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Abstract: Reliable and robust control of power converters is a key issue in the performance of
numerous technological devices. In this paper we show a design technique for the control of
a DC-DC buck converter with a switching technique that guarantees both good performance and
global stability. We show that making use of the contraction theorem in the Jordan canonical form
of the buck converter, it is possible to find a switching surface that guarantees stability but it is
incapable of rejecting load perturbations. To overcome this, we expand the system to include the
dynamics of the voltage error and we demonstrate that the same design procedure is not only able to
stabilize the system to the desired operation point but also to reject load, input voltage, and reference
voltage perturbations.

Keywords: DC-DC buck converter; contraction analysis; global stability; matrix norm

1. Introduction

Many industrial and residential applications use voltage regulation with DC-DC power converters;
such applications include fuel cells [1], photovoltaic sources [2,3], control of DC motors [4], lighting
appliances [5], computer power supplies [6], and many others. Power converters transform a non
regulated voltage/current source (DC or AC) into a regulated voltage/current output, which can
be either larger or smaller than the non regulated input. Usually, the underlying structures in these
devices are the so-called buck (step-down), boost (step-up), buck-boost (step down-step up), flyback,
Ćuk, to mention few, depending on the type of application [7,8]. DC-DC power converters show
both fast speed and capability of managing high power if needed [9]. More than 90% of the total
amount of power supply in the world is processed through power converters [10]. For this reason,
a precise control of these converters is a critical factor and therefore a vast amount of literature has
been devoted to their control. For instance, PID-based schemes [11], Fuzzy PID control [12], robust
controllers [13], predictive control [14], sliding mode control [15], and a controller based on a modified
pulse-adjustment of the PWM [16], just to mention few.

The DC-DC buck power converter supplies a lower voltage than the input voltage and is one of
the most widely studied power converters: Some recent applications include battery chargers [17],
hybrid electric vehicles [18], quadropter’s control [19], among others. The underlying topology of
the buck converter is non-smooth, meaning that it switches back and forth according to a control
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signal, between an ON and OFF state, to guarantee a required output voltage. Some examples of
control techniques applied to the buck converter include zero voltage control technique [20], fractional
derivative control [21], controller based on active ramp tracking [22], and fuzzy PID controllers [23].

Even though the effectiveness of these control actions is out of doubt, usually the design of such
controllers are based either on the averaged version of the system which effectively disregards the
non-smoothness; or via linearization. This is because the effect of the nonlinearity is not always
entirely understood and therefore the system can only be analyzed in the vicinity of the operation point
(see [24] for a review on stability methods). This may result in undesired effects such as destabilization
when the system is far from the operation point and limits the range of operation in which the DC-DC
converter can work. This is because linearizing the system can only assure local stability, and the
region of attraction is usually unknown.

Recently, a novel method to design an asymptotically globally stable controller for switched
systems has been introduced in the literature [25,26] following the ideas of contraction theory, also used
in [27]. Inspired by these papers, where some illustrative cases were developed in a few academic
examples with limited application into the physical realm, the aim of this paper is to use the novel
concepts of contraction theory on switched systems to design a switched controller that guarantees
asymptotic global stability on the buck DC-DC power converter. With this purpose, the paper is
organized as follows: In Section 2 we present some preliminary concepts needed for the development
of the paper, specifically on linear transformations, matrix measure, Filippov systems, and contraction
theory. After, in Section 3, the buck power converter is presented as well as its principle of operation.
In Section 4, a controller based on contraction theory is designed and tested for the buck power
converter. As the system is not robust, in Section 5 we develop a modified control action that uses the
principles of integral control which shows robustness preserving global stability. We conclude this
paper with some remarks and future perspectives.

2. Mathematical Methods

In this section we present some standard theory on linear systems (see [28]), matrix
measures [29–31] and contraction theory applied to stability of switched systems [25,26] Most of
the material can be found in the cited documents and references therein.

2.1. Linear Transformations

Let us consider the piece-wise linear system (PWLS) given by

ẋ = Ax + Bu , (1)

where u ∈ {u1, u2} and it commutes between booth values depending on the value of the switching
surface h(x) = 0. A is a Hurwitz matrix, the pair (A, B) is controllable and all eigenvalues are distinct
but not necessarily real. Then, there exists a real matrix P which transforms the original system into
a canonical form, so called the Jordan form, in the following way:

AJ = P−1 AP BJ = P−1B . (2)

The transformation matrix can be constructed as follows: For each real eigenvalue,
its corresponding eigenvector is computed and assigned to one column of the matrix P. For every
pair of complex eigenvalues their corresponding complex eigenvectors are computed but only one of
them is used to construct two column vectors of the matrix P. The first one is composed by the real
parts of the complex eignevector, while the other one is composed by the imaginary parts of the same
eigenvector. For example, in a system with one real eigenvector v1 and two complex conjugate v2 and
v̂2 the matrix P takes the form

P = [v1 Re(v2) Im(v2)] . (3)
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Using this transformation matrix we obtain that every real eigenvalue (λj = ηj) produces a column
in the matrix AJ with the eigenvalue in the corresponding diagonal element with other elements equal
to zero. Every complex pair of eigenvalues (λk,k+1 = αk ± βk) instead, generates a 2× 2 block in the
Jordan matrix such that the diagonal part corresponds to the real part of the eigenvalues and the other
positions correspond to the positive and negative imaginay part: Other elements are zero. A general
example of this Jordan form is:

AJ =



η1 0 0 0 0 0 · · ·

0
. . . 0 0 0 0 · · ·

0 · · · αk −βk 0 0 · · ·
0 · · · βk αk 0 0 · · ·
0 · · · 0 0 αk+2 −βk+2 · · ·
0 · · · 0 0 βk+2 αk+2 · · ·
...

...
...

...
...

...
. . .


. (4)

2.2. Matrix Measure

The norm-2 induced measure of a matrix A is defined as:

µ2(A) = λmax[A′ + A]/2 , (5)

where λmax[·] is the largest eigenvalue and A′ is the transpose of A. It is possible to verify that, if the
matrix A in (1) is Hurwitz, then µ2(AJ) is always negative. This is an important issue in the stability
analysis performed in this paper.

2.3. Contraction Analysis for Filippov Systems

Another way to define the system (1) is as a bimodal Filippov system

ẋ =

{
F+(x) if x ∈ S+

F−(x) if x ∈ S−.
(6)

where
F+(x) = Ax + Bu1 and F−(x) = Ax + Bu2

being
S+ = {x ∈ U : h(x) > 0} and S− = {x ∈ U : h(x) < 0} .

Here, h : U → R is a smooth function called switching function and the surface Σ defined as

Σ = {x ∈ U : h(x) = 0} (7)

is called the switching surface.
According to [25,26], the bimodal Filippov system (6) is incrementally exponentially stable in

a so-called K-reachable set C ⊆ U with convergence rate r = min{r1, r2}, if there exists some norm in
C with associated measure µ such that for some positive constants r1, r2

µ

(
∂F+(x)

∂x

)
≤ −r1 ∀x ∈ S+,

µ

(
∂F−(x)

∂x

)
≤ −r2 ∀x ∈ S−,

(8)
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and
µ((F+(x)− F−(x)) · ∇h(x)) = 0 ∀x ∈ Σ, (9)

where S+ and S− represent the closures of the sets S+ and S− respectively.
If system (6) is incrementally exponentially stable then there exist constants k ≥ 1 and λ > 0

such that
|x(t)− y(t)| ≤ ke−λ(t−t0)|x(0)− y(0)| ∀t ≥ t0 ∀x(0), y(0) ∈ C

where x(t) and y(t) are solutions of the system. Thus we can establish global stability properties for
system (1). Making use of the previous concepts, we will design an hybrid control for a buck power
converter that guarantees not only global stability, but is also robust to different disturbances.

3. The Buck Power Converter

The scheme of a buck power converter is depicted in Figure 1. The equations describing this
dynamical system in Continuous Conduction Mode CCM (see [10,32,33]) are(

v̇
i̇

)
=

(
− 1

RC
1
C

− 1
L 0

)(
v
i

)
+

(
0
E
L

)
u (10)

where R is the load resistance, C is the capacitor’s capacitance, L is the coil’s inductance, and E is
the voltage provided by the power source. The state variable v corresponds to the voltage across the
capacitor and i quantifies the current flowing through the inductor. The control signal u takes values
in the discrete set {0, 1}. When u = 0 the switch is opened and the power source (input voltage) does
not feed the system. In this case, the load is being fed by the capacitor and the inductor. For simplicity
we will perform a first transformation which maps the original system (10) into a dimensionless
framework by means of the following similarity transformation x = M−1(v i)′, where

M =

(
E 0
0 E√

L/C

)
(11)

Also we perform a normalization of the time as τ = t/
√

LC, such that a new and unique

parameter γ = 1
R

√
L
C holds the information of the parameters in the system. Therefore we can rewrite

the equations as: (
ẋ1

ẋ2

)
=

(
−γ 1
−1 0

)(
x1

x2

)
+

(
0
1

)
u (12)

or in a compact form as ẋ = Ax + Bu.

E

h(x) < 0

D

Li

RC

+

−

v

u

Figure 1. Schematic diagram of a buck power converter.
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With the aim of designing the controller, it is necessary to transform the system to the Jordan
normal form. As the pair (A, B) is controllable, then as outlined in Section 2.1, there exists
a transformation matrix P given by

P =

 γ/2 ρ

1 0

 (13)

which transforms the system into:(
ż1

ż2

)
=

(
−γ/2 −ρ

ρ −γ/2

)(
z1

z2

)
+

(
1

−γ/(2ρ)

)
u (14)

where z = P−1x and we have used ρ := ρ(γ) =
√

4− γ2/2. These equations are noted in a compact
form as ż = AJz + BJu.

4. Application to 2D-Case

4.1. Controller Design

Using the contraction theorem outlined in Section 2.3, we can establish that the converter operating
with the switched signal control u will be stable if the following two conditions are satisfied:

a) µ2(AJ) < −r1 , ∀z
b) µ2(BJ · ∇h(z)) = 0, ∀z ∈ h(z) = 0 .

(15)

One can easily show that µ2(AJ) = −γ/2, hence condition (a) is always met as γ is always
positive. Then, considering h(z) as a linear function of the states h(z) = (h1 h2) · (z1 z2)

′, the condition
(b) can be written as:

µ2

((
1

−γ/(2ρ)

)
· (h1 h2)

)
= 0 . (16)

It is possible to demonstrate (see Appendix A) that the following choice of h(z):

h(z) = h1z1 +
BJ(2)
BJ(1)

h1z2 = (h1 − h1γ/(2ρ)) · (z1 z2)
′ := hz · z , (17)

where BJ(i) is the i− th row element in BJ , fulfills condition (16) if the pairs {BJ(i), h(i)} have opposite
signs. Then, according to the signs of BJ(i), it is necessary to choose h1 < 0 and h2 > 0. In this way,
the matrix from which the maximum eigenvalue needs to be calculated according to Equation (5),
has one null eigenvalue and the other one can be computed as λ2 = h1/ρ2, which is smaller than
zero. Since the switching surface has been calculated in the canonical space, this result needs to be
transformed back into the dimensionless state variables through x = Pz. The switching manifold is
then obtained as h(x) = hz · P−1 · x, or equivalently:

h(x) =
(
h1 h1(1 + (γ/(2ρ))2) · (x1 x2)

′ := hx · x (18)

Of course, the term hx correspond the vector in the normal direction of the switching surface.
With the aim of simplifying the calculations we normalize such vector such that |hx| = 1. Moreover,
we need to subtract the reference values to the states to ensure the regulation to the operation point.

h(x) =

(
− γ√

4+γ2
2√

4+γ2

)
· (x1 − x̄1re f x2 − x̄2re f )

′ = 0 . (19)



Energies 2018, 11, 3086 6 of 17

Finally, we can define the switching manifold in terms of the original state variables
(x1 x2) = M−1(v i)′ leading to:

h(v, i) =

(
− γ

E
√

4+γ2
2
√

L/C
E
√

4+γ2

)
· (v− v̄re f i− īre f )

′ = 0 . (20)

It is worth noticing that neither h1 nor h2 appear in the calculations. On the one hand h2

is parametrized via h1 (see Appendix A), on the other hand h1 disappear via the normalization,
reducing effectively two degrees of freedom. Also, for the sake of simplifying the calculations we
have considered a switching function with zero offset. Introducing the offset in this function, which
amounts to perform a translation of the switching surface, does not change any of the stability criteria
that we are presenting here and can indeed be employed as a further degree of freedom.

4.2. Simulation Results

The design methodology described so far is independent of the parameters. However, in order
to show the numerical behavior in a realistic set up we will use the following set of parameters for
numerical computations: L =2 mH, C = 40µF, E = 40 V, and v̄re f = 32 V. This range of input/output
operation can be found, for instance, in solar panel arrays feeding a battery charger through a buck
converter. In our particular numerical example we will assume a load R = 20 Ω. The desired
current reference can be assumed to be īre f = v̄re f /R = 1.6 A. With this, γ ≈ 0.35 and ρ ≈ 0.98.
Also, as electronic devices cannot switch with infinite speed, it is necessary to implement a hysteresis
band for simulating the change in the position of the MOSFET. We have designed this band in such
a way that the switching time is close to 175 µs. The size of the hysteresis band is an important
issue because its width also determines the size of the chattering in the voltage variable. Under these
assumptions, Equation (20) takes the following values:

h(v, i) =
(
−4.4× 10−3 0.1741

)
· (v− v̄re f i− īre f )

′ ± 0.02 (21)

In Figure 2 we show the performance of the designed control. In particular, in Figure 2a the time
trace of the voltage v is depicted in response to a drastic change in the reference output voltage v̄re f .
During the first 30 ms, where the system is subject to v̄re f = 32 V (top dashed line), the output voltage
reaches the steady state close to 5.7 ms, with no overshoot and the maximum error in steady state
is lower than 0.6% (see inset). After 30 ms, the reference voltage is changed to v̄re f = 16 V (bottom
dashed line) and the system is able to track the change and stabilize to the new value of output voltage.
In Figure 2b,c we plot the orbit in the (v, i) space during the steady state for the two references used in
panel A) of the same figure. From this, one can observe that indeed the equilibrium value (v̄re f , īre f ) is
reached through the continuous rippling of the orbit around the equilibrium point (red symbol).

We also tested the robustness of the control to changes in the load. In Figure 3 is depicted the
time trace of the voltage in this scenario. Following a similar procedure as in Figure 2, after 30 ms,
a change in the resistance from R = 20 Ω to R = 15 Ω (10% difference) is applied. From this figure
it is possible to see that the system drifts away from the reference output v̄re f = 32 V (dashed line),
producing a steady state error of around 18% (see inset).

So far, the controller designed with contraction theory has been successful to operate in a desired
way and reject disturbances in the output voltage. However, when a disturbance in the load is
presented (a common situation in power converters) the system loses the ability to follow the desired
output voltage, indicating that the controller is not robust. To solve this problem, we extend the
proposed controller based on the idea of an integral control action.
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Figure 2. (A) Time trace of the voltage in the capacitor v. During the first 30 ms a v̄re f = 32 V is used,
after this a drastic change to v̄re f = 16 V is applied (depicted in the dashed lines). The time trace
of the steady state percentage error is also depicted in the insets for both values of v̄re f ; (B) Phase
representation of the steady state for v̄re f = 32; (C) v̄re f = 16, with the equilibrium point indicated
by the red star. Simulations were performed using MATLAB R© with a fourth order Runge-Kutta
algorithm with variable step and event detection to identify collisions with the hysteresis band. Steady
state was considered after 20 ms of simulation time. Initial conditions were chosen as (v, i) = (0, 0).
Other parameters as in the main text.
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Figure 3. Time response of the capacitor’s voltage v. During the first 30 ms, the value of the resistor
is set to R = 20 Ω, after this the load is changed to R = 18 Ω. Inset: Steady state percentage error
(considered 15 ms after the presentation of the disturbance). The desired output is plot with the dashed
line. Other details as in Figure 2.

5. Application to 3D-Case

5.1. Controller Design Based on a Modified Integral Control Action

In control theory it is known that perturbations are better rejected by a PI controller; however,
in this case, adding a PI controller implies to add a pole in the origin of the system which prevents us
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from applying contraction theorem. Then, with the aim of enhancing the robustness of the controlled
system, we will modify the control action in such a way that it introduces the dynamics of the
error. To do so we introduce a new state variable x3 in the dimensionless system in the following
way: ẋ3 = e− δx3, with e = x̄1re f − x1 defined as the output error and δ as the time constant of x3.
As x1 = v/E, then x̄1re f = v̄re f /E. Under these assumptions, the system takes the following form: ẋ1

ẋ2

ẋ3

 =

 −γ 1 0
−1 0 0
−1 0 −δ


 x1

x2

x3

+

 0
1
0

 u +

 0
0
1

 x̄1re f (22)

with

u =

{
1 if h(x) ≤ 0
0 otherwise.

(23)

or in compact form ẋ = Ax + Bu + Qx̄1re f . The aim of the term −δ appearing in position {3, 3} in the
matrix A is to stabilize the system allowing us to apply the contraction theorem. In this way, the value
of δ must be very small to avoid high steady state error. As the pair (A, B) is controllable we then
proceed to apply the general theory with a new consideration: In the construction of the matrix P we
will take into account the norm of the eigenvectors vi, which will allow us to gain more degrees of
freedom in the system to tune the controller. Indeed this is not an issue when obtaining the canonical
form AJ as the operation P−1 AP cancels out any norm that may have been considered. However,
the transformed matrix BJ , which is critical for the stability conditions Equation (15), may depend on
the chosen modules of the eigenvectors. To take this into account, we need to include in Equation (3)
the magnitude of the eigenvectors via the scaling factors c1 and c2 as follows:

P = [c1v1 c2Re(v2) c2Im(v2)] . (24)

The general form of the transformation matrix can then be written as

P =

 0 c2(γ− 2δ)/2 −c2ρ

0 c2(2− γδ)/2 −c2ρδ

c1 c2 0

 (25)

which leads to the transformed system ż = AJz + BJu + QJ x̄1re f , where

AJ =

 −δ 0 0
0 −γ/2 ρ

0 −ρ −γ/2

 (26)

BJ =

 −1/(c1(δ
2 − γδ + 1))

1/(c2(δ
2 − γδ + 1))

−(2δ− γ)/(2c2ρ(δ2 − γδ + 1))


QJ =

(
1 0 0

)′
The purpose will be again to find a switching function h(z) = h1z1 + h2z2 + h3z3 that meets the

conditions of global stability in Equation (15) in the transformed space. One can easily verify that,
provided that δ < γ/2, µ(AJ) = −γ/2, fulfilling condition (a). Moreover, one of the eigenvalues of
BJ · ∇h(z) is always 0 due to the fact that the matrix is constructed using only two linearly independent
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vectors (see Appendix A.2). Also, following a similar procedure as in the 2D case, choosing the
following switching function:

h(z) = h1z1 +
BJ(2)
BJ(1)

h1z2 +
BJ(3)
BJ(1)

h1z3 , (27)

the condition (b) in Equation (9) is always guaranteed if, for every pair {BJ(i), h(i)}, its elements have
opposite signs and the signs of c1 and h1 are equal (see Appendix A). From this, the switching surface
in the canonical space is:

h(z) =
(

h1 − h1
c1

c2
h1

c1(2δ− γ)

2c2ρ

)
· (z1 z2 z3)

′ := hz · z (28)

It is worth noticing that for the 2D case, considering arbitrary norms for the eigenvectors does not
have an effect in the possible switching functions, in contrast to the extended system. This is because
there is only one constant associated to that norm (two complex eigenvalues). Another important
aspect is that the plane defined in Equation (28) depends on the ratio c1/c2 and not on their individual
values which effectively reduces one degree of freedom in the tunning parameters of the hybrid
controller based on the integral action. As in the previous case, the next steps in the design are
(i) apply the transformation to the dimensionless variables; (ii) normalize by the norm of the resulting
orthogonal vector to the switching surface in the x space, i.e., |hz · P−1|; and (iii) transform back to the
original buck converter states variables (v, i) via the matrix M (recall that the similarity transformation
is x = M−1(v i)′). It is important to notice that for the 3D system, the matrix M is not unique, as we
don’t know the exact mapping between the extended variable x3 and its counterpart in the real system
y. We can assume without loss of generality and preserving the idea of the integral action, that the
mapping between x3 and y is given by a scaling factor, which after some algebra can be demonstrated
to be x3 = y/(E

√
LC). This results preserves the information of the error defined by v̄re f . The similarity

transformation matrix is then given by:

M =

 E 0 0
0 E/

√
L/C 0

0 0 E
√

LC

 . (29)

We will avoid displaying the rather long expression of performing the aforementioned steps,
but they can be summarized in the operation:

h(v, i, y) =
hz · P−1

|hz · P−1| ·M
−1(v i y)′ . (30)

The system finally reads in its original variables as: v̇
i̇
ẏ

 =

 −
1

RC
1
C 0

− 1
L 0 0
−1 0 − δ√

LC


 v

i
y

+

 0
E/L

0

 u +

 0
0
1

 v̄re f (31)

with

u =

{
1 if h(v, i, y) ≤ 0
0 otherwise.

(32)

Simulation Results

From Equations (30) and (31), the resulting controlled system can be tuned via two parameters,
namely the time constant of the extended variable δ, and the ratio c1/c2 of the norm of the eigenvectors
associated with matrix A. To tune these parameters, we performed an optimization routine which
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explored several possible combinations of parameters δ and c1/c2 in a wide range of values. Following
an heuristic approximation we chose the values which met some desired criteria, namely small
overshoot and small settling time. From this analysis we concluded that a sufficiently small value of
δ is necessary in order for the steady state error to be small. Also, as c1/c2 is decreased, the system
evolves faster but produces large overshoots; conversely, increasing the ratio reduces the overshoot but
slows down the system. A good performance was achieved by choosing δ = 1× 10−4 and c1/c2 = 9.
With these choices, the numerical values for the switching surface are:

h(v, i, y) =
(
−4.3× 10−3 0.1741 − 1.03

)
· (v i y)′ ± 0.05 , (33)

where we have set the hysteresis to a value that meets the MOSFET switching frequency criterion as in
the previous section. It can be noted that this controller does not require any information about current
reference as in 2D-case.

The results of the 3D system behavior and its ability to reject disturbances in the reference voltage
are depicted in Figure 4. In this figure, a reference voltage of v̄re f = 32 V is applied during the
first 40 ms of the simulation, after this, the reference voltage is drastically decreased by a 50%, i.e.,
v̄re f = 16 V and the system is allowed to evolve during 40ms more. From Figure 4a it is possible to
deduce that, in the 3D system, the controller is also able to regulate with a settling time of ≈ 10 ms and
a steady state error smaller than 1%. Not only this, but also the control is robust against disturbances
in the reference output value. Panel B,C of the same figure show the orbit exhibited by the system in
the steady state before and after the disturbance, which clearly evolves in the neighborhood of the
equilibrium value (v̄re f , īre f ) (red star).
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Figure 4. (a) Time trace of the voltage in the capacitor v. During the first 40 ms a v̄re f = 32 V is used,
after this a drastic change to v̄re f = 16 V is applied (depicted in the dashed lines). The time trace
of the steady state percentage error is also depicted in the insets for both values of v̄re f ; (b) Phase
representation of the steady state for v̄re f = 32; (c) v̄re f = 16, with the equilibrium point indicated
by the red star. This results were obtained by making c1/c2 = 9 and δ = 1× 10−4. Steady state was
considered after 25 ms of transient dynamics. Other parameters as in the main text and Figure 2.

We also tested the capability of the system to reject disturbances both in the load R and the input
voltage E. To do so we simulated a similar set-up to the one described for the 2D system. In particular
we evolved the unperturbed system during 40 ms to achieve a steady state, and immediately after
the perturbation is presented. For Figure 5a the perturbation is induced as a sudden change in the
load from R = 20 Ω to R = 15 Ω (25% change). As depicted in the main figure of the panel and its
inset, the system recovers to the reference voltage v̄re f = 32 V (dashed line) with a percentage error
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smaller than 1%. A similar scenario is plotted in Figure 5b, in this case the perturbation is presented as
a change in the input voltage from E = 40 V to E = 50 V. Even though the perturbation in the input
corresponds to a 25% change, the system barely moves from its steady state, and the perturbation only
induces a slight increase in the error. This small error, which is never larger than 1%, rapidly returns
to the steady value after 10 ms. (see inset). An important aspect of the controller design is that the
first two elements in the normal vector of the switching surface in Equation (33), are exactly those
of Equation (21) for the 2D case, where neither the norm of the vectors nor δ were involved. Hence,
the effect of c1/c2 and δ are only exhibited in the third term.
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Figure 5. (a) Time response of the capacitor’s voltage v. During the first 40ms, the value of the resistor
is set to R = 20 Ω, after this the load is changed to R = 15 Ω. Inset: Steady state percentage error
(considered 25 ms after the presentation of the disturbance). The desired output is plot with the dashed
line; (b) Same as (A) for a disturbance in the input voltage E. During the first 40 ms E = 40 V, after this
it is changed to E = 50 V. In this panel, the inset shows the percentage error during the first 20 ms after
the presentation of the input disturbance. Other details as in Figure 2.

So far we have numerically analyzed the controller for a particular design of a buck converter
determined by the values of the parameters R, L, C, and E and vre f . However, as we demonstrated in
Section 5, the methodology proposed here is general. To demonstrate this generality we performed
simulations of our proposed controller under different values of parameters L and C which preserved
the value of γ ≈ 0.3536. To do so, we fixed the value of R = 20 Ω. Then the inductance was varied in
the range L = [20µH 10 mH] and the capacitance was automatically set to C = L/50 F. According to
the normalization of the buck converter, this amounts to change the time scale

√
LC in which the power

converter evolves, while keeping the dynamical behavior invariant (recall that the actual dynamics
of the normalized system only depend on the value of γ). The results of this analysis are reported in
Figure 6. In particular, Figure 6a shows how the settling time changes when varying the time scale√

LC. Not surprisingly, increasing values of
√

LC produce a linearly increase also in the settling time,
since the effect of the former is to stretch and compress the time in which the system evolves. The inset
in this panel shows also how the switching frequency increases as the evolution of the system is faster
(decreasing values of

√
LC). This behavior emerges since we have kept the hysteresis band ε = ±0.05,

which highlights the need to use faster switches when trying to achieve faster dynamics. Finally
we calculated also the average steady state error and the overshoot for each one of the

√
LC values

(see Figure 6b,c). On the one hand, the steady state error was always kept below 0.3%, regardless the
time scale of the system. On the other hand, overshoot didn’t change significantly which supports
again the claim that the dynamical behavior remains unchanged under this particular design criteria.
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Figure 6. (A) Black symbols: Settling time of the buck converter with different values of
√

LC and fixed
R = 20 Ω, preserving the value of γ = 0.3536. Red line: Linear fit of the simulation points. For this plot,
we chose inductance values in the range L = [20µH 10 mH] and a capacitance C = L/50 F. Settling
time was calculated as the time it takes to the system to evolve from (v, i, y) = (0, 0, 0) to the point in
which the error doesn’t leave the ±2% band. Inset: Switching frequency resulting from the hysteresis
band in Equation (33) for the different values of

√
LC reported in the main figure (black symbols). Red

line depicts the fitted function reported in the text box; (B) Average steady state error calculated as the
mean value of the error after the settling time; (C) percentage overshoot for the values of

√
LC reported

in panel (A). For each simulation point, the system is evolved during a time span of T = 200
√

LC.
Other details as in Figure 2.

6. Conclusions and Future Work

In this paper we developed a switched control action for the buck power converter that guarantees
global asymptotic stability, by applying recent results from contraction analysis. To do so, we took
advantage of the Jordan canonical form of the system to fulfill the conditions of global stability resulting
from contraction analysis, which wouldn’t have been met in the original form of the system. At first,
we applied the design to the original 2D buck converter model where the controller presented good
performance and robustness to voltage reference changes; however, as the load varied, regulation was
lost. To overcome this issue, we extended the 2D-system to take into account the dynamics of the error
inspired by the disturbance-rejection effect of a PI controller. With this design, the controlled system
showed robustness to several types of disturbances including load and input voltage changes.

Although the 3D system is robust, it comes with the price of increasing the settling time respect to
the 2D design. To overcome this issue, one can make use of a different buck converter design (different
capacitance and/or inductance) to achieve the desired time-scale of the dynamics (which is mainly
driven by the factor

√
LC) and then design the controller according to our methodology. It shall be

noticed that other control techniques designed for the buck converter may show better performance in
terms of efficiency, however, it is important to stress that the method outlined in this paper is not only
simple in its implementation (design based on hysteresis band) but also quite general. This is because
it is not based on the linearized version of the system but on the nonlinear form, such that the resulting
controller is globally stable, a feature that cannot usually be guaranteed using linearization. Indeed
we have numerically tested the globally stability property by performing extensive simulations for
different initial conditions in the (v, i, y) space. These tests showed convergence for all the simulations.

Throughout this paper we have analyzed and designed the controller assuming that the current
flowing through the inductor is always positive, a topology known as Continuous Conduction Mode
(CCM). Depending on the value of the load and disturbances in it, the buck converter can enter in
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Discontinuous Conduction Mode (DCM), where the current through the inductor is zero. The control
design that we have provided in this paper only takes into consideration the dynamical behavior of
the buck converter in CCM. Considering also DCM implies adding a further topology to the system
(vector field) which implies the study of contraction in multimodal filippov systems. This issue is
indeed a current topic of research in the field of applied mathematics.

Finally, whether the approach presented here can be applied to other power converters such
as the boost, is currently an open problem. This is because not every single system can be easily
approached by contraction theory and other standard tools for stability analysis might be the best
option in these cases.
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Appendix A

In this appendix we prove that, for a particular selection of the constants hi, µ2(B · ∇h(x)) :=
µ2(B · h) ≤ 0.

Appendix A.1. Matrix Measure for a 2D System

Without loss of generality, we can consider two vectors B = [b1 b2]
′ and h = [h1 h2]. The matrix

C is formed as C = B · h and matrix N is defined as

N = C + C′.

The measure of this matrix must be equal to zero over the switching surface to meet the theorem
in [25,26]. Then:

µ2(C) = λmax[N]/2 = λmax[N] = 0 (A1)

This condition is equivalent to the matrix N being negative semidefinite, or the matrix −N being
positive semidefinite, i.e.,

λmin[−N] = 0

An extensive discussion about positive definiteness can be found in [28,29]. Then, the conditions
associated with the eigenvalues can be computed using theory of positive definite matrices which
states that in a symmetric matrix all its eigenvalues are greater than zero if and only if all its principal
minors are positive. This matrix is called positive definite. A matrix is positive semidefinite if all its
eigenvalues are greater than or equal to zero. On the other hand, a matrix N is negative semidefinite if
−N is positive semidefinite.

In this way, the matrix N is given by:

N =

(
2b1h1 b1h2 + b2h1

b1h2 + b2h1 2b2h2

)
. (A2)
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To fulfill the condition to be negative semidefinite, we have to check that all principal minors of
−N are greater than or equal to zero (∆k ≥ 0)

First order principal minors. The matrix has two first order principal minors which are:

M1
1(−N) := ∆11(−N) = −N11 = −2b1h1 ≥ 0 (A3)

and
M2

1(−N) := ∆12(−N) = −N22 = −2b2h2 ≥ 0 (A4)

As it can be seen, the only condition is that the pairs {bi, hi} have opposite signs.
Second order principal minors. This system has only one second order principal minor which is

computed as:

∆1
2(−N) = det

(
−2b1h1 −b1h2 − b2h1

−b1h2 − b2h1 −2b2h2

)
≥ 0

From this inequality is obtained:
b1h2 = b2h1 (A5)

Supposing h1 as a free parameter to tune, it is obtained that:

h2 =
b2

b1
h1 (A6)

Replacing (A6) in (A4) it can be seen that independently of the value and sign of b2 the inequality
is satisfied.

The proof is complete.

Appendix A.2. Matrix Measure for 3D System

Following the ideas of previous section, N is given by:

N =

 2b1h1 b1h2 + b2h1 b1h3 + b3h1

b1h2 + b2h1 2b2h2 b2h3 + b3h2

b1h3 + b3h1 b2h3 + b3h2 2b3h3

 (A7)

To fulfill the condition to be negative semidefinite, we have to check that all principal minors of
−N are greater than or equal to zero (∆k ≥ 0)

First order principal minors. Here, there are three first order principal minors, they are:

M1
1(−N) := ∆11(−N) = −N11 = −2b1h1 ≥ 0 (A8)

M2
1(−N) := ∆12(−N) = −N22 = −2b2h2 ≥ 0 (A9)

and
M3

1(−N) := ∆13(−N) = −N33 = −2b3h3 ≥ 0 (A10)

As it can be seen, the only condition is that the pairs {bi, hi} have opposite signs.
Second order principal minor. In this case, there are three second order principal minors.

The first one is:

∆1
2(−N) = det

(
−2b2h2 −b2h3 − b3h2

−b2h3 − b3h2 −2b3h3

)
≥ 0

After some computations the following equation is obtained.

b2h3 = b3h2 (A11)
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Other second order principal minor is given by:

∆2
2(−N) = det

(
−2b1h1 −b1h3 − b3h1

−b1h3 − b3h1 −2b3h3

)
≥ 0

As in previous case, it is obtained:
b1h3 = b3h1 (A12)

The last second order principal minor is computed as:

∆3
2(−N) = det

(
−2b1h1 −b1h2 − b2h1

−b1h2 − b2h1 −2b2h2

)
≥ 0

and in a similar way it is obtained:
b1h2 = b2h1 (A13)

Taking into account these three inequalities and considering h1 as a free parameter to tune, it is
obtained from (A13)

h2 =
b2

b1
h1

From (A12)

h3 =
b3

b1
h1

To finally prove from (A11) that h3 takes the same value as already given. Replacing these values
in expressions (A8) to (A10), the equalities are still preserved regardless of the value and sign of
constants bi.

Third order principal minor. As matrix N is obtained from two vectors, its range cannot be
greater than two, then its third order principal minor namely

∆1
3(−N) = det(−N) = 0

The proof is complete.
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