
energies

Article

Fuzzy Portfolio Optimization of Power
Generation Assets

Barbara Glensk and Reinhard Madlener *

Institute for Future Energy Consumer Needs and Behavior (FCN), School of Business and Economics/E.ON
Energy Research Center, RWTH Aachen University, Mathieustrasse 10, 52074 Aachen, Germany;
BGlensk@eonerc.rwth-aachen.de
* Correspondence: RMadlener@eonerc.rwth-aachen.de; Tel.: +49-241-8049-820; Fax: +49-241-8049-829

Received: 14 October 2018; Accepted: 2 November 2018; Published: 6 November 2018
����������
�������

Abstract: Fuzzy theory is proposed as an alternative to the probabilistic approach for assessing
portfolios of power plants, in order to capture the complex reality of decision-making processes.
This paper presents different fuzzy portfolio selection models, where the rate of returns as well as the
investor’s aspiration levels of portfolio return and risk are regarded as fuzzy variables. Furthermore,
portfolio risk is defined as a downside risk, which is why a semi-mean-absolute deviation portfolio
selection model is introduced. Finally, as an illustration, the models presented are applied to a
selection of power generation mixes. The efficient portfolio results show that the fuzzy portfolio
selection models with different definitions of membership functions as well as the semi-mean-absolute
deviation model perform better than the standard mean-variance approach. Moreover, introducing
membership functions for the description of investors’ aspiration levels for the expected return and
risk shows how the knowledge of experts, and investors’ subjective opinions, can be better integrated
in the decision-making process than with probabilistic approaches.

Keywords: portfolio analysis; semi-mean-absolute deviation model; fuzzy set theory; optimal power
generation mix

1. Introduction

The purpose of the portfolio selection problem is to find combinations of investment possibilities
which best meet the objectives of the investor. This analysis needs various types of information
and should be based on criteria which can provide some guidance about what is important and
unimportant, or what is relevant and irrelevant. Although the weighting of these objectives and the
criteria depend on the type of investor, the two that are common to all investors are expected return
maximization and risk minimization. If investors are rational, they want the return to be high and
prefer certainty to uncertainty. Moreover, the optimal portfolio enables the investor to mitigate risk
and opportunities with respect to a wide range of alternatives.

The foundation of modern portfolio analysis was laid by Harry Markowitz in the middle of the
20th century [1]. He considered returns of assets as random variables and introduced the mean-variance
approach. He identified the portfolio return as an expected return, which is a sum of the product
between the asset’s expected return and its shares in the portfolio, and the risk measured as the
volatility (variance) of the (stochastic) value of the expected return. Furthermore, he assumed the
multivariate normal distribution for the rates of return and the quadratic form for the investor’s utility
(preferences) function. The purpose of mean-variance portfolio (MVP) analysis is the maximization of
the portfolio’s expected return and the minimization of the portfolios’s risk. Searching for efficient
portfolios (“efficient” in this context means there exists no other portfolio with the same or a smaller
variance that has a larger return, and no portfolio with the same or a larger return that has a smaller
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risk) could be conducted by solving one of two problems: (1) maximization of the portfolio’s expected
return by a given accepted risk level or (2) minimization of the portfolio’s risk by some given required
portfolio return level.

The methodology proposed by Markowitz has seen an extensive development since 1952 but
also a lot of criticism. Trying to avoid some of the rigid assumptions of MVP analysis and to simplify
the solution methodology, a number of alternative approaches have been proposed and applied.
For example, the computational complexity connected with the mean-variance model (necessity of
estimation of the variance and covariance matrix) led to the linearization of the objective function.
Furthermore, the popularity among investors of other risk measures, such as mean absolute deviation
(MAD), value at risk (VaR), expected shortfall (conditional value at risk—CVaR), or semi-variance,
is growing.

The MAD model is one of the alternatives to the classic mean-variance model in which the
measure of risk (variance) is replaced by the absolute deviation. Konno and Yamazaki [2] proposed
the MAD model as a linear model for portfolio selection and tested its application on data from the
Tokyo stock market. These authors observed that the MAD model can be used as an alternative to
the Markowitz model because the calculated optimal portfolios and their performances are quite
similar to each other. Moreover, a linear problem could be solved more easily than a quadratic one.
Furthermore, the authors noticed that the MAD model could be used to tackle large-scale problems
where a dense covariance matrix can occur, and that it does not require any specific type of return
distribution. They also showed that the proposed method encompasses all properties of the MVP
analysis. However, the method and its advantages were not widely appreciated in the financial
engineering community and were criticized by statisticians. Konno and Koshizuka [3] reviewed some
of the more important properties of the MAD portfolio optimization model. They pointed out that
the MAD model is superior to the MVP model both theoretically and computationally, and that this
model belongs to a class of mean-lower partial risk models, which are more adequate to problems with
asymmetric return distributions. The MAD model proposed by Konno and Yamazaki [2] found interest
among other researchers and applicaton to other financial markets. Application of the MAD model
(based on the linear semi-mean-absolute deviation risk function) enabled Mansini and Speranza [4]
to introduce new specifications derived from market structure and from operative constraints into
the portfolio selection model of the Milan stock exchange. De Silva et al. [5] applied the MAD as
well as the CVaR approach in order to avoid inefficient, low return, and/or high-risk portfolios on
the Brazilian stock exchange. Furthermore, Liu [6] used the concept of the mean-absolute deviation
function proposed by [2] when the asset returns from financial markets are represented by interval
data. The author noticed that the ability to calculate the bounds of the investment return can help
initiate wider applications in portfolio selection problems. A brief review of the variety of solvable
linear programming portfolio optimization models presented in the literature, where several different
risk measures (such as MAD or CVaR) were applied, can be found by Mansini et al. [7]. The authors
discussed the relative and absolute form of these models and their applications.

The mean-variance portfolio selection model, and other existing portfolio selection models,
are based on probability theory. However, as a number of empirical studies have shown,
those probabilistic approaches only partly capture reality, in contrast to fuzzy sets theory. Fuzzy sets
theory can be used for a better description of real systems (situations) that are very often uncertain and
vague in different ways [8]. Zimmermann, in his seminal book [8], explains the vagueness, fuzziness,
and uncertainty in real-world systems as well as the usefulness of the application of fuzzy sets theory
in order to model uncertainty. He develops the formal framework of fuzzy mathematics and presents
the survey of the most interesting applications of the theory.

Fuzzy sets theory and fuzzy logic, the latter of which is an extension of classic argumentation
(conventional logic) to argumentation that is closer to humans, was introduced by Lotfi A. Zadeh [9].
In the classical set theory, objects can either belong to a set or not, and there are no intermediate steps of
membership. In contrast, a fuzzy set also allows for blurred states. Zadeh ([9], p. 338) defines a fuzzy set
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as follows: “A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized
by a membership (characteristic) function which assigns to each object a grade of membership ranging between
zero and one”. The extension of fuzzy logic is possibility theory, introduced also by Zadeh [10] and
advanced by Dubois and Prade [11]. Zadeh tries to explore some of the elementary properties of
the possibility distribution concept and explains the importance of possibility theory, which arises
from the fact that the information for the decisions is possibilistic rather than probabilistic in nature.
Moreover, possibility theory is not a substitute for probability theory but deals with another kind
of uncertainty. In possibility theory, the fuzzy variables are associated with possibility distributions
in a similar way as random variables are with probability distributions. In contrast to probability
theory, the possibility distribution function is defined by a so-called ‘membership function’ which
describes the degree of affiliation of fuzzy variables. Membership functions which is a fundamental
part of fuzzy sets theory, allows the gradual assessment of the membership of elements into the set
and can characterize the fuzziness, have different forms. The most popular ones used are triangular,
trapezoidal, or parabolic. However, other membership functions are hyperbolic, inverse-hyperbolic,
exponential, logistic, or piecewise-linear.

Application areas for fuzzy sets theory are broad, ranging from different control systems,
engineering, and consumer electronics to business economics, including decision theory [12],
or financial problems, such as portfolio selection [13]. By using a fuzzy approach, the knowledge of
experts, investors’ subjective opinions, but also quantitative and qualitative analysis, can be better
integrated into decision problems. Wang and Zhu [14] and Fang et al. [13] give a survey of the progress
made in recent years in the direction of fuzzy portfolio optimization. They present different portfolio
selection models with fuzzy objectives and/or fuzzy constraints. One of the possibilities is that of
using fuzzy numbers to define the coefficients of the objectives and constraints; another one is applying
the so-called aspiration (or satisfaction) level. Another concept of fuzzy portfolio problems considers
models with interval coefficients, where expected returns are treated as interval numbers, and where
so-called pessimistic and optimistic satisfaction indices are introduced (for more information, see [15]).
Furthermore, Tanaka and Guo [16] proposed the use of possibility distributions in order to model
uncertainty in returns. They defined upper and lower possibility distributions which should reflect
experts’ knowledge with regard to the portfolio selection problem.

The aim of this paper is to present a portfolio selection model for energy utilities by employing
alternative risk measures, such as semi-mean-absolute deviation, which is one of the first attempts
at the linearization of portfolio selection models, and comparing it with the standard mean-variance
approach. Moreover, the contribution of this paper is an application of fuzzy sets theory to portfolio
optimization problems in combination with alternative portfolio risk measures that can be more
adequate for portfolios of real assets (such as power plants). The argument is that, in the case of
power generation assets, the distribution of the power plant’s return measure and commodity prices
as well as other parameters taken into consideration differ from the normal distribution assumed in
the standard mean-variance portfolio approach, potentially causing biased results.

The remainder of this paper is organized as follows: Section 2 deals with the application of
portfolio analysis to the energy sector and in particular to power generation mixes. In Section 3,
fuzzy semi-mean-absolute deviation portfolio selection models and a “return” definition for
power generation mixes are introduced. Section 4 shows an empirical example for the presented
methodologies. Section 5 provides some conclusions.

2. Applications of Portfolio Analysis to Power Generation Assets

The energy utilities are confronted with a very diverse range of resource options in their energy
planning, but also a dynamic, complex, and uncertain future. Financial investors are used to dealing
with uncertainty and commonly evaluate such problems with portfolio theory. According to portfolio
theory, they could choose a specific risk level and then aim to maximize the portfolio’s return.
Furthermore, the diversification of portfolio assets is the best means of hedging future risk. Therefore,
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mean-variance portfolio theorists have found a new application field in the energy sector, and the theory
seems to be a well-suited complementary methodology to the problem of planning and evaluating
power portfolios and strategies.

The first application of portfolio theory to the energy sector was presented by Bar-Lev and
Katz [17]. They applied the Markowitz portfolio approach to optimize the fossil fuel mix for electric
utilities in the US market and examined whether the power utilities are efficient users of fossil fuels.
More specifically, they considered a two-dimensional optimization problem with fuel cost and risk
minimization. More recent literature contains further applications of portfolio theory to energy markets
in different countries or regions from a utility point of view (for a recent review, see [18]). For example,
Awerbuch and Berger [19] used MVP analysis for the electricity market in the European Union.
They proposed a more complex model where fuel costs and also operating and capital costs were
explicitly considered. Their results indicate that the current EU electricity mix is sub-optimal from
a risk-return perspective. Furthermore, they conclude that fixed-cost technologies, such as many of
those based on renewables, must be a part of any efficient portfolio. Roques et al. [20] considered the
portfolio problem based on the MVP methodology from a cost perspective, but also added revenues
and included the net present value (NPV) of the investment. They analyzed energy markets in the
UK, and concluded that the optimal portfolio consists of natural-gas-combined cycle (NGCC) and a
few nuclear power plants. Further applications of portfolio theory to the energy sector can be found
in [18,21]. In [21], the cost approach was again applied and electricity production costs considered,
which included fuel costs together with operating, capital, and external costs. Moreover, for this
study of the Swiss and the U.S. energy market, the authors adopted seemingly unrelated regression
estimation (SURE). The Swiss power generation mix was also the goal of the analysis presented in [22].
They are the first to implement the NPV criterion for portfolio analysis, following the Markowitz model.
Moreover, they explicitly differentiated between base-load and peak-load technologies. In the work of
Borchert and Schemm [23], the application of the CVaR as a risk measure in portfolio analysis for wind
power projects in Germany was presented. Glensk et al. [24] also applied CVaR as a risk measure,
but instead of power generation assets they analyzed portfolios of contracts from the European Energy
Exchange (EEX) and the Polish Power Exchange (POLPX). They further pointed out that the proposed
approach can be useful, especially for retailers on both markets, but that the impact of negative energy
prices, as found e.g., on the EEX, should also be investigated.

The studies mentioned above reflect a considerable and growing interest in applying portfolio
analysis on (liberalized) energy markets. Moreover, they point out different definitions of return
and risk used by authors applying MVP theory to power generation portfolios. Analogically to the
financial markets, the decision-making process in energy planning is complex and multidimensional.
Economic, social, and environmental aspects; technical parameters; and different risks have to be taken
into account. Regarding all these different aspects, the risk connected to electricity price, fuel cost,
carbon dioxide cost, operation and maintenance costs, capital cost, but also to the capacity factor of
a power plant, affect the measure of return and thus also the decision-making process and outcome.
Application of portfolio theory can help to eliminate these risks and to explain the complex interactions
between these parameters.

When applying portfolio theory to power generation mixes, appropriate definitions of return and
risk are needed. Project evaluation methods and measures (such as net present value, internal and
modified internal rate of return, profitability index, payback or discounted payback time) commonly
used in finance management could also be useful proxies for the construction of power generation
mixes. Each of these measures give different pieces of relevant and valuable information needed in the
decision-making process. However, the net present value and the internal rate of return are the most
often ones used. According to the short literature review presented, the NPV criterion is already one
useful profitability indicator for energy projects and power generation selection problems, next to the
annual expected return.
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3. Model Specification

In this section, we present the model formulation for the selection of the optimal power generation
mix, considering the semi-mean-absolute deviation as a risk measure and assuming that each rate of
return is a possibilistic variable.

3.1. Semi-Mean-Absolute Deviation (SMAD) Model

In general, the portfolio optimization problem is a two-dimensional optimization model,
where portfolio risk is minimized and return is maximized. Most dissatisfaction with the variance
introduced by Markowitz as a risk measure stems from the fact that it does not differentiate between
gains and losses. Moreover, Harry Markowitz himself and William Sharpe, among other economists,
acknowledge that the original modern portfolio theory formulation has important limitations ([25],
p. 428): “Under certain conditions, the mean-variance approach can be shown to lead to unsatisfactory predictions
of behavior. Markowitz suggests that a model based on the semi-variance would be preferable; in light of the
formidable computational problems; however, he bases his analysis on the variance and standard deviation.”
As shown in [26], the mean-absolute deviation as a measure of variability is less sensitive to outliers,
and equivalent to mean-variance under the assumption of the normal distribution of the returns.
Furthermore, the author shows that the MAD model possesses several advantageous theoretical
properties, such that all capital asset pricing model relations for the mean-variance model also hold for
the MAD model. Moreover, the MAD model is more compatible with the fundamental principle of
rational decision-making. Despite the fact that the mean-variance Markowitz (1952) model is a solid,
well-known method, which laid the foundation for portfolio theory, it has been proven that MAD
produces similar portfolio returns [5,27], which makes us confident in MAD’s optimization ability.
Considering this alternative definition of risk MAD, as proposed by Konno and Yamazaki [2], the
portfolio rate of return, Rp, is given as:

Rp = E

[
n

∑
i=1

Rixi

]
=

n

∑
i=1

E(Ri)xi, (1)

and defined as the expected value of a sum of the product between the assets’ expected return, Ri,
and its shares in the portfolio, xi, and the portfolio risk, wp, defined by the expected value of the mean
absolute deviation between the realization of the portfolio’s rate of return and its expected value, as:

wp = E

[∣∣∣∣∣ n

∑
i=1

Rixi − E

[
n

∑
i=1

Rixi

]∣∣∣∣∣
]

. (2)

Regarding these definitions of portfolio return and risk, a two-dimensional optimization problem
can be formulated as follows:

E

[∣∣∣∣∣ n

∑
i=1

Rixi − E

[
n

∑
i=1

Rixi

]∣∣∣∣∣
]
→ min,

n

∑
i=1

E(Ri)xi → max, (3)

n

∑
i=1

xi = 1,

0 ≤ xi ≤ xi,max,

where xi,max is the maximal share of asset i in the portfolio.
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Assuming that the measure of risk is defined through the mean absolute deviation of the portfolio’s
rate of return below the average (for the investor, only the downside risk is problematic, and thus
actually relevant) the semi-mean-absolute deviation portfolio selection model can be specified as:

E

[∣∣∣∣∣min

{
0,

n

∑
i=1

Rixi − E

[
n

∑
i=1

Rixi

]}∣∣∣∣∣
]
→ min,

n

∑
i=1

E(Ri)xi → max, (4)

n

∑
i=1

xi = 1,

0 ≤ xi ≤ xi,max.

The semi-mean-absolute deviation belongs to the favorite risk measure used in portfolio
selection models. In contrast to the variance, the semivariance as well as the CVaR (mentioned
in Section 1) fulfill all desirable properties of a “good” risk measure, and the SMAD satisfies
two out of four properties of coherent risk measures (see [28]), such as positive homogenity and
subadditivity [29,30]. Nevertheless, the standard deviation, mean absolute deviation as well as mean
absolute lower and upper semi-deviation belong to the general deviation risk measures introduced by
Rockafellar et al. [31,32] as an extension of standard deviation, but they need not to be symmetric with
respect to the upside and downside value of the random variable. The authors developed a theory of
deviation measures axiomatically, presenting key examples and tracing the relationships with concepts
of coherent risk measures. The main possible advantage of mean absolute deviation and its downside
version is the relation to linear programming computations of optimal portfolios. Moreover, as shown
in [33,34], because the MAD is a symmetric measure and the absolute semi-deviation is its half.

Regarding the considerations presented by Konno and Koshizuka [3] and Speranza [35],
the equivalent to the semi-mean-absolute deviation model in (4) is given as:

1
T

T

∑
t=1

dt → min,

n

∑
i=1

E(Ri)xi → max,

dt ≥ −
n

∑
i=1

(Rit − E(Ri)) xi, (5)

dt ≥ 0,
n

∑
i=1

xi = 1,

0 ≤ xi ≤ xi,max.

3.2. Fuzzy Semi-Mean-Absolute Deviation (FSMAD) Model

The imperfect knowledge about returns and the resulting uncertain environment imply that the
use of precise mathematics to model a complex system is insufficient. In order to capture the complex
reality of decision-making problems, fuzzy sets theory is proposed as an alternative to the commonly
used probabilistic approach. Different studies about fuzzy portfolio selection show that different
elements can be fuzzified. Some of them suggest the use of a possibility distribution to capture model
uncertainty on returns, while others propose fuzzy formulations. In this paper, we present only some
of them, with a specific focus on the application to the energy sector.
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Assuming that each rate of return, Ri, is a possibilistic variable, the simple conversion of model (5)
presented above is replacing the expected value of the rate of return for asset i, E(Ri), by an adequate
fuzzy mean value. This fuzzy mean value depends on the form of membership function assumed.
Considering Ri as a triangular fuzzy variable determined by triplet (a, α, β) of crisp numbers with
center a, left-width α > 0 and right-width β > 0, the interval-valued possibilistic mean, Mtr(Ri),
proposed by Carlsson and Fullér [36], is given as:

Mtr(Ri) = a +
β− α

6
. (6)

Triangular membership functions are mostly used for fuzzy logic control problems.
The motivation behind their utilization stems from its simplicity. However, for many other applications,
such as decision-making problems, triangular membership functions are not appropriate, and using
a trapezoidal membership function is more reasonable. For a trapezoidal membership function [36],
the interval-valued possibilistic mean value, Mtrap(Ri), with a tolerance interval [a, b] and left- and
right-width α and β, respectively, is given by

Mtrap(Ri) =
a + b

2
+

β− α

6
. (7)

Some applications of this approach on the financial markets are proposed and shown by [13,37–40],
among others. These authors considered portfolio selection models with both the variance as a risk
measure as well as the mean-absolute deviation.

Taking into consideration a trapezoidal membership function and its interval-valued possibilistic
mean value, the SMAD portfolio selection model (5) has to be reformulated. Moreover, regarding one
of the optimization approaches mentioned in Section 1, the risk minimization problem for a given
desired portfolio return level, R0, will be considered, and is specified as:

1
T

T

∑
t=1

dt → min,

n

∑
i=1

Mtrap(Ri)xi ≥ R0,

dt +
n

∑
i=1

(
Rit −Mtrap(Ri)

)
xi ≥ 0, (8)

dt ≥ 0,
n

∑
i=1

xi = 1,

0 ≤ xi ≤ xi,max.

Let us further propose that the return Ri is a fuzzy variable determined by a trapezoidal
membership function with a tolerance interval [ai, bi] and left- and right-width αi and βi, respectively
(Ri = (ai, bi, αi, βi)). Vercher et al. [38] assumed that the left and the right reference functions are all of
the same shape and are presented as the linear combination, which expresses the total fuzzy return on
a portfolio, as in:

Rp =
n

∑
i=1

Rixi =

(
n

∑
i=1

aixi,
n

∑
i=1

bixi,
n

∑
i=1

αixi,
n

∑
i=1

βixi

)
=

=
(

Rpa(x), Rpb(x), Rpα(x), Rpβ(x)
)

.

(9)

Regarding the semi-mean-absolute deviation portfolio selection model (4), the above-presented
fuzzy portfolio return (9), and following deliberations presented by [38], the portfolio selection model is
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defined as an optimization problem, which, for a given required return level, R0, yields a minimum-risk
portfolio and which can be formulated as:

n

∑
i=1

(
bi − ai +

1
3
(αi + βi)

)
xi → min,

n

∑
i=1

(
1
2
(ai + bi) +

1
6
(βi − αi)

)
xi ≥ R0, (10)

n

∑
i=1

xi = 1,

0 ≤ xi ≤ xi,max.

As mentioned before, investment decisions are generally influenced by uncertain or hardly
predictable social and economic circumstances. In such cases, the application of optimization methods
is not always the best in comparison to the satisfaction approach. Especially in portfolio selection
problems, the investor always has certain objective values concerning the expected return and a certain
degree of risk. In problems encountered in a real world, some vague aspiration level is based on
experiences and knowledge of decision-makers. Therefore, it is more natural to denote an individual’s
aspiration level as a fuzzy number. Additionally, the concept of employing fuzzy numbers to express
an investor’s aspiration level is also connected with choosing an adequate membership function for
model formulation. Watada [15] was the first to propose the use of a trapezoidal membership function
in order to describe the return and risk aspiration level. Based on the Bellman–Zadeh maximization
principle [12], he introduced a two-dimensional Markowitz portfolio selection problem with a certain
aspiration level as fuzzy numbers. However, he then also discovered that by employing this function,
there exist some difficulties when solving the portfolio selection problem. In order to avoid these
problems, Watada proposed a nonlinear logistic membership function, arguing that a logistic function
is more appropriate to vague goal levels of investors and, in addition, that the trapezoidal function
(considered at first) is an approximation of the logistic function.

Taking into account the proposition and assumptions introduced by Watada [15], the logistic
membership function for the portfolio’s expected return and risk are given by µR(Rp) and µw(wp),
respectively, as:

µR(Rp) =
1

1 + exp(−αR(Rp − RM))
, (11)

µw(wp) =
1

1 + exp(αw(wp − wM))
, (12)

where RM and wM are the mid-points (of the expected return and risk, respectively) at the membership
function value λ = 0.5, and αR and αw determine the shape of the membership functions µR(Rp) and
µw(wp), respectively. The two parameters RM and wM are determined by Rs+Rn

2 and ws+wn
2 where

Rs is sufficiency and Rn the necessity level for the return, and ws is sufficiency and wn the necessity
level for the risk measure. The values of the sufficiency and necessity levels for return and risk can be
provided by the decision-maker, although the well-known (and in this work employed) method is the
one proposed by Zimmermann [41].

Considering the Bellman–Zadeh maximization principle [12], the general portfolio selection
problem with aspiration levels can be formulated as follows:

λ→ max,

µR(Rp) ≥ λ,

µw(wp) ≥ λ,



Energies 2018, 11, 3043 9 of 22

n

∑
i=1

xi = 1, (13)

0 ≤ xi ≤ xi,max,

λ ≥ 0.

Reconsidering the semi-mean-absolute deviation portfolio selection model (5) and by replacing
µR(Rp) and µw(wp) in model (13) with Equations (11) and (12), respectively, the following
problem results:

λ→ max,

λ + exp

(
−αR

(
n

∑
i=1

E(Ri)xi − RM

))
λ ≤ 1,

λ + exp

(
αw

(
1
T

T

∑
t=1

dt − wM

))
λ ≤ 1,

dt +
n

∑
i=1

(Rit − E(Ri))xi ≥ 0, (14)

dt ≥ 0,
n

∑
i=1

xi = 1,

0 ≤ xi ≤ xi,max,

λ ≥ 0.

The two exponential constraints in the above-presented model can be transformed into

αR

(
n

∑
i=1

E(Ri)xi − RM

)
≥ log

λ

1− λ
, (15)

− αw

(
1
T

T

∑
t=1

dt − wM

)
≥ log

λ

1− λ
. (16)

Replacing Λ = log λ
1−λ in (15) and (16), the model formulation (14) is equivalent to:

Λ→ max,

αR

n

∑
i=1

E(Ri)xi −Λ ≥ αRRM,

αw
1
T

T

∑
t=1

dt + Λ ≤ αwwM,

dt +
n

∑
i=1

(Rit − E(Ri))xi ≥ 0, (17)

dt ≥ 0,
n

∑
i=1

xi = 1,

0 ≤ xi ≤ xi,max,



Energies 2018, 11, 3043 10 of 22

Λ ≥ 0.

According to the parameters αR and αw, which determine the shape of the membership functions,
the aspiration levels can be described accurately. The calculation of the parameters α depends on the
membership function used in the model. For the membership function presented in this work for
the return (11) and risk (12), αR = 6.91

0.5(Rs−Rn)
and αw = 6.91

0.5(ws−wn)
, respectively (for more information,

see [42]). Therefore, the portfolio selection model presented is convenient for different investors and
their individual investment strategies. The application of this model for onshore wind power plants
can be found in [43].

3.3. Return Definition for the Power Generation Portfolio Selection Problem

As mentioned in Section 2 above, many of the differences in the applications of portfolio analysis
to energy markets are connected with the choice of the selection criteria used (and particularly differing
return and risk definitions). Power generation mix problems have their specific character connected
with the evaluation of power plants. In an evaluation process, different measures and methods
borrowed from finance can be used. The choice about which of them to adopt depends on the
decision-maker and her/his expectations regarding portfolio analysis. By searching for an appropriate
and useful proxy, not only costs and revenues should be taken into consideration, but also technical
parameters and the expected (remaining) lifetimes of the power plants concerned. Furthermore, an
important point in the analysis is the impact of new investments on the existing portfolio. The massive
changes in worldwide energy industries are the results of a number of factors, such as the increase in
energy demand, growing industrialization processes, environmental policy and resource limitations.
Many countries and energy providers are obliged to reconstruct (renew, expand, etc.) their power
generation mix and to develop new, more sustainable possibilities of producing energy (especially
carbon-free or low-carbon technologies).

Regarding all these aspects, the NPV approach appears to be not a perfect one but a relatively
suitable measure as a portfolio selection criterion (see, e.g., [20] or [22] where the NPV was applied
for the selection of power generation assets) both for new investments and also for existing power
plants. Another possibility is the use of the annual return as a selection criterion. In contrast to the
NPV, the annual return is a static measure and requires that the forecasts of all factors are taken into
consideration in the analysis (see, e.g., [44]). Following an approach similar to the one used in [20,22],
the objective variable is defined as the NPV of the investments. A favorable characteristic of the NPV
approach is the allowance of a risk- and time-adjusted discounting, thus respecting the time value of
different investments. Especially in the power supply industry, where investment horizons often span
several decades, this is a very important point. It is based upon the discounted cash-flow technique
and given by:

NPV =
T

∑
t=0

CFt

(1 + WACC)t , (18)

where CFt denotes the annual cash flow and the WACC (weighted average cost of capital) is used as
the discount rate.

The estimation of cash flows for power plants during the operation time requires input data,
such as revenues obtained from energy production, fuel costs, carbon dioxide mitigation costs,
operation and maintenance costs, capital costs as well as the depreciation rate. The calculation
of a cash flow starts with the determination of earnings before interest and taxes (EBIT), which is given
as the difference between revenues and costs including depreciation. After tax subtraction, earnings
before interest and after tax (EBIAT) are obtained. Finally, to achieve the cash flow, depreciation
expenses are added to EBIAT (for more information, see e.g., [45]).
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4. Results

This section presents several empirical applications of the above-described models for energy
generation mixes. Considering power plants (in this case, existing power plants owned by E.ON in
various location Germany and new investments announced by E.ON), we use the project’s NPV (in
e/kW) as a proxy for portfolio selection, and risk is defined as the semi-mean-absolute deviation from
the expected return (also in e/kW). All necessary information about the power plants considered,
as well as their economic and technical data needed for the NPV estimation undertaken by Monte
Carlo Simulation (MCS) and using the ORACLE R© Crystal Ball software (version 11.1), are reported in
detail in [44,46], respectively.

The calculations of efficient portfolios were made for three different fuzzy set models: FSMAD
Model 1 (= model (8)), FSMAD Model 2 (= model (10)), and FSMAD Model 3 (= model (17)).
As an extension, a comparison of the presented results of these three models with the classic MV
(mean-variance) model and with the SMAD (semi-mean-absolute deviation) model is also provided.
The classic MV model was proposed by [1]; it is a portfolio selection model with the standard deviation
used as a risk measure. This is a two-objective optimization problem, specified as:

n

∑
i=1

x2
i σ2

i + 2
n−1

∑
i=1

n

∑
j=i+1

xixjσiσjρij → min,

n

∑
i=1

E(Ri)xi → max,

n

∑
i=1

xi = 1 and 0 ≤ xi ≤ xi,max,

where σ2
i denotes the variance of component asset i, σi the volatility of asset i, and ρij the correlation

coefficient between i and j. Efficient frontiers were obtained through the implementation of linear and
quadratic programming in the dynamic, object-oriented programming language Python 2.6.

4.1. FSMAD Model for Power Generation Portfolios

Figure 1a–c show the efficient frontiers for existing power plants and all announced new
investments obtained by using the FSMAD models presented in Section 3. Figure 1a shows the
efficient frontiers where the projects’ return is considered as a possibilistic variable with the trapezoidal
membership function and adequate fuzzy mean value. We observe that the increase of the return
(NPV/installed capacity) is faster than the risk increase. Comparing Figure 1a with Figure 1b,
where efficient frontiers are obtained by application of FSMAD Model 2, the shifting of the efficient
frontiers can be noticed. The efficient portfolios depicted in Figure 1b for some specific return level
have higher risk levels than the efficient portfolio presented in Figure 1a, which were obtained with
another fuzzy approach to portfolio selection. Considering the investor’s aspiration levels, FSMAD
Model 3 was analyzed as well and the results are shown in Figure 1c. In this case, the set of efficient
portfolios is significantly smaller than for the two models presented first. Furthermore, by comparing
Figure 1a and Figure 1c, one can observe that the efficient portfolios obtained by using FSMAD Model
3 (Figure 1c) from the upper part of the efficient frontiers depicted in Figure 1a (FSMAD Model 1).
From inspection of Figure 1d, this outcome becomes even more clear.

Tables A1–A6 in the Appendix show the exact compositions of the efficient portfolios presented
in Figure 1a,c. The models analyzed in this work contain restrictions regarding the maximal share of
each technology allowed in the power generation mix. Such restrictions are necessary from a technical
point of view and ensure that all resulting portfolios are technically feasible.

Additional information obtained from this analysis is related to new investments taken under
consideration. Especially in Figure 1a,b, in some cases, efficient frontiers for existing technologies
and new investments are located above the efficient frontiers obtained for the existing technologies
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only. It means that including these investments in the existing power generation mix can apparently
improve the efficiency of the portfolio.

(a) FSMAD Model 1 (b) FSMAD Model 2

(c) FSMAD Model 3 (d) Comparison of FSMAD Models 1 and 3
Efficient frontiers and portfolios for: — FSMAD Model 1 existing technologies— FSMAD Model 1 existing technologies and new investments— FSMAD Model 3 existing technologies— FSMAD Model 3 existing technologies and new investments

Figure 1. Efficient frontiers obtained for different FSMAD models.

4.2. Comparative Analysis

The second part of our analysis shows the comparison of results obtained between the fuzzy
portfolio selection models with the well-known mean-variance portfolio selection model proposed
by Markowitz, and with the SMAD model, the latter of which is used as a benchmark model for our
study as well.

Figure 2 presents the location of the efficient frontiers obtained for FSMAD Model 1 and the SMAD
Model. The first conclusion is that both models give more or less the same results. The very similar
shape and position of the curves can be explained by the very similar arithmetic and fuzzy mean values
obtained by Monte Carlo simulation. Nevertheless, closer inspection shows that the efficient frontier
printed in blue (FSMAD Model 1) is located slightly above the efficient frontier printed in red (SMAD
Model) and in green (FSMAD Model 1 regarding new investments); it is also located slightly above
the frontier printed in black (SMAD Model with consideration of new investments). Furthermore,
a more rigorous analysis of the expected NPV and risk levels for the efficient portfolios presented
in Tables A1 and A9 (existing technologies) and Tables A2 and A10 (existing technologies and new
investments) in the Appendix A reveals that the portfolios obtained with FSMAD Model 1 perform
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slightly better than the corresponding ones obtained with the SMAD Model (compare, for example,
P3 in Table A1 with P3 in Table A9, and P6 in Table A1 with P5 in Table A9 for existing technologies; for
existing technologies combined with new investments, compare P3 in Table A2 with P3 in Table A10,
and P7 in Table A3 with P7 in Table A10, and P8 in Table A3 with P8 in Table A10). It can be seen from
Table 1 as well that for the given value of the portfolio return, the risk level in FSMAD Model 1 is
slightly smaller. It means that the return value for each technology expressed by the expected value
from probability theory (see model (5)) is almost the same as in the case of the trapezoidal membership
function from model (8).

Efficient frontiers and portfolios for: — FSMAD Model 1 existing technologies— FSMAD Model 1 existing technologies and new investments— SMAD Model existing technologies— SMAD Model existing technologies and new investments

Figure 2. Comparison of efficient frontiers obtained with the FSMAD Model 1 and the SMAD Model.

Figure 3 presents the location of the efficient frontiers for the FSMAD models described in
Section 3, together with the SMAD Model and the MV Model (analogously to the other presented
models and their efficient frontiers, tables with the technology shares in the efficient power generation
mixes for the MV Model are presented in Tables A7 and A8 in the Appendix A). The position of the MV
efficient frontier, in contrast to the SMAD Model as well as FSMAD Models 1 and 3, shows the shift
in the scale of risk. These two fuzzy models (FSMAD Models 1 and 3) and the semi-mean-absolute
deviation model perform better. They achieve a smaller expected risk for the same return level than the
other models presented (see also Table 1). Further interesting results observed are the higher gradients
of the efficient frontiers for the SMAD Model as well for FSMAD Models 1 and 3, in comparison to the
efficient frontiers obtained with the MV Model and FSMAD Model 2, respectively.
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Efficient frontiers and portfolios for: — FSMAD Model 1 existing technologies— FSMAD Model 1 existing technologies and new investments— FSMAD Model 2 existing technologies— FSMAD Model 2 existing technologies and new investments— FSMAD Model 3 existing technologies— FSMAD Model 3 existing technologies and new investments— MV Model existing technologies— MV Model existing technologies and new investments— SMAD Model existing technologies— SMAD Model existing technologies and new investments

Figure 3. Comparison of the efficient frontiers obtained with all models considered.

Analyzing the comparison of the risk levels for the given portfolio return values (Table 1), it can be
noticed that FSMAD Model 2 performs the worst in comparison to all other models. The membership
function applied in this model has a trapezoidal form like that in FSMAD Model 1, but a different
tolerance interval and left- and right-width parameters (see Section 3.2). The introduction of sufficiency
and necessity return and risk levels in FSMAD Model 3 have the effect that the efficient frontier is
shorter in comparison to those of the other models (see Figure 1c), and the risk values for smaller
portfolio returns are inexistent (see Table 1).

In the following, we compare the results presented in Figure 3 with portfolios obtained when
the distribution parameters, especially the variance of the commodities considered in the calculation
of the expected returns of the power generation portfolio assets, change. In order to mimick more
downside and upside events, we doubled the variance and re-simulated the return values for all
considered technologies. Simulation results were applied to the portfolio selection based on the
all models presented in the paper. Figure 4 compares the location of efficient frontiers obtained
previously—plot (a) (the graphic is similar to Figure 3 but the scale of the risk is changed for better
comparison) with efficient frontiers obtained when doubling the variance—plot (b). As can be seen,
the efficient frontier for the MV portfolio selection model shifts markedly to the right, implying that
portfolios are characterized with higher risk for the same expected return in comparison to the previous
situation. In contrast, the efficient portfolios obtained according to FSMAD Model 1 and the SMAD
Model shift only slightly to the left. This observation proves the previously mentioned property of
the SMAD Model, i.e., that the SMAD as a risk measure is less sensitive to outliers and equivalent to
the MV approach. The efficient frontier obtained for FSMAD Model 2 also shifts strongly to the right,
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which can be a consequence of the membership function applied in this model (i.e. one which uses the
quantiles, which is the cause of large variance change, too).

Table 1. Risk values for all models for selected portfolio returns [both in e/kW].

Value of the Model
Portfolio Return FSMAD 1 FSMAD 2 FSMAD 3 MV SMAD

(a) Existing technologies

633 215.26 450.35 - 318.89 216.33
900 258.79 529.21 - 366.85 259.58
1700 432.02 882.27 450.84 645.13 432.00

(b) Existing technologies and new investments

479 208.47 432.38 - 304.10 209.46
700 230.58 477.07 - 399.65 231.42
1400 352.95 715.97 357.96 540.34 353.82
1500 380.93 775.99 390.05 564.89 381.65

(a) Small variance (b) Doubled variance
Efficient frontiers and portfolios for: — FSMAD Model 1 existing technologies— FSMAD Model 1 existing technologies and new investments— FSMAD Model 2 existing technologies— FSMAD Model 2 existing technologies and new investments— FSMAD Model 3 existing technologies— FSMAD Model 3 existing technologies and new investments— MV Model existing technologies— MV Model existing technologies and new investments— SMAD Model existing technologies— SMAD Model existing technologies and new investments

Figure 4. Comparison of the efficient frontiers obtained with all models considered.

Table 2 compares the risk levels obtained for the given portfolio return values when the variance
is doubled. In the case of FSMAD Model 1 and the SMAD Model, the risk value decreases slightly
in comparison to the previous situation presented in Table 1 (compare also the shift of the efficient
frontiers in Figure 4). For the FSMAD Model 2 as well as the MV Model, the portfolio risk increases
strongly. The most interesting result, however, can be observed for FSMAD Model 3, where the risk
value increased most (see Table 2), and where the investor’s aspiration levels regarding risk and return
were included. As mentioned in Section 3.2, these levels can be defined by the decision-makers and
also calculated using mathematical methods, such as those proposed by [41] and used in our case.
Hence, the efficient frontier for this portfolio selection model is not presented in Figure 4b.
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Table 2. Risk values for all models for selected portfolio returns, doubled variance [both in e/kW].

Value of the Model
Portfolio Return FSMAD 1 FSMAD 2 FSMAD 3 MV SMAD

(a) Existing technologies

650 104.14 826.08 - 635.87 104.54
850 137.77 960.56 - 746.05 138.18

1750 307.61 1563.66 8760.03 1159.59 308.59

(b) Existing technologies and new investments

600 103.21 931.59 - 611.38 102.96
1050 174.99 831.59 - 810.16 173.49
1550 268.18 1384.35 7958.00 1085.83 267.73

5. Conclusions

In this paper, we have presented several alternative portfolio selection models for power
generation assets based on fuzzy sets theory and semi-mean-absolute deviation as a risk measure.
On the one hand, the use of another risk measure than the standard deviation (as it is used in the
standard Markowitz model) was already suggested by Markowitz himself, but the first application
only emerged in the aftermath of post-modern portfolio theory. On the other hand, measures such as
the semi-variance or semi-absolute deviation, from an investor’s point of view, describe the expected
losses and thus the part of the risk (the downside risk) that really matters risk. For this reason,
the consideration of these measures in decision-making processes seems to be necessary, or even
indispensable. In the presented results, the use of the SMAD Model caused a shift of the efficient
frontier along the risk axis. More precisely, the efficient portfolios for the same return level have a
smaller risk than portfolios obtained with the MV Model. For a decision-maker with risk aversion,
such a shift can positively affect the decision-making outcome.

The analysis carried out in this paper illustrates the application possibilities of fuzzy portfolio
selection models for power generation assets. Specifically, introducing membership functions for
the description of investors’ aspiration levels for the expected return and risk (FSMAD Model 3)
shows how the knowledge of experts, and an investor’s subjective opinions, can be better integrated
into the decision-making process. In the cases presented, we have shown that using one of these
models affects the size of the set of efficient portfolios (the set is smaller than when using FSMAD,
SMAD or MV models). The sparse set of alternatives, which is considered in the decision-making
process, can push on and relieve this process. Moreover, in FSMAD Model 3, the decision-maker can
help to exactly determine the so-called sufficiency and necessity levels and obtain the optimal solution.

The fuzzy portfolio selection models and the model that uses the semi-mean-absolute deviation as
a risk measure presented in this paper illustrated their application for energy utilities, just as they exist
for other industries and the financial markets. The complexity of the energy markets, the uncertain
environment, the vagueness or some other type of fuzziness, can overall be better captured with fuzzy
sets theory. However, the further development of these models especially for the energy sector is
required, which calls for more research in this field as well as applications of other alternative risk
measures, such as, e.g., the CVaR.
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Appendix A

Table A1. Efficient portfolios according to FSMAD Model 1 for existing technologies.

Efficient Portfolios

Technologies P1 P2 P3 P4 P5 P6

Biomass 0.07% 0.07% 0.07% 0.07% 0.07% 0.07%
CCGT 9.19% 7.13% 0.00% 0.00% 8.47% 9.19%
CHP 8.53% 8.53% 8.53% 8.53% 8.53% 5.70%
GT gas 3.24% 3.24% 3.24% 3.24% 0.00% 0.00%
GT oil 7.24% 7.24% 7.24% 7.24% 6.50% 0.00%
Hard coal 45.67% 45.67% 44.19% 11.01% 0.00% 8.61%
Hydro 14.95% 14.95% 14.95% 14.95% 14.95% 14.95%
Lignite 8.22% 0.00% 0.00% 1.69% 8.22% 8.22%
Nuclear 2.46% 12.74% 21.35% 52.84% 52.84% 52.84%
Onshore 0.42% 0.42% 0.42% 0.42% 0.42% 0.42%
NPV [e/kW] 632.71 750.00 900.00 1550.00 1650.00 1700.00
Risk [e/kW] 215.26 232.02 258.79 386.84 414.56 432.02

Table A2. Efficient portfolios according to FSMAD Model 1 for existing technologies combined with
new investments.

Efficient Portfolios

Technologies P1 P2 P3 P4 P5 P6 P7 P8 P9

Biomass 0.06% 0.06% 0.06% 0.06% 0.06% 0.06% 0.06% 0.06% 0.06%
CCGT 16.36% 16.36% 16.36% 15.33% 5.93% 0.00% 0.00% 7.83% 7.83%
CHP 7.26% 7.26% 7.26% 7.26% 7.26% 7.26% 7.26% 7.26% 0.55%
GT gas 2.76% 2.76% 2.76% 2.76% 2.76% 2.76% 2.76% 2.76% 0.00%
GT oil 6.17% 6.17% 6.17% 6.17% 6.17% 6.17% 6.17% 6.17% 0.00%
Hard coal 48.76% 43.48% 38.88% 38.88% 38.88% 38.88% 21.73% 9.53% 22.74%
Hydro 12.73% 12.73% 12.73% 12.73% 12.73% 12.73% 12.73% 12.73% 12.73%
Lignite 1.79% 7.00% 2.70% 0.00% 0.00% 0.00% 0.92% 7.00% 7.00%
Nuclear 0.00% 0.07% 8.97% 12.69% 22.10% 28.03% 44.98% 44.98% 44.98%
Offshore 3.76% 3.76% 3.76% 3.76% 3.76% 3.76% 3.76% 3.76% 3.76%
Onshore 0.36% 0.36% 0.36% 0.36% 0.36% 0.36% 0.36% 0.36% 0.36%
NPV [e/kW] 479.71 550.00 700.00 750.00 950.00 1050.00 1400.00 1500.00 1550.00
Risk [e/kW] 208.47 214.14 230.58 237.33 266.57 284.00 352.95 380.93 400.58

Table A3. Efficient portfolios according to FSMAD Model 2 for existing technologies.

Efficient Portfolios

Technologies P1 P2 P3 P4 P5

Biomass 0.07% 0.07% 0.07% 0.07% 0.07%
CCGT 9.19% 4.17% 0.00% 0.00% 9.19%
CHP 8.53% 8.53% 8.53% 8.53% 5.70%
GT gas 3.24% 3.24% 3.24% 0.00% 0.00%
GT oil 7.24% 7.24% 7.24% 0.00% 0.00%
Hard coal 45.67% 45.67% 44.19% 9.56% 8.61%
Hydro 14.95% 14.95% 14.95% 14.95% 14.95%
Lignite 8.22% 0.00% 0.00% 6.38% 8.22%
Nuclear 2.46% 15.71% 21.35% 52.84% 52.84%
Onshore 0.42% 0.42% 0.42% 0.42% 0.42%
NPV [e/kW] 632.71 800.00 900.00 1600.00 1700.00
Risk [e/kW] 450.35 494.73 529.21 814.72 882.27
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Table A4. Efficient portfolios according to FSMAD Model 2 for existing technologies combined with
new investments.

Efficient Portfolios

Technologies P1 P2 P3 P4 P5 P6 P7 P8

Biomass 0.06% 0.06% 0.06% 0.06% 0.06% 0.06% 0.06% 0.06%
CCGT 16.36% 16.36% 16.36% 13.10% 2.96% 0.00% 0.00% 7.26%
CHP 7.26% 7.26% 7.26% 7.26% 7.26% 7.26% 7.26% 7.26%
GT gas 2.76% 2.76% 2.76% 2.76% 2.76% 2.76% 0.00% 0.00%
GT oil 6.17% 6.17% 6.17% 6.17% 6.17% 6.17% 6.17% 0.00%
Hard coal 48.76% 41.33% 38.88% 38.88% 38.88% 36.39% 24.00% 23.23%
Hydro 12.73% 12.73% 12.73% 12.73% 12.73% 12.73% 12.73% 12.73%
Lignite 1.79% 7.00% 2.70% 0.00% 0.00% 0.00% 0.68% 7.00%
Nuclear 0.00% 2.23% 8.97% 14.93% 25.07% 30.52% 44.98% 44.98%
Offshore 3.76% 3.76% 3.76% 3.76% 3.76% 3.76% 3.76% 3.76%
Onshore 0.36% 0.36% 0.36% 0.36% 0.36% 0.36% 0.36% 0.36%
NPV [e/kW] 479.71 600.00 700.00 800.00 1000.00 1100.00 1400.00 1500.00
Risk [e/kW] 432.38 456.76 477.07 502.51 561.46 597.25 715.97 775.99

Table A5. Efficient portfolios according to FSMAD Model 3 for existing technologies.

Efficient Portfolios

Technologies P1 P2 P3 P4

Biomass 0.07% 0.07% 0.07% 0.07%
CCGT 0.00% 0.00% 0.54% 9.19%
CHP 8.53% 8.53% 8.53% 0.05%
GT gas 3.24% 0.00% 0.00% 0.00%
GT oil 7.24% 7.01% 0.00% 0.00%
Hard coal 10.65% 7.95% 14.43% 14.25%
Hydro 14.95% 14.95% 14.95% 14.95%
Lignite 2.05% 8.22% 8.22% 8.22%
Nuclear 52.84% 52.84% 52.84% 52.84%
Onshore 0.42% 0.42% 0.42% 0.42%
NPV [e/kW] 1567.28 1635.69 1676.93 1739.59
Risk [e/kW] 394.61 413.28 426.46 450.84

Table A6. Efficient portfolios according to FSMAD Model 3 for existing technologies combined with
new investments.

Efficient Portfolios

Technologies P1 P2 P3 P4 P5

Biomass 0.06% 0.06% 0.06% 0.06% 0.06%
CCGT 0.00% 0.00% 0.00% 2.15% 7.83%
CHP 7.26% 7.26% 7.26% 7.26% 0.00%
GT gas 2.76% 2.76% 0.00% 0.00% 0.00%
GT oil 6.17% 6.17% 5.04% 0.00% 0.00%
Hard coal 23.07% 21.26% 18.81% 21.70% 23.29%
Hydro 12.73% 12.73% 12.73% 12.73% 12.73%
Lignite 0.00% 0.66% 7.00% 7.00% 7.00%
Nuclear 43.84% 44.98% 44.98% 44.98% 44.98%
Offshore 3.76% 3.76% 3.76% 3.76% 3.76%
Onshore 0.36% 0.36% 0.36% 0.36% 0.36%
NPV [e/kW] 1378.85 1408.78 1483.60 1519.44 1566.99
Risk [e/kW] 351.58 357.96 378.59 390.05 411.68
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Table A7. Efficient portfolios according to the MV Model for existing technologies.

Efficient Portfolios

Technologies P1 P2 P3 P4 P5 P6

Biomass 0.07% 0.07% 0.07% 0.07% 0.07% 0.07%
CCGT 9.19% 9.19% 0.00% 0.00% 0.01% 9.19%
CHP 8.53% 8.53% 8.53% 8.53% 8.53% 0.00%
GT gas 3.24% 3.24% 3.24% 0.00% 0.00% 0.00%
GT oil 7.24% 7.24% 7.24% 7.24% 0.00% 0.00%
Hard coal 45.67% 45.67% 45.67% 7.72% 14.96% 14.03%
Hydro 14.95% 14.95% 14.95% 14.95% 14.95% 14.95%
Lignite 8.22% 0.00% 0.00% 8.22% 8.22% 8.22%
Nuclear 2.46% 10.68% 19.87% 52.84% 52.84% 52.84%
Onshore 0.42% 0.42% 0.42% 0.42% 0.42% 0.42%
NPV [e/kW] 634.86 717.45 872.77 1622.72 1663.38 1727.25
Risk [e/kW] 318.89 330.45 366.85 590.29 609.14 645.13

Table A8. Efficient portfolios according to the MV Model for existing technologies combined with new
investments.

Efficient Portfolios

Technologies P1 P2 P3 P4 P5 P6 P7

Biomass 0.06% 0.06% 0.06% 0.06% 0.06% 0.06% 0.06%
CCGT 16.36% 16.36% 7.83% 0.00% 0.00% 7.83% 7.83%
CHP 7.26% 7.26% 7.26% 7.26% 7.26% 7.26% 0.00%
GT gas 2.76% 2.76% 2.76% 2.76% 0.00% 0.00% 0.00%
GT oil 6.17% 6.17% 6.17% 6.17% 4.29% 0.00% 0.00%
Hard coal 48.76% 38.88% 38.88% 38.88% 19.56% 16.03% 23.29%
Hydro 12.73% 12.73% 12.73% 12.73% 12.73% 12.73% 12.73%
Lignite 1.79% 0.00% 0.00% 0.00% 7.00% 7.00% 7.00%
Nuclear 0.00% 11.67% 20.20% 28.03% 44.98% 44.98% 44.98%
Offshore 3.76% 3.76% 3.76% 3.76% 3.76% 3.76% 3.76%
Onshore 0.36% 0.36% 0.36% 0.36% 0.36% 0.36% 0.36%
NPV [e/kW] 481.70 729.34 920.59 1052.80 1477.83 1527.36 1556.31
Risk [e/kW] 304.10 339.65 377.32 408.49 540.34 564.89 582.19

Table A9. Efficient portfolios according to the SMAD Model for existing technologies.

Efficient Portfolios

Technologies P1 P2 P3 P4 P5

Biomass 0.07% 0.07% 0.07% 0.07% 0.07%
CCGT 9.19% 4.31% 0.00% 0.00% 9.19%
CHP 8.53% 8.53% 8.53% 8.53% 6.3%
GT gas 3.24% 3.24% 3.24% 3.24% 0.00%
GT oil 7.24% 7.24% 7.24% 7.24% 0.00%
Hard coal 45.67% 45.67% 44.32% 6.46% 7.47%
Hydro 14.95% 14.95% 14.95% 14.95% 14.95%
Lignite 8.22% 0.00% 0.00% 6.24% 8.22%
Nuclear 2.46% 15.57% 21.23% 52.84% 52.84%
Onshore 0.42% 0.42% 0.42% 0.42% 0.42%
NPV [e/kW] 634.86 800.00 900.00 1600.00 1700.00
Risk [e/kW] 216.33 241.51 259.58 400.88 432.22
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Table A10. Efficient portfolios according to the SMAD Model for existing technologies combined with
new investments.

Efficient Portfolios

Technologies P1 P2 P3 P4 P5 P6 P7 P8

Biomass 0.06% 0.06% 0.06% 0.06% 0.06% 0.06% 0.06% 0.06%
CCGT 16.36% 16.36% 16.36% 13.21% 3.13% 0.00% 0.00% 7.83%
CHP 7.26% 7.26% 7.26% 7.26% 7.26% 7.26% 7.26% 7.26%
GT gas 2.76% 2.76% 2.76% 2.76% 2.76% 2.76% 2.76% 2.76%
GT oil 6.17% 6.17% 6.17% 6.17% 6.17% 6.17% 6.17% 4.45%
Hard coal 48.76% 41.42% 38.88% 38.88% 38.88% 36.54% 21.36% 8.82%
Hydro 12.73% 12.73% 12.73% 12.73% 12.73% 12.73% 12.73% 12.73%
Lignite 1.79% 7.00% 2.92% 0.00% 0.00% 0.00% 0.56% 7.00%
Nuclear 0.00% 2.13% 8.75% 14.82% 24.90% 30.37% 44.98% 44.98%
Offshore 3.76% 3.76% 3.76% 3.76% 3.76% 3.76% 3.76% 3.76%
Onshore 0.36% 0.36% 0.36% 0.36% 0.36% 0.36% 0.36% 0.36%
NPV [e/kW] 481.70 600.00 700.00 800.00 1000.00 1100.00 1400.00 1500.00
Risk [e/kW] 209.46 220.07 231.42 245.22 276.17 294.66 353.82 381.65
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