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Abstract: In recent years, with the advancement of urban construction in China, the optimization of
power consumption in public buildings has been focused on. The optimization of power consumption
in public buildings is based on the prediction of natural illuminance, outdoor air temperature
and flow of people in public building. Therefore, it is worthwhile to study how to formulate a
power consumption strategy with consideration of forecasting uncertainty of environmental factors.
The robust-index method is proposed to deal with the problem of forecasting uncertainty. Firstly,
this paper establishes power consumption models for lighting systems, air-conditioning systems,
and elevator systems in public buildings. Secondly, the robust indexes for each system and the
synthetic robust index are established. Thirdly, the objective function is formulated to reduce the
total electricity cost with the robust indexes applied as additional constraints to the optimization
problem, therefore the obtained power consumption schedules are able to reach the expected robust
level. Finally, simulation results show attributes of the proposed method.

Keywords: demand response; public buildings; robust-index method; load scheduling

1. Introduction

With the increasing pressure on global resources and the environment, more and more people
are concerned about the problem of energy efficiency. In order to solve these problems, the global
electric-power industry has gradually entered the era of the smart grid, and the main feature of the
smart grid is that the power resources can be configured in a comprehensive way. Therefore, in the
field of energy management, the concept of intelligent power consumption is put forward. It means
to take effective measures to guide and optimize the power consumption for power users, so as to
promote energy efficiency and achieve the minimum electricity payments [1,2]. According to statistics,
buildings make up 33% of the total Chinese energy consumption [3]. Therefore, it is of great practical
value to research the problem of load scheduling in public buildings to reduce the total electricity cost
of public buildings and bring down the power consumption.

In recent years, the power consumption strategy of public buildings has been extensively studied.
In [4], a GA (genetic algorithm) optimization framework based on high-throughput distributed
computation environment is proposed to reduce the cost and computation time of complex building
energy optimization. Reference [5] studied the scheduling problem of large-scale smart appliances and
batteries to minimize electricity cost, customers’ dissatisfaction and battery loss under the constraints.
In [6], the models of conventional residential controllable loads were built and aggregated to generate
the load profiles for DR (demand response) research. In [7], the optimization schedule of electric water
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heating was studied in response to the time-of-use price with the goal of minimizing the electrical
cost. In [8], an intelligent HEM (home energy management) algorithm for managing the power
consumption of households was studied, which managed household loads in accordance with their
preset priority and guaranteed the whole power consumption below a certain level. The above research
built models for household appliances and studied the load schedules in order to minimize the total
electricity payments, however, the problem of forecasting uncertainty of environmental factors was
not considered.

Due to a variety of factors, there is a deviation between the forecasting data and the actual data,
and the uncertainty of the forecasting data may cause some losses to the customers. Reference [9–11]
modeled the uncertainties of renewable resources such as wind and solar energy. Reference [12–14]
studied the load scheduling with the consideration of electricity price uncertainty. Reference [15,16]
researched the load output uncertainty for optimization. Reference [17,18] dealt with the uncertainty
problem by employing the robust optimization method. In [19], a robust optimization method was
proposed to tackle the uncertainty problem of customer behavior, which was more effective than
the traditional robust methods. However, to the best of our knowledge, there are no studies of a
power consumption strategy for public buildings considering forecasting uncertainty of environmental
factors (nature illuminance, outdoor air temperature, and flow of people in the building) up to the
present time.

Based on such a background, this paper studies robust optimization for a power consumption
strategy for public buildings, also considering the forecasting uncertainty of environmental factors.
The power consumption models of the lighting systems, air-conditioning systems, and elevator systems
in public buildings are built firstly. Then, considering the uncertainty of environmental factors’ (nature
illuminance, outdoor air temperature, and people flow of public buildings) prediction, a robust index
of each system is built. Thirdly, the robust optimization model for electricity consumption considering
the forecasting uncertainties of environmental factors in public buildings is established to minimize
the total electricity cost and to satisfy user comfort. Finally, simulation results show attributes of the
proposed method.

The main contributions of this paper are summarized as follows:

(1) The energy consumption of lighting systems, air-conditioning systems, and elevator systems
in public buildings is analyzed. The relationship between energy consumption and the
external variables of the lighting system, air-conditioning system, and elevator system are
modeled, respectively.

(2) Considering the forecasting uncertainty of environmental factors (outdoor illuminance,
temperature, and the flow of people in buildings), the robust indexes of the lighting system,
air-conditioning system, and elevator system are established, respectively, and the synthetic
robust index in public buildings is established.

(3) A robust optimization model for power consumption in public buildings considering the
forecasting uncertainty of environmental factors is established by robust indexes, with the
objective of optimizing the total electricity cost and satisfying the users’ comfort.

The rest of this paper is organized as follows. Section 2 describes the modeling of the lighting
system, air-conditioning system, and elevator system. Section 3 introduces the robust-index for
modeling the forecasting uncertainty of environmental factors. Illustrative case studies are presented
in Section 4 and the paper is concluded in Section 5.

2. Modeling the Electric Energy Consumption of Public Buildings

The electric energy consumption models for the lighting system, air-conditioning system, and
elevator system in public buildings were built in this section.
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2.1. Lighting System

The indoor average illuminance is calculated by the following Equation (1):

Eav =
φNUK

A
(1)

where Eav is average illuminance, φ is the luminous flux, N is the number of lamps, U is the utilization
coefficient, K is the maintenance coefficient of lamps, and A is the illuminated area.

Generally, we need to maintain indoor illuminance above a certain level to ensure working
environment comfort, that is, the superposition of natural light and artificial light should meet the
indoor demand. As a result, the lighting load can be determined by the following Equation (2):

Pl,t =

{
(Eset−Ee)A

φUK Pl , t ∈ twork

0, t /∈ twork
(2)

where Pl,t is the power consumption at the end of the tth time slot, Eset is the target illuminance, Ee is
the natural illuminance, Pl is the power of one lamp.

2.2. Air-Conditioning System

Without loss of any generality, this paper considers the power consumption of air-conditioning in
summer, and the main sources of heat are through the exterior wall and the roof, the glass window, the
human body heat dissipation, lighting, and heat dissipation. The cooling load of a public building
is the cooling required to maintain the indoor temperature by the air-conditioning system, and the
cooling load includes the following parts:

(a) Heat from the roof and exterior wall

Q1 = KA(Tout − Tin) (3)

where K is the heat transfer coefficient of the fence structure, A is the heat transfer area of the
fence structure, Tout and Tin are the inside and outside temperature, respectively.

(b) Solar radiation heat from glass windows

Q2 = Ca ACsCiDjmaxCLQ (4)

where Ca is the effective area coefficient, A is window area, Cs is the sun shading coefficient, Ci is
the shading coefficient, Djmax is the maximum solar radiation heat, and CLQ is the cooling load
coefficient of window glass.

(c) Heat dissipation of bodies
Q3 = qsnψCLQ (5)

where qs is the sensible heat gain for male adults, n is the total number of people in the building,
ψ is the cluster coefficient, and CLQ is the cooling load coefficient for sensible heat gain from
human bodies.

(d) Heat dissipation of lamps
Q4 = 1000PlCLQ (6)

where Pl is the power required for lighting, CLQ is the cooling load coefficient of lamps.
(e) Load of fresh air
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In the air-conditioning system, the inclusion of outdoor fresh air is important to guarantee indoor
air quality. The load of fresh air is calculated with the following Equation (7):

Q5 = M(hout − hin) (7)

where M is the quantity of fresh air, hout is the outdoor air enthalpy, hin is the indoor air enthalpy,

The enthalpy of air is the enthalpy of dry air in moist air and the enthalpy of water vapor, which
includes sensible heat and latent heat. It can be calculated as the following Equation (8):

h = 1.01T + d(2500 + 1.84T) (8)

where d indicates the moisture content, usually d = 0.014 kg/(kg dry air).
M is calculated with the following Equation (9):

M = Rp × n + Rb × s (9)

where Rp is the minimum fresh air per person, Rb is the minimum fresh air for each square meter, n is
number of people, and s is the building area.

To conclude, the cooling load can be determined by the following Equation (10):

Q = KA(Tout − Tin) + Ca ACsCiDjmaxCLQ + qsnψCLQ+

1000PCLQ + M(Rp × n + Rb × S)(hout − hin)
(10)

And the power consumption of the water chiller is formulated with the following Equation (11):

xa,t =
Q

COP
(11)

where xa,t is the power consumption of the air-conditioning system at the tth time slot, Q is the cooling
load, and COP is the coefficient of performance.

2.3. Elevator System

For public buildings, there lies regularity to some extent in the operation time and usage habits of
elevators, and the operation modes of elevator system can be divided into three kinds: (a) up-peak
mode: upward passenger flow is far greater than downward passenger flow. This mode usually occurs
in the morning working hours; (b) down-peak mode: the main passenger flow is in the downward
direction. The main flow is from the building floor down to leave the building, and this mode generally
occurs in the evening off-duty hours; (c) off-peak mode: upstream and downstream passenger flow is
stable, and there is no dominant passenger flow. This mode occupies the majority of working hours.

There are usually several elevators running at the same time in their operating period. The power
consumption of the elevator system is directly related to the scale of the human flow and the number of
operating elevators. According to the data measured in [20], the power consumption can be calculated
with the following Equation (12):

ELF(τ) = a + b1FP,τ + b2Ncar,τ + b3FP,τ Ncar,τ + b4(FP,τ)
2 + b5(Ncar,τ)

2 (12)

where Elf is the power consumption and Fp,τ and Ncar,τ are the flow of people and number of
elevators, respectively.

Then, the energy consumption models for the elevator system under different operation modes
can be described as follows.

(a) Up-peak mode
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The energy consumption under up-peak mode is calculated with the following Equation (13):

ELF(τ) = 365.32− 1.115FP,τ − 0.199Ncar,τ + 0.143FP,τ Ncar,τ

+0.087FP,τ
2 − 0.228Ncar,τ

2 (13)

The flow of people is constrained from Equations (14):
Pu,τ ≥ 0.85FP,τ

0.8Pu,τ ≤ xin
D,u,τ ≤ Pu,τ

0.55xin
D,u,τ ≤ xout

T ≤ Pu,τ

0 ≤ Pd,τ ≤ 0.15FP,τ

(14)

where Pu,τ is the up flow, Pd,τ is the down flow, xin
D,u,τ is the up flow from the first floor, and xout

T is the
down flow from the highest floor.

The average waiting time is calculated with the following Equation (15):

TAW(τ) = 600.403− 359.239 ln(FP,τ) + 86.113 ln(Ncar,τ)

−57.995 ln(FP,τ Ncar,τ) + 62.096 ln(FP,τ)
2 + 36.007 ln(Ncar,τ)

2 (15)

(b) Down-peak mode

The energy consumption under down-peak mode is calculated with the following Equation (16):

ELF(τ) = −523.806 + 30.355FP,τ − 14.123Ncar,τ + 0.241FP,τ Ncar,τ

−0.188FP,τ
2 + 0.774Ncar,τ

2 (16)

The flow of people is constrained from Equations (17):
Pd,τ ≥ 0.85FP,τ

0.8Pd,τ ≤ xin
T,d,τ ≤ Pd,τ

0.55xin
T,d,τ ≤ xout

D ≤ Pd,τ

0 ≤ Pu,τ ≤ 0.15FP,τ

(17)

The average waiting time is calculated with the following Equation (18):

TAW(τ) = 729.197− 429.455 ln(FP,τ) + 99.519 ln(Ncar,τ)

−54.286 ln(FP,τ Ncar,τ) + 69.213 ln(FP,τ)
2 + 29.390 ln(Ncar,τ)

2 (18)

(c) Off-peak mode

The energy consumption under off-peak mode is calculated with the following Equation (19):

ELF(τ) = 276.885− 5.409FP,τ − 4.1Ncar,τ + 0.067FP,τ Ncar,τ

+0.058FP,τ
2 + 0.321Ncar,τ

2 (19)

The flow of people is constrained from Equation (20):
Pd,τ < 0.85FP,τ

Pu,τ < 0.85FP,τ

0.8 ≤ Pu,τ/Pd,τ ≤ 1.25
(20)
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The average waiting time is calculated with the following Equation (21):

TAW(τ) = 622.589− 352.932 ln(FP,τ) + 56.316 ln(Ncar,τ)

−43.369 ln(FP,τ Ncar,τ) + 56.403 ln(FP,τ)
2 + 30.878 ln(Ncar,τ)

2 (21)

As the degree of anxiety of passengers increases with the increase of waiting time. Therefore,
the average waiting time of passengers can be used to evaluate passengers’ satisfaction with the
elevator system.

2.4. Objective of the Power Consumption Optimization Problem of Public Building

Cost minimization is usually chosen as the objective function of power consumption optimization
of public buildings. In this paper, the optimization goal is to minimize the electricity cost of the public
buildings, so the optimization problem for power consumption optimization is obtained with the
Equation (22):

min
h

∑
t=1

Pt · xt (22)

where Pt is the electricity price at the tth time slot, xt is the whole electric power consumption of
lighting system, air-conditioning system and elevator system.

2.5. Constraints of the Power Consumption Optimization Problem of Public Building

The constraints of the power consumption optimization problem of public buildings are as follows:
The constraints of the lighting system: (1) and (2).
The constraints of the air-conditioning system: (3)–(11).
The constraints of the elevator system: (13)–(21).
The constraints of the customers’ comfort for the lighting system are imposed by the Equation (23):

Emin ≤ Eset ≤ Emax (23)

The constraints of the customers’ comfort for the air-conditioning system are imposed by the
Equation (24):

Tmin ≤ Tset ≤ Tmax (24)

The constraints of the customers’ comfort for the elevator system are imposed by the Equation (25):

Xmin ≤ Xset ≤ Xmax (25)

3. Robust-Index for Electric Energy Consumption Systems

The forecasting accuracy of environmental factors will have a great impact on the optimization
results, so the robust-index is employed to analyze the uncertainty of the prediction of environmental
factors. The higher the robust index is, the stronger the robustness of the optimization result would
be, that is, fewer negative impacts of uncertainties would occur. The robust indexes are applied as
additional constraints to the power consumption optimization problem of public buildings.

3.1. Lighting System

The robust index for the lighting system is calculated by the following Equation (26):

El,pre − El,sup = RIl ≥ RIl,set (26)

where El,pre is the outdoor illuminance under deterministic prediction, El,sup is the supposed
illuminance in power consumption optimization, RIl is the robust index of the lighting system, and
RIl,set is the minimum robust index value needed.
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Suppose the outdoor illuminance under interval prediction is [El,min, El,max], which is the range
of El,sup. The maximum and minimum value of robust index RIl are respectively calculated by the
following Equations (27) and (28):

RIl,max = El,max − El,min (27)

RIl,min = 0 (28)

3.2. Air-Conditioning System

The robust index for the air-conditioning system is calculated by the following Equation (29):

Ta,sup − Ta,pre = RIa ≥ RIa,set (29)

where Ta,pre is the outdoor temperature under deterministic prediction, Ta.sup is the supposed
temperature in power consumption optimization, RIa is the robust index of the air-conditioning
system, and RIa,set is the minimum robust index value needed.

Suppose the outdoor temperature under interval prediction is [Ta,min, Ta,max], which is the range
of Ta,sup. The maximum and minimum value of robust index RIa are respectively calculated by the
following Equations (30) and (31):

RIa,max = Ta,max − Ta,min (30)

RIa,min = 0 (31)

3.3. Elevator System

The robust index for the elevator system is calculated by the following Equation (32):

Fp,sup − Fp,pre = RIp ≥ RIp,set (32)

where Fp,pre is the flow of people under deterministic prediction, Fp,sup is the supposed flow in power
consumption optimization, RIp is the robust index of the elevator system, RIp,set is the minimum robust
index value needed.

Suppose the flow under interval prediction is [Fp,min, Fp,max], which is the range of Fp,sup.
The maximum and minimum value of robust index RIp are respectively calculated by the following
Equations (33) and (34):

RIp,max = Fp,max − Fp,min (33)

RIp,min = 0 (34)

3.4. Normalization of Robust Index

The units of the robust index for each sub electric energy utilization system are different, and thus
it is difficult to compare the robustness of each system. Therefore, the robust index of each sub
electric energy utilization system should be normalized with the range of [0, 1]. Each robust index is
normalized by the following Equation (35):

RIN =
RIraw − RImin

RImax − RImin
(35)

where RIN is the normalized robust index, RIraw is a raw robust index before normalization, and RImax

and RImin are the maximum and minimum values of corresponding raw robust indexes.
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3.5. Synthetic Robust Index

The robust indexes of different sub electric energy utilization systems are established above.
In order to evaluate the overall robust level of the public buildings, the synthetic robust index is
proposed. The synthetic robust index can be expressed with a weighted sum the with Equations (36)
and (37):

∑
δ

vδ · RIδ = RImix ≥ RIreq (36)

vδ ∈ [0, 1], ∑
δ

vδ = 1 (37)

where vδ is the weighted coefficient of sub electric energy utilization system δ, and it reflects
the importance of the sub electric energy utilization system, RImix is the synthetic robust index.
In addition, the synthetic robust index is less than RIreq, which reflects the overall robustness level of
public buildings.

4. Numerical Examples

The proposed method is tested using numerical experiments. Firstly, the robust indexes for
different power consumption systems are validated. Secondly, a comprehensive simulation is
conducted to demonstrate the application of synthetic robust indexes.

4.1. Initial Data

There are many kinds of public buildings, such as office buildings, hotels, supermarkets, etc.
The actual data in this paper are collected from one office building in Suzhou City, Jiangsu Province,
P. R. China. The working hours of a public building are 9:00–21:00 and ∆t = 1 h. The lighting system is
made up of LED lamps, and the lighting area is 17,768 m2. The lighting power per unit area is 3 W with
the luminous flux 100 mL/W. The lighting utilization coefficient is 0.5 and the lighting maintenance
coefficient is 0.8. The total cooling area for the air-conditioning system is 17,768 m2 and the total
exterior wall area of the public building is 7000 m2. The average window–wall ratio is 0.38. In addition,
there are 8 elevators in this building.

Reference [21–23] use probabilistic model to study the problem of uncertainty. However, the robust
index model employs the interval values of the variables to calculate the maximum and minimum
index values, so this paper use intervals of random variables rather than probability distribution of
random variables. The forecasting of natural illuminance, outdoor temperature, and human flow are
shown in Figures 1–3, respectively.
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4.2. Simulations

First, the robust level considering forecasting uncertainties of each sub electric energy utilization
system is evaluated. The robust indexes for different power consumption systems are simulated.

The electricity cost of the lighting system under different robust indexes is shown in Table 1.
The load schedule of this system is solved by the optimization model that consists of objective function
(22) (without consideration of other systems), comfortable constraint Equation (23), and robust index
constraint (26). Equations (1) and (2) are taken as the constraints to calculate the electricity consumption
of the lighting system. As can be seen from Table 1, the electricity cost of the lighting system
increases with the increase of the robust index. Since the feasible area of the electric energy utilization
optimization become smaller with the increase of the level of robustness, the more illuminance the
indoor environment requires, the higher the cost.

Table 1. Electricity cost under different robust indexes of the lighting system.

RIN-set Cost/¥

0 942.95
0.05 959.83
0.1 976.7
0.15 993.58
0.2 1010.46
0.25 1027.33
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The electricity cost of the air-conditioning system under different robust indexes is shown in
Table 2. The load schedule of this system is solved by the optimization model that consists of
the objective Equation (22) (without consideration of other systems), comfortable constraint (24),
and robust index constraint (29). Equations (3)–(11) are taken as the constraints to calculate the
electricity consumption of the air-conditioning system. As the robust index increases, the cost gradually
increases. This is because the air-conditioning system consumes more electric energy to keep the
temperature lower; as a result, the forecasting uncertainty of environmental factors can be dealt with
more robustly. It can be seen that the improvement of system robustness is accompanied with the
reduction of economy. This paper considers customers’ comfort by setting the temperature ranges
in advance. In fact, there are several studies on customers’ comfort [24,25] and new eco-sustainable
technologies such as the use of smart windows and innovative plant systems [26,27].

Table 2. Electricity cost under different robust indexes of the air-conditioning system.

RIN-set Cost/¥

0 2127.49
0.1 2132.75
0.2 2138
0.3 2134.81
0.4 2149.61
0.5 2155.41
0.6 2161.21
0.7 2167
0.8 2172.8
0.9 2178.6
1 2184.4

For the elevator system, this paper only focuses on the up-peak and down-peak modes.
Tables 3 and 4 show the electricity cost of the elevator system under different robust indexes in
the up-peak hours and down-peak hours, respectively. The load schedule of this system is solved by
the optimization model that consists of the objective function Equation (22) (without consideration
of other systems), comfortable constraint Equation (25), and robust index constraint Equation (32).
Equations (13)–(21) are taken as the constraints to calculate the electricity consumption of the elevator
system. According to Tables 3 and 4, the electricity cost of the elevator system increases with the
increase of the robust index. This is because the larger the robust index is, the more frequently the
elevators would be operated to meet the running requirements for more people, however, this incurs a
greater electricity bill.

Table 3. Electricity cost under different robust indexes of the elevator system (up-peak mode).

RIN-set Cost/¥

0 918.02
0.1 929.11
0.2 940.2
0.3 951.29
0.4 962.38
0.5 973.47
0.6 984.56
0.7 995.65
0.8 1006.74
0.9 1017.83
1 1028.92
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Table 4. Electricity cost under different robust indexes of the elevator system (down-peak mode).

RIN-set Cost/¥

0 756.61
0.1 791.65
0.2 826.69
0.3 861.72
0.4 896.76
0.5 931.79
0.6 966.83
0.7 1001.86
0.8 1036.9
0.9 1071.94
1 1106.97

Then, to demonstrate the application of synthetic robust indexes in the load schedule,
a comprehensive simulation is designed. Equation (22) is taken as the objective function, and the
equations in Section 2 are taken as the constraints to calculate the electricity consumption of different
loads. Equations (36) and (37) are taken as the additional index robust constraint, which are derived
from (26)–(35).

Considering the synthetic robust level of public buildings, three different cases are designed
for contrast. The weighted coefficients of each system are presented in Table 5 and the synthetic
robust indexes are presented in the last column of Table 6. Table 7 shows the electricity cost under
different cases.

Table 5. Weighted coefficient of each system in different scenes.

Case
Weighted Coefficient

Lighting Air-Conditioning Elevator

1 0.3 0.4 0.3
2 0.3 0.4 0.3
3 0.6 0.3 0.1

Table 6. Robust index values of different systems.

Case
Robust Index Values

Lighting Air-Conditioning Elevator Synthetic

1 0.05 0.43 0.05 0.2
2 0.05 1 0.28 0.5
3 0.325 1 0.05 0.5

Table 7. Total electricity cost.

Case Cost/¥

1 4553.26
2 4626.83
3 4681.87

Firstly, Case 1 and Case 2 are compared. Case 1 and Case 2 set the same weighted coefficients,
and the synthetic robust indexes are required to be 0.2 and 0.5, respectively. Then, we can obtain robust
indexes of each power consumption system and analyze the impact of different synthetic robust index
setting. From Table 6, it can be seen that the higher the synthetic robust index is, the higher the robust
index of each systems will be, and the cost charge will also increase from Table 7. This is because,
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with the increase of the synthetic robust index, electric energy utilization systems can cope with the
forecasting uncertainty of environmental factors better and sacrifice economy to improve robustness.

Secondly, Case 2 and Case 3 are compared. Case 2 and Case 3 set the same synthetic robust
index (0.5) and set different weighted coefficients. Then, we can obtain robust indexes of each
power consumption system and analyze the impact of different weighted coefficients. As shown
in Table 6, the robust indexes of each system change with different load weighted coefficients,
which indicates that the difference in sub electric energy utilization system weight affects the power
consumption optimization.

In addition, the costs of Case 2 and Case 3 are higher than that of Case 1 because Case 2 and Case
3 raise the robust level of power consumption at the expense of electricity cost.

5. Conclusions

This paper presents a robust-index method for power consumption optimization of public
buildings, considering the forecasting uncertainty of environmental factors. Firstly, the power
consumption of lighting systems, air-conditioning systems, and elevator systems in public buildings
are analyzed, and the relationship between power consumption and external variables are established.
Secondly, the robust indexes of each sub electric energy utilization system and whole public building
are established, and the objective function of power consumption optimization is formulated with the
aim of reducing the total electricity cost. Then, the scheduling strategy that achieves the desired robust
level can be obtained. Finally, the simulation results show that the proposed method can improve the
robustness of the power consumption strategies of public buildings.

However, this paper only studies the day-ahead power consumption optimization of air-
conditioning systems, lighting systems, and elevator systems in public buildings, therefore, the electric
vehicles in public buildings should be considered in the near future. Furthermore, this paper only
considers the forecasting uncertainty of environmental factors. More uncertainty factors, such as
electricity price uncertainties, should also be considered in the near future.
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