in 1 M
Na2SO4 electrolyte

[231]

52 MnO2-MWCNTs SS Dopamine and water 10–50 V 1–10 min A maximum capacitance of 650 F·g−1 at a scan rate of
2 mV·s−1 in 0.5 M Na2SO4 electrolyte

[232]

53 MnO2-MWCNTs SS Water and sodium alginate 10–50 V 1–10 min A specific capacitance of 210 and 100 F·g−1 at scan rates of 2
and 100 mV·s−1 in 0.1 M Na2SO4 electrolyte, respectively

[233]

54 MnO2-MWCNTs Ni foil Ethanol and sulfuric acid 50 V 5 min A specific capacitance of 158 F·g−1 at a constant current
density of 2 A·g−1 in 1 M Na2SO4 electrolyte

[149]

55 MnO2-CNTs SS Water 40 V 4 min
A specific capacitance of 448 F·g−1 at a scan rate of
50 mV·s−1 and 869 F·g−1 at a constant current density of
2.5 A·g−1 in 0.65 M K2SO4 electrolyte

[234]

56 Mn-Mo mixed
oxide-CNTs ITO coated glass IPA and Mg(NO3)2 80 V 30 s

A maximum capacitance of 408 F·g−1 at a scan rate of
2 mV·s−1 and 86% specific capacitance retention after
1000 cycles in 0.5 M Na2SO4 electrolyte

[235]

57 MnO2 coated
MWCNTs

Flexible graphite
sheet Water 8 V 5 min

A specific capacitance of 442.9 F·g−1 at a scan rate of
2 mV·s−1 and 98.9% specific capacitance retention after
1000 cycles in 0.5 M Na2SO4 electrolyte

[236]



Energies 2018, 11, 3122 57 of 81

Table A3. Cont.

No.
Materials

Suspension Medium
EPD Conditions Specification

(A specific Capacitnace)
Ref.

Coating Substrate Voltage Time

58 MnO2 coated
MWCNTs SS Ethanol containing CFB and

CCA 10–70 V 1–15 min

A maximum capacitance of 290 F·g−1 at a scan rate of
2 mV·s−1 in 0.5 M Na2SO4 electrolyte (1 g·L−1 MnO2
suspension containing 0.13 g·L−1 MWCNTs and 0.2 g·L−1

CCA electrophoretically deposited art 40 V)

[237]

59 MWCNTs-α-MnOOH
coaxial nanocable Ni foil Ethanol and water 50 V 150 s

A specific capacitance of 327 F·g−1 at a constant current
density of 0.2 mA·cm−2 and retention of capacitance
retention of 205 F·g−1 after 1200 cycles in 0.1 M Na2SO4
electrolyte

[238]

60 MnO2 nanowire-
carbon nanobead Ti foil Isopropanol 40 V 15 min

A specific capacitance (10 wt.% carbon nanobead) of
625 F·g−1 at a scan rate of 100 mV·s−1 and high stability of
the capacitance up to 10,000 cycles in 0.1 M KOH electrolyte

[239]

61 MnO2-MWCNTs SS Ethanol, PV, and PVB 100 V 2 min A specific capacitance of 150 F·g−1 at a scan rate 2 mV·s−1 in
0.5 M Na2SO4 electrolyte

[240]

62 MnO2-Celestine blue Ni Plaques Ethanol, Celestine blue (CB) 20 V 1–8 min
A specific capacitance of 0.34 F·cm−2 at a scan rate of
2 mV·s−1 and 88.5% specific capacitance retention in the scan
rate range of 2–100 mV·s−1 in 0.5 M Na2SO4 electrolyte

[241]

63 MnO2-MWCNTs Graphite sheet Water and sodium
dodecylbenzene sulfonate 8 V 6 min

A specific capacitance of 540.7 F·g−1 at a scan rate of
2 mV·s−1 and 90% specific capacitance retention after
1000 cycles at a scan rate of 100 mV·s−1 in 0.5 M Na2SO4
electrolyte

[242]

64
NiO-vapor-grown
carbon nanofiber
(VGCF)

SS

VGCF: IPA and Ni(NO3)2 60 V 30 s
A high capacitance retention of 91% after 6000 cycles in 0.5 M
KOH electrolyte [243]NiO: IPA, iodine, water, and

Ni(OH)2 10 V 30 s

65 Ni-decorated CNTs SS IPA 60 V 30 s A specific capacitance of 117 and 100 F·g−1 at scan rates of 10
and 500 mV·s−1 in 0.5 M KOH electrolyte, respectively

[244]

66 Ni-decorated
activated-carbon SS IPA and nickel nitrate 151 V -

A specific capacitance of 140 F·g−1 at a scan rate of 50
mV·s−1 and >95% specific capacitance retention after
200 cycles in 0.5 M KOH electrolyte

[245]

67 NiO-MWCNTs SS IPA and Ni(NO3)2 −60 V - A maximum capacitance of 1511 F·g−1 at a discharge current
of 50 A·g−1in 1 M KOH electrolyte

[246]

68
Ni-BDC
(1,4-bezenedicarboxylic
acid)

SS IPA −60 V 10 s

A specific capacitance of 886 F·g−1 at a constant current
density of 1 A·g−1 and 87% capacitance retention after
1100 cycles at a constant current density of 20 A·g−1 in 1 M
KOH electrolyte

[247]
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Coating Substrate Voltage Time

69
Graphene
nanosheet/porous
NiO

Ni form IPA and Mg(NO3)2·6H2O 100 V 20 s
A specific capacitance of 400 and 324 F·g−1 at a constant
current densities of 2 and 40 A·g−1, respectively in 1 M KOH
electrolyte

[248]

70
Graphene
nanosheets/MnO2
nanowires

SS
1 step: IPA
2 step: Manganous acetate,
sodium sulfate

60 V
0.125

mA·cm−2
-

A specific capacitance of 252 F·g−1 at a constant current
density of 2 A·g−1 and 96% capacitance retention after
6000 cycles at a constant current density of 40 A·g−1 in 1 M
Na2SO4 electrolyte

[249]

71 NiO/graphene oxide
nanosheets SS IPA and nickel nitrate 60 V -

A specific capacitance of 569 F·g−1 at a constant current
density of 5 A·g−1 (NiO: 28 F·g−1, graphene oxide: 11 F·g−1)
in 0.5 M KOH electrolyte

[253]

72
Multilayered
graphene sheet/Au
nanoparticles

ITO coated glass DMF 30 V 8 min A specific capacitance of 65 F·g−1 at a constant current
density of 1 F·g−1in organic electrolyte

[254]

73 Graphene
nanoribbons/MnO2

SS IPA Mn(NO3)2·4H2O 60 V
−30 V -

A specific capacitance of 266 F·g−1 at a constant current
density of 1 A·g−1 and 98% capacitance retention after
3000 cycles at a constant current density of 10 A·g−1 in 1 M
Na2SO4 electrolyte

[250]

74
Ni-CO
hexacyanoferrate
nanostructure/graphene

SS Water 5 V 7 min
A maximum capacitance of 411 F·g−1 a constant current
density of 0.2 A·g−1 and 83% capacitance retention after
800 cycles at a scan rate of 25 mV·s−1 in 1 M KNO3 electrolyte

[251]

75
MnO2
nanoparticles/graphene
nanosheets

SS Water 4 V 5 min

A specific capacitance of 392 F·g−1 at a constant current
density of 1 A·g−1 and > 90% capacitance retention after
1200 cycles at a constant current density of 6 A·g−1 in 0.5 M
Na2SO4 electrolyte

[252]

76 Graphene/MnO2/CNT Ni plate Hydrochloric acid and IPA 50 V 2 min

A maximum capacitance of 416 F·g−1 at a constant current
density of 3 A·g−1 and 83.3% capacitance retention after
15,000 cycles at a constant current density of 3 A·g−1 in 0.1 M
Na2SO4 electrolyte

[255]

77 Reduced graphene
oxide/Ni(OH)2

Ni form SS ITO
coated glass Water and Ni (NO3)2 2–10 V 30–600 s

Maximum capacitances of 1404 and 1004 F·g−1 at constant
current densities of 2 and 20 A·g−1, respectively in 6 M KOH
electrolyte

[256]
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78 PbO2-CNTs/graphene
asymmetric electrode Ti plate Acetonitrile 20 V 60 min

A specific capacitance of 250 F·g−1 at a scan rate of 5 mV·s−1

and 87% capacitance retention after 3000 cycles at a scan rate
of 100 mV·s−1 in 0.1 M KOH electrolyte

[260]

79 Graphene/carbon
nanotube/MnO2

Ni plate Hydrochloric acid and IPA 50 V 2 min

A specific capacitance of 964 F·g−1 at a constant current
density of 1 A·g−1 and 67% capacitance retention at constant
current densities from 1 to 10 A·g−1 in 0.1 M Na2SO4
electrolyte

[354]

80
Graphene/Ni-Fe-HCF
(hexacyanoferrate) SS

Water 5 V 10 min A specific capacitance of 67.77 mAh·g−1 at a constant current
density of 0.5 Ag−1 and >95% capacitance retention at a scan
rate of 0.02 V·s−1 in 0.5 KNO3 electrolyte

[355]
NiCl2·6H2O, FeCl3·6H2O,
K3Fe(CN)6

0.35 V 300 s

81 RuO2-graphene-CNT Carbon fiber cloth CNT, CNS 20 V 5 min
A high specific capacitance up to 480.3 F·g−1 and remarkable
cycling stability (89.4% capacitance retention after
10,000 cycles)

[356]

Table A4. Overview of the SOFCs fabricated by EPD showing the materials for SOFCs and EPD conditions investigated.

No. Support Materials Materials for EPD Suspension Medium EPD Conditions Specification
(An optimized Condition and a Power Density) Ref.

Voltage Time

1 LSM YSZ Acetylacetone and I2 10 V 3 min A maximum power density of 1.5 W·cm−2 and
open circuit voltage of 1.0 V, respectively

[263]

2 LSM YSZ Ketone and I2 10 V 3 min A maximum power density of 1.84 W·cm−2 and
open circuit voltage of 1.03 V, respectively

[264]

3 LSM YSZ - - - A maximum power density of 1.87 W·cm−2 and
open circuit voltage of 1.03 V, respectively

[265]

4 LSM LM/YSZ/NiO-YSZ
multilayer isopropanol 20–600 V 1–60 min YSZ: at 40 V for 10 min in isopropanol NiO-YSZ: at

40 V for 10 min in isopropanol [280]

5 Carbon interlayer
coated LDM tube YSZ Glacial acetic acid 50 V 5 min A density of 98.5% of YSZ with interlayer (94% of

YSZ without interlayer) [268]

6 LSM-YSZ YSZ Acetone including ethanol with
amount of I2

5–40 V 3–30 min

A high density of YSZ at 20 V for 8 min in
suspension of I2 concentration of 0.6 g/L, YSZ
concentration of 9.0 g/L, and a mixture of
acetone/ethanol (volume ratio 3/1)

[273]
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No. Support Materials Materials for EPD Suspension Medium EPD Conditions Specification
(An optimized Condition and a Power Density) Ref.

Voltage Time

7 Stainless steel 3YSZ, 6YSZ, and 8YSZ
n-propanol, methanol, ethanol,
iso-propanol, n-butanol, ethylene
glycol, acetone, and acetylacetone

20–300 V 1–30 min A high dispersion of 8YSZ in n-propanol suspension
and dense uniform coating at less than 100 V for 10 min [277]

8 NiO-ScSZ YSZ n-propanol 50 V 1–30 min
A dense uniform coating at 50 V for 10 min and an OCV
of 1.165 V at 928 K in anode-supported YSZ electrolyte
deposited by EPD

[278]

9 NiO-YSZ NiO-YSZ/YSZ
bi-layers Acetylacetone 25–500 V 1–3 min A maximum power density of 434 mW·cm−2 and open

circuit voltage of 0.99 V at 800 ◦C
[289]

10 NiO-YSZ YSZ Acetylacetone 50–300 V 1–5 min A maximum power density of 611 mW·cm−2 and open
circuit voltage of 0.88 V at 850 ◦C (at 50 V for 1 min)

[264]

11 NiO-YSZ YSZ I2 with isopropanol 10 V 60 min A maximum power density of 440 mW·cm−2 and open
circuit voltage of 1.0 V at 900 ◦C

[272]

12 Graphite Ni-YSZ

Tetramethylammonium
hydroxide (TMAH)adding
13polyacrylic acid based
pol14yelectrolyte (PPA) 15and
carboxymet16hylcellulose
(CM17C)

2 mA·cm−2 5–10 min A higher electrophoretic mobility of powder in pH 9
and 10 adding 1.5 wt.% of PAA and 0.5 wt.% of CMC [279]

13 NiO-YSZ YSZ/SDC bi-layers Ethanol 600 V -
A maximum power density of 0.6 W·cm−2 at 700 ◦C of
bi-layered electrolyte consisting of 4 µm-thick YSZ and
1 µm-thick SEC films

[290]

14 Graphite coated
NiO-YSZ YSZ Acetone 400 V - A maximum power density of 2.01 W·cm−2 at 800 ◦C

(YSZ of 5 µm-thick)
[269]

15 NiO-YSZ YSZ Acetylacetone 25–100 V 1–3 min A maximum power density of 263.8 mW·cm−2 and
open circuit voltage of 0.97 V at 650 ◦C (100 V for 3 min)

[267]

16 NiO-YSZ YSZ Water adding ammonium
polyacrylate (PPA-NH4) 2.2 mA·cm−2 30 and 75 s

A dense and uniform YSZ electrolyte film of 6 µm-thick
and increase of deposition rate with increasing current
density and with decreasing PAA-NH4 concentration

[281]

17 Fecralloy YSZ Acetylacetone adding I2
15–480 V
0–250 V 1–20 min

A reduction of deposit porosity of electrolyte after a first
step of a 240 s EPD in an electric field of 60 V and then
240 s EPD in an electric field of 240 V as a second step

[270]
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(An optimized Condition and a Power Density) Ref.
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18 LSM/YSZ YSZ Mixture of acetone/ethanol
adding I2

10–40 V 4–8 min An uniform film without cracks in suspension of
acetone/ethanol (rate: 50/50 mL) at 30 V for 6 min [274]

19 NiO-YSZ YSZ acetone/ethanol (50:50) 20 V 1–4 min A dense thick film without crack at 20 V for 1 min
leaded to a better result in EIS analysis [275]

20 NiO-YSZ YSZ Ethanol adding polyethylene
glycol (PEG) 30 V 1.5 min A maximum power density of 850 mW·cm−2 at 850 ◦C

(YSZ of 10 µm-thick)
[276]

21 NiO-YSZ YSZ Acetylacetone 50–300 V 1–5 min
A maximum power density of 624 mW·cm−2 and open
circuit voltage of 1.03 V at 800 ◦C (EPD conditions: at
100 V for 3 min)

[271]

22 Cu wire NiO-YSZ, YSZ, and
LSM

Water adding ammonium
polyacrylate (PPA-NH4)

1, 5, and 10
mA·cm−2 - A maximum power density of 3.5 mW·cm−2 at 800 ◦C

(YSZ of 6 µm-thick)
[295]

23 Carbon coated YSZ LSM-YSZ/LSM
bi-layers Acetylacetone adding I2 15 V - A minimal polarization resistance of LSM/YSZ (10:4

(v:v)) bi-layered film at 600 ◦C (4 µm-thick) [292]

24 Cu wire NiO-YSZ, YSZ, and
LSM

Water adding ammonium
polyacrylate (PPA-NH4)

2, 5, and 10
mA·cm−2 - A maximum power density of 363.8 mW·cm−2 at

800 ◦C (YSZ of 35 µm-thick)
[296]

25 Cu wire NiO-YSZ, YSZ, and
LSM

Water adding ammonium
polyacrylate (PPA-NH4) 100 mA·cm−2 - A maximum power density of 363.8 mW·cm−2 at

800 ◦C (the anode with 70 wt.% NiO)
[297]

26 Stainless steel NiO-YSZ
Ethanol, acetone, methanol,
isopropanol, acetyl acetone, and
n-butanol adding I2

50–300 V 30–420 s
A high deposition rate of 60NiO-40YSZ (wt.%) in
isopropanol-suspension adding 0.5 mM I2 (EPD
conditions: at 200 V for 3 min)

[357]

27 NiO-YSZ YSZ Acetylacetone and acetone with
ethanol 110 V 2.5 min A maximum power density of 200 mW·cm−2 at 800 ◦C

(YSZ of 40 µm-thick)
[298]

28 Ni fole LSGM, LSCF, and YSG Ethanol adding phosphate ester
and polyvinyl butyral

0.05–1
mA·cm−2 1–10 min

A good dispersion and charging of ceramic particles in
phosphate ester as well as improvement of adhesion of
the deposits without cracking by using polyvinyl
bytyral in ethanol-based suspension

[282]

29 Ni fole LSGM, CGO, and YSG
Ethanol and isopropanol adding
phosphate ester and polyvinyl
butyral

50–200 V 1–6 min A high deposition rate of LSGM and YSG in ethanol
and CGO in isopropanol (adding polyvinyl butyral) [283]

30 Graphite LSGM Acetylacetone adding I2 20 mA·cm−2 50–200 s A maximum power density of 0.5 W·cm−2 at 700 ◦C
(LSGM of 40 µm-thick)

[284]

31 LDC LSGM Acetone and water adding I2 20–80 V - A good degree of packing of LSGM particles in
suspension (I2: 0.1 g·L−1, H2O: 45 mL·L−1) [286]
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(An optimized Condition and a Power Density) Ref.

Voltage Time

32 LDC LSGM Acetone and water adding I2 - - A maximum power density of 780 mW·cm−2 at 700 ◦C
(LSGM of 30 µm-thick)

[287]

33 LDC LSGCM Acetone and water adding I2 80 V 2 min
A good degree of packing of LSGM particles in
suspension (I2: 0.1 g·L−1 in acetone, H2O: 60 mL·L−1,
powder: 0.9 g·L−1)

[288]

34 YSZ-BCYO BCY10 Acetylacetone adding I2 40 V 5 min A maximum power density of 174 mW·cm−2 at 650 ◦C
(BCYO of 12 µm-thick)

[293]

35 YSZ-BCYO BCY10 Acetylacetone adding I2 30–60 V 1 min A maximum power density of 296 mW·cm−2 at 700 ◦C
(EPD at 60 V for 1 min)

[294]

36 NiO-SSZ SSZ Acetylacetone adding I2 10–50 V 5–50 min
A maximum power density of 1.8, 1.2, 0.4, and
0.1 W·cm−2 at 900, 800, 700, and 600 ◦C, respectively
(BCYO of 12 µm-thick)

[358]

37 NiO-SDC SDC Mixture of acetone and ethanol
(3:1/v:v) adding I2

60 V 1–3 min
A maximum power density of 155 mW·cm−2 and open
circuit voltage of 0.92 V at 600 ◦C (EPD conditions: at
60 V for 1 min)

[292]

38 NiO-LCN LCN Water and acetylacetone adding
I2

25 V 2 min An electrolyte specific resistance of 1.3 Ω·cm2 at 800 ◦C
(LNC of 10 µm-thick)

[359]

39 NiO-LCN NiO-LCN Water and acetylacetone adding
I2

25 V 3 min An electrolyte specific resistance of 0.16 Ω·cm2 at 800 ◦C [290]

40 CGO LSCF

Acetylacetone, ethyl alcohol, and
acetone adding
pol(vinlbutyral-co-vinyl
alcohol-co-vinyl acetate), and
phosphate ester, starch

10–40 V 1–5 min A high uniform LSCF film at 20 V for 2 min in
suspension containing acetylacetone, I2, and starch [285]

41 T441 stainless steel (Mn, Co)3O4 Ethanol 200–500 V 1 min An ASR of 17.2 mΩ·cm2 in film deposited with 400 V
for 1 min

[299]

42 Crofer22APU (Mn, Co)3O4
Mixture of ethanol and water
(volume ratio: 60/40) 50 V 20 s An ASR of 20 mΩ·cm2 at 800 ◦C for 1000 h under air [300]

43 Crofer22APU (Mn, Co)3O4 Acetone 20 V 1 min An ASR of 17 mΩ·cm2 at 800 ◦C for 50 h under air [301]

44 PPY-coated NiO-YSZ YSZ Isopropanol medium using
iodine, acetylacetone, and water 15–40 V 1–4 min A maximum power density of 0.91 W·cm−2 at 0.7 V

(EPD conditions: at 15 V for 1 min)
[55]

Yttria-stabilized zirconia (YSZ); La0.6Sr0.4MnO3(LSM); La0.92MnO3±d; LaMnO3 (LDM); La0.8Sr0.2Ga0.875Mg0.125O3-x (LSGM); La0.8Sr0.2Co0.2Fe0.8O3-δ (LSCF); (Ce0.8Gd0.2)O1.9 (CGO);
La0.4Ce0.6O2-x (LDC); La0.8Sr0.2Ga0.8Mg0.115Co0.085O3-δ (LSGCM); BaCe0.9Y0.1O3-x(BCY10); Zr(Sc)O2 (SSZ); Sm0.2Ce0.8O1.9 (SDC); La0.995Ca0.005NbO4 (LCN).
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Table A5. Overview of the electrocatalysts fabricated by EPD showing the nanomaterials for electrocatalysis and EPD conditions investigated.

No. Support Materials Materials for EPD Suspension Medium EPD Conditions Specification
(an Optimized Condition and a Power Density) Ref.

Voltage Time

1 Silver mesh
AB-6 Water, Triton X-100, PTEF 30 V 45 s A generated 0.77 V at 0.3 A·cm−2 in gas diffusion electrode

fabricated by EPD
[308]

AB-6, Ketjenblack Water, Triton X-100, PTEF 30 V 15 s

1 Nafion 117 Pt/C Ethanol, Nafion inomer 1000 V 5–15 min A current density of 270 mA·cm−2 at a cell potential of
0.5 V (EPD time: 10 min)

[309]

3 Carbon fiber paper
SWCNTs Tetraoctylammonium

bromide 80 V 2–5 min
A ECSA of 30.8 m2·g−1 and a maximum power density of
240 mW·cm2 at 60 ◦C

[310]
Pt/C Tetrahydrofuran and

Nafion solution - -

4 Carbon textile

XC-72 carbon Ethanol and Nafion
inomer 250 V 30 s

A current density of 105 mA·cm−2 at low output voltage
region at 0.3–0.5 V (a catalyst loading of 0.16 Pt-mg·cm2)

[311]
Pt/C Ethanol and Nafion

solution - -

2 Carbon paper Pt-SiO2
Tetrahydrofuran and
Nafion inomer 75 -

A highest power density at 2:1 ratio of Pt-SiO2 (about
225 mW·cm−2 at 40 ◦C and a catalyst loading of
0.2 mg·cm2 including the mass of silica

[312]

3 Carbon paper PtRu/MWCNTs HClO4 and Nafion inomer 5 V 30 min A maximum power density of 27 mW·cm−2 at 60 ◦C (a
catalyst loading of 0.16 Pt-mg·cm2)

[313]

4 Nafion-carbon layer
coated carbon paper Pt nanoparticles Pt colloids (pH 2–5) Duty cycle: 25% 10 min A maximum mass-specific current density of

440.6 mA·mgpt
−1 (a catalyst loading of 0.16 Pt-mg·cm2) [317]

5 Nafion-carbon layer
coated carbon paper Pt nanoparticles Pt colloids 30 mA·cm−2 Duty

cycle: 25%
10 min

A ECSA of 37.8 m2·g−1 and a current density of
517 mA·cm−2 at a cell potential of 0.6 V at 70 ◦C (a catalyst
loading of 0.198 Pt-mg·cm2)

[318]

6 Carbon paper Pt/C Isopropanol and Nafion
inomer 100 V - A maximum power density of 180 mW·cm−2 at 160 ◦C (in

suspension including 30 wt.% Nafion solution)
[314]

7 Au coated PDMS PtRu/C Water and Nafion inomer 5 V 10 min A maximum power density of 6.28 mW·cm−2 and OCV of
0.87 V at 25 ◦C

[315]

8 Carbon paper Pt/C Isopropyl alcohol and
Nafion inomer or PTEF 100 V A maximum power density of 187 mW·cm−2 at 160 ◦C (in

suspension including 40 wt.% PTEF solution)
[316]

9 Carbon nanofiber
coated carbon paper Pt nanoparticles Pt colloids - - A ECSA of 36.37 m2·g−1 and specific current density of

6.33 × 10−3 A·cm−1 for ORR
[319]
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Table A5. Cont.

No. Support Materials Materials for EPD Suspension Medium EPD Conditions Specification
(an Optimized Condition and a Power Density) Ref.

Voltage Time

13 Optically transparent
electrode

C60
Acetonitrile and toluene
(3:1 (v/v)) 100 V - A maximum current density of 3.6 mA·cm−2 in C/Pt ratio of

1:2 for methanol oxidation reaction
[324]

Pt nanoparticles H2PtCl6 −350 mV vs. SEC -

14 Optically transparent
electrode

SWCNTs
Tetraoctylammonium
bromide and
tetrahydrofuran

500 V 1 min A maximum current density of 60 mA·cm−2 for methanol
oxidation reaction and an exchange current density of
6.3 × 10−4 A·cm−2 for oxygen reduction reaction

[325]

Pt nanoparticles H2PtCl6 −350 mV vs. SEC -

15 Glassy carbon
electrode

Carbon nanofiber Ethanol and
Mg(NO3)·6H2O 30 V 10 min A maximum current density of 80 mA·cm−2 for ethanol

oxidation reaction and a current density of 73.2 mA·cm−2 after
CV test during 300 cycles

[320]

Pd nanoparticles PdCl2 (pH 1.5) 100 mA·cm−2 -

10 Carbon paper GO-Pt Water, tetrahydrofuran,
and Nafion inomer 75 V - A maximum power density of about 160 mW·cm−2 at 60 ◦C (a

catalyst loading of 0.2 mg·cm2)
[321]

17 ITO coated glass GO Water 150 V 40 s A maximum current density of 7.41 mA·cm−2 for methanol
oxidation reaction and higher current density compared to
Pt/glass carbon (4.31 mA·cm−2)

[322]

Pt nanoparticles H2PtCl6 and H2SO4 −0.25 V 30 min

18 ITO coated glass Reduced GO Water 4 V 30 s A ECSA of 1.54 cm2·g−1 in electrode electrophoretically
deposited at 10 min [323]Pt nanoparticles Pt colloids 5 V 3–10 min

11 ITO coated glass Reduced GO/Pt
nanoparticles DMF 5 V 10–60 s A ECSA of 2.04 cm2·g−1 in electrode electrophoretically

deposited at 60 s

12 Ni plate ZnCo2O4
Ethanol, polyvinylbytyral,
and phosphate ester 10–30 V 1–5 min

A maximum current density of 289.6 mA·cm−2 at given
potential of 0.7 V in electrode deposited at 20 V for 5 min in 1 M
KOH electrolyte

[329]

13 Carbon glass electrode Co nanoparticles Hexane 300 V 30 s
A maximum diffusion limited current of −62.6 Agcatalyst in
electrode deposited by EPD (−49.3 Agcatalyst in electrode
deposited by dropcast)

[330]

22 ITO coated glass

Reduced graphene
oxide

Water and NH4OH (pH:
10.0–10.5) 1.25 mA 75 s A current density of 1.30 mA·cm−2 at an applied potential of

1 V for OER and a current density of 0.2 mA·cm−2 at an
applied potential of −0.3 V for ORR

[331]
Co3O4
nanoparticles 0.05 M [Co(HH3)6]2+ - -

14 ITO coated glass NiO nanoparticles
Isopropyl alcohol and
magnesium nitrate
hexahydrate

- - A low onset voltage of −0.2 V (vs. Ag/AgCl) accompanied by
an anodic peak at around 0.3 V (vs. Ag/AgCl), [29]
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