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Abstract: Rail and metro systems are characterized by high-performing and environmentally friendly
features that make them a crucial factor for driving modal split towards public transport modes, thus
reducing private car use and related externalities (such as air and noise pollution, traffic congestion
and accidents). Within this framework, the implementation of suitable energy-saving policies,
allowing to reduce energy consumption, but, at the same time, preserving timetable stability and
passengers’ satisfaction, may turn out to be imperative. In particular, this study aims to develop
an analytical framework for properly supporting the implementation of eco-driving strategies in
a passenger-oriented perspective. An application to a rail line in southern Italy is performed so as
to demonstrate the usefulness of the proposed approach in determining the optimal compromise
between energy reductions and travel time increases.

Keywords: energy saving policies; passengers’ satisfaction; railway system; reserve time allocation;
travel demand estimation

1. Introduction

Rail and metro systems, thanks to their high performance and sustainability characteristics, have
a key role with a view to reducing side effects related to transport sector, thus properly promoting a
sustainable development of urban and metropolitan regions [1]. In particular, transport modes based
on railway technology present a more favorable ratio between operational costs (including energy
consumption) and transport capacity with respect to other mobility systems. Therefore, the necessity
of fully exploiting such energy efficiency and the ever-increasing cost of energy resources make the
implementation of energy-saving measures a crucial factor in the management of rail systems.

Within this framework, our aim is to provide a decision support system (DSS) for the
implementation of eco-driving strategies in the case of rail/metro systems. More in detail,
such strategies can follow different approaches; however, whatever the implemented method, they
produce an increase in train running times which provides two main implications. First of all,
the adoption of such measures is feasible only if there is an extra-time availability to be exploited
for compensating the increase in running times, without prejudicing timetable stability. These time
resources have to be adequately designed in the timetable planning phase and, therefore, a proper tool
for allowing a reliable estimation of them has been developed. The second implication concerns service
quality and passengers’ satisfaction. Indeed, an increase in train running time is equivalent to an
increase in user travel times, with a consequent degradation in system performance. Hence, the aim is
to provide a suitable tool for evaluating the trade-off between the reduction in energy consumption and
the increase in passenger discomfort. For this twofold purpose, proper simulation models and travel
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demand estimation techniques have been applied. Moreover, the interaction between rail service and
passenger flows has been modelled by means of a microscopic approach. Finally, a bilevel constrained
optimization problem has been formulated and solved in the case of a real rail network, so as to show
the effectiveness of the proposed methodology.

Specifically, in this paper, we provide an extension of the authors’ research in determining the
optimal compromise between energy reductions and travel time increases [2], proposed at the 18th
IEEE International Conference on Environment and Electrical Engineering (IEEE EEEIC 2018) and
2nd Industrial and Commercial Power Systems Europe (I&CPS 2018). More in detail, the work
was enriched by deeply analyzing the analytical formulation of the problem and investigating
related theoretical properties. Moreover, a bilevel solution algorithm was developed and numerical
applications were extended.

The paper is organized as follows: Section 2 analyzes the main contributions in the literature;
Section 3 provides the analytical formulation of the proposed approach with the definition of related
theoretical properties and adopted solution algorithms; Section 4 applies the proposed methodology in
the case of a regional rail line; finally, conclusions and research prospects are summarized in Section 5.

2. Literature Review

Researchers and practitioners have developed different strategies, such as the adoption of
eco-driving profiles, the regenerative braking, the adjustment of timetables, the exploitation of on-board
and way-side storage systems, the use of reversible substations. Clearly, they are strictly related to
each other. In particular, the design of energy-efficient speed profiles consists in identifying the
pattern which minimizes the tractive energy consumption, given a running time to be respected (see,
for instance, [3–5]); while, strategies based on the exploitation of regenerative braking aim to reuse the
amount of kinetic energy produced during the braking phase by converting it back to the electrical
one. In this case, the traction motor acts also as a generator and the recovered energy can be used at
the exact time or stored for later use by means of energy storage devices. For instance, an on-board
storage device allows to temporarily accumulate the excess regenerated energy and release it for the
next acceleration phase of the same train (see, for instance, [6–8]); while, the aim of a wayside storage
device is to release it when required for other convoys’ acceleration (see, for instance, [9,10]). On the
other hand, when no storage devices are available, a timetable optimization, aimed at synchronizing
acceleration and deceleration phases of convoys operating in the network, represents a key task
for maximizing the receptivity of the line (see, for instance, [11–14]). Additionally, the role of an
energy-efficient timetabling phase lies in a suitable design of all operational times involved, such as
running times, buffer times, dwell times and reserve times [15–18]. Moreover, by means of reversible or
active substations, the regenerated energy can also be traced back to the medium voltage distribution
network [19,20]. An extensive overview of regenerative braking issues and energy storage systems,
together with the above-mentioned related concerns, can be found, respectively, in [21,22].

This work, instead, is focused on strategies involving the design of suitable speed profiles and
the optimization of operational parameters within the timetable by taking into account effects on user
perspectives. Indeed, recently, numerous studies have been developed for analyzing user behaviors
and related quality perceptions (see, for instance, [23–35]) in the case of transportation systems,
including rail and metro systems.

Specifically, according to the literature, the above-mentioned techniques can be applied separately,
by addressing individually the design of energy-efficient driving profiles [36,37] and the optimization
of operational times within the timetable [38,39] or, more frequently, in an integrated framework.
In this context, Li and Lo [40] proposed a train control approach, based on an optimization model,
which combines energy-efficient timetables and speed profiles within a dynamic framework providing
the adjustment of the cycle time according to travel demand changes. Moreover, Scheepmaker and
Goverde [41] developed a nested optimization framework in which the optimal cruising speed is
defined by means of the outer loop of the Fibonacci algorithm [42,43]; while, in the inner loop,
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the bisection method computes, for the given cruising speed, the optimal switching points of the
coasting phase. Furthermore, Sicre et al. [44] proposed a simulation-based optimization procedure in
which the simulation model provides the most energy-efficient driving profile, by computing energy
consumption Pareto curves for each stretch, and the optimization tool allocates the total running
reserve time available in the most efficient way among the different stretches. Finally, Feng et al. [45]
enriched the common optimization framework, which combined energy control strategies with a
suitable design of operational times, by performing the estimation of dwell times at stations as
flow-dependent factors. It is worth noting that both manual [46–48] and automatic [49–51] driving
systems have been considered.

As regard to the adopted methodological approaches, the most common methods for analyzing
these strategies are based on integrated simulation-optimization techniques, both in off-line [52,53] and
real-time [54–61] contexts. On the other hand, analytical approaches for modelling the implementation
of ES strategies can be found in [4,62–64].

Several works merged the energy-saving perspective with operational issues. Within this
framework, several authors [65–67] analyzed the relation between energy-efficient strategies and
stability of the planned timetable; Feng et al. [68] evaluated the utilization rate of train capacity resulting
from the implementation of energy-saving strategies; Canca [69] compared the minimum-energy
timetable with those obtained by taking into account also rolling stock and other operational
costs. Authors’ proposal, instead, consists in a passenger-oriented bi-objective framework, in which
the energy perspective is combined with the evaluation of passengers’ satisfaction, expressed in
term of user generalized cost. The aim is to identify the optimal compromise between energy
reductions and travel time increases, thus allowing a minimization of consumption without penalizing
passengers’ needs.

3. The Proposed Methodology

As shown by [70,71], in the case of a rail (or metro) line with two-track sections, the minimum
time required by a rail convoy to perform a complete trip may be calculated as follows:

CTmin = TRTTO
ot + TDTot + itot + TRTTO

rt + TDTrt + itrt (1)

with:
TRTTO

ot = ∑lot rtTO
lot (2)

TRTTO
rt = ∑lrt rtTO

lrt (3)

TDTot = ∑sot dtsot (4)

TDTrt = ∑srt dtsrt (5)

where CTmin is the minimum cycle time; TRTTO
ot and TRTTO

rt are the Total Running Times associated,
respectively, with the outward trip (ot) and the return trip (rt) in the Time Optimal (TO) condition;
TDTot and TDTrt are the Total Dwell Times associated, respectively, with the outward trip (ot) and
the return trip (rt); itot and itrt are the inversion times (i.e., times spent to prepare the rail convoy to
perform the subsequent trip) associated, respectively, with the outward trip (ot) and the return trip
(rt); rtTO

lot and rtTO
lrt are the running times associated, respectively, with links belonging to the outward

trip (lot) and the return trip (lrt) in the Time Optimal (TO) condition; dtsot and dtsrt are the dwell times
associated, respectively, with station platforms in the case of outward trip (sot) and return trip (srt).

Since terms of Equation (1), as well as terms of Equations (2)–(5), have to be considered as
realizations of random (i.e., stochastic) processes due to their variability, the minimum cycle time may
be formulated as follows:

CTmin = CTmin + εCT (6)
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with:
CTmin = E[CTmin]

εCT = ΩCT(hCT) (7)

where CTmin is the mathematical expectation (i.e., the first moment or mean) of variable CTmin; εCT
is the random residual of CTmin; ΩCT(·) is the statistical distribution of εCT ; hCT is the vector of
parameters of statistical distribution ΩCT(·).

Since a delay occurs when the real cycle time is higher than the planned one (i.e., a train arrives
later than scheduled), in order to minimize delays and, hence, assure timetable stability, it is necessary
to adopt proper buffer times for compensating time increases, that it:

CTplan = CTmin + TBT (8)

where CTplan is the planned cycle time; TBT is the Total Buffer Time.
Increases in cycle time with respect to the average value may be compensated until the buffer

time is reached. This implies that a train may respect the timetable whenever the increase is not higher
that buffer time value, that is:

TBT ≥ εCT

Since the statistical distribution of εCT is known (or may be determined), it is possible to calculate
the value of buffer time for any fixed confidence level θ by means of Equation (7). Indeed, a planned
cycle time respects the timetable with a confidence level equal to θ only if:

Pr
(

CTplan ≥ CTmin

)
= θ

which, by means of Equations (6) and (8), may be expressed as:

Pr(TBT ≥ εCT) = θ

The cumulative distribution of ΩCT(·) expresses the delay (when εCT is non-negative) or the
advance (when εCT is negative) of a train with respect to its average trip duration (i.e., CTmin

value). Hence, as shown in Figure 1, once fixed a confidence level θ, it is possible to determine
the corresponding value of random residual εCT , which expresses the maximum delay associated with
confidence level θ. Then, if we assume a buffer time TBT equal to this maximum delay, the planned
cycle time CTplan will be not lower than the real cycle time CTplan with a confidence level θ. Obviously,
higher the confidence level, higher the value of buffer time TBT.

Conventionally, in order to preserve departure times at the terminals, the buffer time is calculated
separately for the outward trip and the return trip, that is:

TBT = btot + btrt

where btot and btrt are the buffer times associated, respectively, with the outward trip (ot) and the
return trip (rt).

The number of rail convoys required to perform a frequency service on a single line may be
calculated as follows:

NC = CTserv/H (9)

where NC is the number of rail convoys; CTserv is the service cycle time; H is the average headway
between two successive rail convoys.
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Figure 1. Cumulative distribution of ΩCT(·).

Since the number of rail convoys to adopt to perform the service has to be a positive integer
number (i.e., NC ∈ Z+), Equation (9) may be expressed in terms of planned cycle time CTplan as follows:

NC =

 int
(

CTplan/H
)
+ 1 if int

(
CTplan/H

)
<
(

CTplan/H
)

int
(

CTplan/H
)

if int
(

CTplan/H
)
=
(

CTplan/H
) (10)

Hence, it is possible to express the service cycle time CTserv as follows:

CTserv = CTplan + TLTTO (11)

with:

TLTTO = CTplan − int
(CTplan

H

)
· H

where TLTTO is the Total Layover Time in the Time Optimal (TO) scenario which expresses the time
that a train spent at the initial station waiting for the departure time according to the planned timetable.
However, the layover time is defined separately for the outward trip and the return trip for preserving
departure times at the terminals, that is:

TLTTO = ltTO
ot + ltTO

rt

where ltTO
ot and ltTO

rt are the layover times associated, respectively, with the outward trip (ot) and the
return trip (rt), in the case of the Time Optimal (TO) scenario.

Let αTLT be the partition rate of the TLTTO, we may express the layover times as follows:

ltTO
ot = αTLT · TLTTO

ltTO
rt = (1− αTLT) · TLTTO

with αTLT ∈ [0 ; 1].
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Since buffer and layover times express phases where the train is steady on the track, in order to
preserve the headway, it is necessary to satisfy the following constraints:

btot + ltTO
ot ≤ H

btrt + ltTO
rt ≤ H

which imply constraints on the partition rate of the TLTTO and the number of rail convoys. Specifically,
these constraints may be expressed as follows:

αTLT ∈
[

max
{

0 ; 1 − H − btrt

TLTTO

}
; min

{
H − btot

TLTTO ; 1
}]

(12)

NC ∈
[

int
(CTplan

H

)
+ 1 ; int

(
2 +

CTplan − TBT
H

)]
(13)

Moreover, since the layover time allocation (i.e., parameter αTLT) affects the minimum headway
of the line, it is necessary to verify whether the proposed service is feasible by means of the
following condition:

H ≥ Hmin(αTLT) (14)

where Hmin(·) is the minimum headway of the line, depending on parameter αTLT .
The implementation of Energy Saving Strategies (ESSs) consists in adopting suitable strategies

(such as proper speed profiles and/or the use of recovery devices) so to reduce energy consumption,
that is:

TECESS ≤ TECTO

where TECESS and TECTO are the Total Energy Consumptions associated, respectively, with the
implementation of the Energy Saving Strategy (ESS) and the Time Optimal (TO) scenario without any
recovery device.

Neglecting the use of recovery devices, these strategies imply an increase in running times, that is:

TRTESS
ot ≥ TRTTO

ot

TRTESS
rt ≥ TRTTO

rt

with:
TRTESS

ot = ∑lot rtESS
lot

TRTESS
rt = ∑lrt rtESS

lrt

where TRTESS
ot and TRTESS

rt are the Total Running Times associated, respectively, with the outward trip
(ot) and the return trip (rt) in the case of Energy Saving Strategy (ESS) implementation; rtESS

lot and rtESS
lrt

are the running times associated, respectively, with links belonging to the outward trip (lot) and the
return trip (lrt) in the case of Energy Saving Strategy (ESS) implementation. Hence, to preserve service
performance in terms of timetable stability and service frequencies, it is necessary to compensate for
the increase in running times by means of reduction in layover times, that is:(

TRTESS
ot − TRTTO

ot

)
=
(

ltTO
ot − ltESS

ot

)
(

TRTESS
rt − TRTTO

rt

)
=
(

ltTO
rt − ltESS

rt

)
which imply:

ltTO
ot ≥ ltESS

ot

ltTO
rt ≥ ltESS

rt
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(
TRTESS

ot − TRTTO
ot

)
+
(

TRTESS
rt − TRTTO

rt

)
=
(

TLTTO − TLTESS
)

where ltESS
ot and ltESS

rt are the layover times associated, respectively, with the outward trip (ot) and the
return trip (rt), in the case of the Energy Saving Strategy (ESS); TLTESS is the Total Layover Time in
the case of Energy Saving Strategy (ESS).

3.1. Optimization Problem Formulation

In order to reduce the negative impacts on passengers due to the implementation of Energy
Saving Strategies, it is necessary to identify the optimal compromise between travel time increase and
energy reduction. Hence, assuming the adoption of a strategy based on the definition of lower speed
limits (for details, see [70,71]), we propose to solve the following bilevel optimization problem, where
the upper level, whose aim is to identify the partition rate, which minimizes an objective function, may
be formulated as follows:

α̂TLT = arg min
αTLT

Z
(

v̂lim
ot (αTLT) , v̂lim

rt (αTLT) , H , NC
)

(15)

subject to:

αTLT ∈
[

max
{

0 ; 1 − H − btrt

TLTTO

}
; min

{
H − btot

TLTTO ; 1
}]

(16)

NC ∈
[

int
(CTplan

H

)
+ 1 ; int

(
2 +

CTplan − TBT
H

)]
(17)

H ≥ Hmin(αTLT) (18)

with:

Z
(

v̂lim
ot (αTLT) , v̂lim

rt (αTLT) , H , NC
)

= TECESS
(

v̂lim
ot (αTLT) , v̂lim

rt (αTLT) , H , NC
)
+ TUGCESS

(
v̂lim

ot (αTLT) , v̂lim
rt (αTLT) , H , NC

)
(19)

TECESS
(

v̂lim
ot (αTLT) , v̂lim

rt (αTLT) , H , NC
)

= βVOE · ntrip(H , NC) ·
(

ECESS
ot

(
v̂lim

ot (αTLT)
)
+ ECESS

rt

(
v̂lim

rt (αTLT)
))

(20)

ECESS
ot

(
v̂lim

ot (αTLT)
)
=
∫ CTserv

ot

o
T
(

ṽESS
ot

(
v̂lim

ot (αTLT) , τ
))
· ṽESS

ot

(
v̂lim

ot (αTLT) , τ
)
· dτ (21)

ECESS
rt

(
v̂lim

rt (αTLT)
)
=
∫ CTserv

rt

o
T
(

ṽESS
rt

(
v̂lim

rt (αTLT) , τ
))
· ṽESS

ot

(
v̂lim

rt (αTLT) , τ
)
· dτ (22)

TUGCESS
(

v̂lim
ot (αTLT) , v̂lim

ot (αTLT) , H , NC
)

= βVOBT ·∑
ntrip(H , NC)
i=1

(
∑lot obtESS

lot

(
v̂lim

ot (αTLT)
)
· fi,lot + ∑lrt obtESS

lrt

(
v̂lim

rt (αTLT)
)
· fi,lrt

)
+βVOWT ·∑

ntrip(H , NC)
i=1

(
∑sot wtsot(H) · fi,sot + ∑srt wtsrt(H) · fi,srt

) (23)

and the lower level, whose aim is to identify speed limits which maximize running times, may be
formulated as follows:

v̂lim
ot = arg max

vlim
ot >0

TRTESS
ot

(
αTLT , vlim

ot

)
(24)

v̂lim
rt = arg max

vlim
rt >0

TRTESS
rt

(
αTLT , vlim

rt

)
(25)
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subject to:
vESS

ot (τ) ≤ vlim
ot ∀ τ (26)

vESS
rt (τ) ≤ vlim

rt ∀ τ (27)

TRTESS
ot

(
αTLT , vESS

ot (τ)
)
≤ TRTTO

ot + ltTO
ot (αTLT , H , NC) (28)

TRTESS
rt

(
αTLT , vESS

rt (τ)
)
≤ TRTTO

rt + ltTO
rt (αTLT , H , NC) (29)

where α̂TLT is the optimal value of αTLT ; v̂lim
ot and v̂lim

rt are the optimal value of vlim
ot and vlim

rt ; vlim
ot

and vlim
rt are the speed limits associated, respectively, with the outward trip (ot) and the return trip

(rt); Z(·) is the objective function to be minimized in the upper level; TECESS(·) is the Total Energy
Consumption in the case of Energy Saving Strategy (ESS); TUGCESS(·) is the Total User Generalized
Cost in the case of Energy Saving Strategy (ESS); βVOE is a parameter which expresses the monetary
cost of the energy (i.e., Value Of Energy); ntrip(.) is the daily number of complete trips depending
on headway H and number of rail convoys NC; ECESS

ot (·) and ECESS
rt (·) are the Energy Consumption

associated, respectively, with the outward trip (ot) and the return trip (rt) in the case of Energy Saving
Strategy (ESS); CTserv

ot and CTserv
rt are the portion of CTserv associated, respectively, with the outward

trip (ot) and the return trip (rt), i.e., CTserv
ot + CTserv

rt = CTserv; T(·) is the tractive effort at rail wheels
which depends on travel speed; ṽESS

ot (·) and ṽESS
rt (·) are the instantaneous travel speeds associated,

respectively, with the outward trip (ot) and the return trip (rt) in the case of Energy Saving Strategy
(ESS) and depending on speed limits v̂lim

ot and v̂lim
ot , and the generic time instant τ; τ is the generic

time instant; dτ in the generic infinitesimal time interval; βVOBT is a parameter which expresses the
monetary value of the time spent on-board by passengers (i.e., Value of the On-Board Time); obtESS

lot (·)
and obtESS

lrt (·) are the on-board times associated, respectively, with links belonging to the outward trip
(lot) and return trip (lrt) in the case of Energy Saving Strategy (ESS), depending on speed limits v̂lim

ot and
v̂lim

ot ; fi,lot and fi,lrt are the flows of passengers on board the rail convoy associated, respectively, with
links belonging to the outward trip (lot) and return trip (lrt) during the i-th trip; βVOWT is a parameter
which expresses the monetary value of the time spent by passengers on the platform waiting for a train
(i.e., Value of the Waiting Time); wtsot(·) and wtsrt(·) are the waiting times associated, respectively,
with station platforms in the case of outward trip (sot) and return trip (srt), depending on headway
H; fi,sot and fi,srt are the flows of passengers waiting for a train associated, respectively, with station
platforms in the case of outward trip (sot) and return trip (srt) during the i-th trip; vESS

ot (·) and vESS
rt (·)

the value assumed by speed functions (i.e., driving speed profiles) associated, respectively, with the
outward trip (ot) and the return trip (rt) in the case of Energy Saving Strategy (ESS) at generic time
interval τ.

The upper level (i.e., Equation (15)) consists in determining the optimal value of αTLT which
minimizes the objective function Z(·), having fixed the headway (H), the number of rail convoys (NC)
and having determined the corresponding speed limits (v̂lim

ot and v̂lim
rt ) by means of the lower level

problem (i.e., Equations (24) and (25)).
The objective function Z(·), as shown in Equation (19), is equal to the sum of monetary values of

consumed energy (TECESS) and times spent by passengers during their trips (TUGCESS). In particular,
the consumed energy TECESS may be calculated by integrating the power function (i.e., the product
between the tractive effort and the instantaneous speeds ṽESS

ot (·) and ṽESS
rt (·)) by means of Equations

(20)–(22). Likewise, the user generalized cost TUGCESS may be calculated as the sum of on-board times
(obtESS

lot (·) and obtESS
lrt (·)) and waiting times (wtsot and wtsrt) spent by each passenger, appropriately

multiplied by the corresponding perception weight (i.e., βVOBT and βVOWT).
Constraints (16)–(18) reiterate the considerations highlighted by Equations (12)–(14) concerning

feasibility sets of parameters.
The lower level (i.e., Equations (24) and (25)) consists in determining, for any fixed αTLT value,

the maximum values of speed limits (v̂lim
ot and v̂lim

rt ) which maximize the use of layover times (ltTO
ot and
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ltTO
rt ). Indeed, constraints (26) and (27) impose driving speed profiles (vESS

ot and vESS
rt ) which respect the

speed limits (vlim
ot and vlim

rt ). Likewise, constraints (28) and (29) allow an increase of the Total Running
Times in the case of Energy Saving Strategy (TRTESS

ot and TRTESS
rt ), with respect to the corresponding

values in the case of Time Optimal scenario (TRTTO
ot and TRTTO

rt ), at most equal to the layover times
(ltTO

ot and ltTO
rt ).

Finally, parameters βVOBT and βVOWT express the monetary value that passengers attribute to
time spent during their trip respectively in the case of on-board and waiting conditions. These terms
have to be calibrated by means of proper surveys, whose details can be found in [27,72,73].

3.2. Theoretical Properties of the Optimization Problem

In order to verify the feasibility of the proposed optimization problem, it is necessary to state
the existence and the uniqueness of the optimal solution by investigating theoretical properties of the
upper and lower level problems.

Theorem 1. The upper level has at least one solution if equations described in Section 3 are satisfied.

Proof. Optimization problem (15) has at least one solution if:

• Objective function Z(·) is defined in a non-empty and compact (i.e., closed and limited) set;
• Objective function Z(·) is continuous in its definition set, that is:

lim
x→x+o

Z(x) = lim
x→x−o

Z(x) = Z(x0) ∀ x0 ∈ SZ (30)

where SZ is the definition set of Z(·).

In the case of problem (15), once fixed the headway (H), the number of rail convoys (NC)
and having determined the corresponding speed limits (v̂lim

ot and v̂lim
rt ) by means of the lower level

problem (i.e., Equations (24) and (25)), objective function Z(·) depends only on parameter αTLT whose
definition set is expressed by constraint (16). Hence, the definition set satisfies the non-emptiness and
compactness conditions. Moreover, since function Z(·) may be expressed as a compound function of
continuous functions, the objective function is continuous.

Since both conditions on objective function Z(·) are satisfied, the upper level has at least one
solution (existence property). �

Theorem 2. The upper level has at most one solution if equations described in Section 3 are satisfied.

Proof. Optimization problem (15) has at most one solution if objective function Z(·) is convex and
defined on a convex set.

As shown in the proof of Theorem 1, function Z(·) is defined on a non-empty and compact set
and, therefore, it is defined on a convex set.

In order to show the convexity of function Z(·), it is necessary to consider that a variation in
αTLT affects:

• obtESS
lot (·) according to a non-decreasing function (since an increase in αTLT provides an increase

in corresponding layover time ltTO
ot which may imply an increase in running times);

• obtESS
lrt (·) according to a non-increasing function (since an increase in αTLT provides a decrease in

corresponding layover time ltTO
rt which may imply a decrease in running times);

• ECESS
ot (·) according to a strictly decreasing function (since an increase in αTLT provides an increase

in corresponding layover time ltTO
ot which allows a reduction in energy consumption);

• ECESS
rt (·) according to a strictly increasing function (since an increase in αTLT provides a decrease

in corresponding layover time ltTO
rt which limits reductions in energy consumption).
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By contrast, wtsot(·) and wtsrt(·) do not depend on parameter αTLT .
By summing the energy consumption in the outward trip and the user generalized cost in the

return trip, we obtain a strictly increasing function with respect to αTLT . Likewise, by adding the
energy consumption in the return trip and the user generalized cost in the outward trip, we obtain
a strictly decreasing function with respect to αTLT . Considering that the sum of a strictly increasing
function with a strictly decreasing function provides a convex function, it can be stated that Z(·) is a
convex function since it is expressed as the sum of energy consumptions and user generalized costs of
both directions.

Since both conditions on convexity are satisfied (i.e., conditions on definition set and objective
function), the upper level has at most one solution (uniqueness property). �

Corollary 1. The solution of the upper level exists and is unique if equations described in Section 3 are satisfied.

Proof. The corollary may be stated by combining Theorems 1 and 2. Indeed, according to Theorem 1,
the number of solutions has to be not lower than 1. Likewise, according to Theorem 2, the number of
solutions has to be not higher than 1. Hence, the number of solutions has to be 1. �

Theorem 3. The lower level has at least one solution if equations described in Section 3 are satisfied.

Proof. Optimization problems (24) and (25) have at least one solution if:

• Objective functions TRTESS
ot (·) and TRTESS

rt (·) are defined in nonempty and compact (i.e., closed
and limited) sets;

• Objective functions TRTESS
ot (·) and TRTESS

rt (·) are continuous in their definition sets, that is:

lim
x→x+o

TRTESS
ot (x) = lim

x→x−o
TRTESS

ot (x) = TRTESS
ot (x0) ∀ x0 ∈ Sot (31)

lim
y→y+o

TRTESS
rt (y) = lim

y→y−o
TRTESS

rt (y) = TRTESS
rt (y0) ∀ y0 ∈ Srt (32)

where Sot and Srt are the definition sets, respectively, of TRTESS
ot (·) and TRTESS

rt (·).

In the case of problems (24) and (25), once fixed parameter αTLT , objective functions TRTESS
ot (·)

and TRTESS
rt (·) depend only on speed limits vlim

ot and vlim
rt . Theoretically, according to feasibility sets in

Equations (24) and (25), speed limits have to be non-negative real values, that is:[
vlim

ot , vlim
rt

]
∈ ] 0 , +∞ [× ] 0 , +∞ [

and, therefore, are defined in a non-closed and non-limited set (i.e., non-compact). However, our
analyses produce the same results whether we consider these speeds as defined in the following
restricted set: [

vlim
ot , vlim

rt

]
∈
[
vmin

ot , vmax
ot

]
×
[
vmin

rt , vmax
rt

]
(33)

where vmax
ot and vmax

rt are the maximum travel speeds reached by a rail convoy in the Time Optimal
scenario (i.e., the maximum performance scenario) associated, respectively, with the outward trip
(ot) and the return trip (rt); vmin

ot and vmin
rt are non-null conventional minimum speeds for which the

rail service make sense (for instance, the pedestrian speed equal to 4 km/h) associated, respectively,
with the outward trip (ot) and the return trip (rt). Hence, according to Equation (33), speed limits
are defined in non-empty compact (i.e., closed and limited) sets by satisfying the non-emptiness and
compactness conditions. Moreover, functions TRTESS

ot (·) and TRTESS
rt (·) are expressed as compound

functions of continuous functions and, therefore, are continuous.
Since both conditions on objective functions TRTESS

ot (·) and TRTESS
rt (·) are satisfied, the lower

level has at least one solution (existence property). �
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Theorem 4. The lower level has at most one solution if equations described in Section 3 are satisfied.

Proof. Optimization problems (24) and (25) have at most one solution if objective functions TRTESS
ot (·)

and TRTESS
rt (·) are strictly monotonous and defined on convex sets.

As shown in the proof of Theorem 3, functions TRTESS
ot (·) and TRTESS

rt (·) are defined on
non-empty and compact sets and, therefore, they are defined on convex sets.

In order to show the strict monotonicity of objective functions, it is necessary to consider that,
once fixed parameter αTLT , Total Running Times (i.e., TRTESS

ot (·) and TRTESS
rt (·)) are equal to the sum

of running times of the single links which are non-increasing functions with respect to speed limits,
that is:(

rtESS
lot

(
vlim1

ot

)
− rtESS

lot

(
vlim2

ot

))
·
(

vlim1
ot − vlim2

ot

)
≤ 0 ∀ lot ∀ vlim1

ot 6= vlim2
ot ∈

[
vmin

ot , vmax
ot

]
(34)

(
rtESS

lrt

(
vlim1

rt

)
− rtESS

lrt

(
vlim2

rt

))
·
(

vlim1
rt − vlim2

rt

)
≤ 0 ∀ lrt ∀ vlim1

rt 6= vlim2
rt ∈

[
vmin

rt , vmax
rt

]
(35)

where vlim1
ot and vlim2

ot are two generic values assumed by vlim
ot ; vlim1

rt and vlim2
rt are two generic values

assumed by vlim
rt .

If there is a link where vlim1
ot and vlim2

ot (or, equivalently, vlim1
rt and vlim2

rt ) are both higher than
the maximum speed reached by the rail convoy in the Time Optimal condition, Equation (34)
(or, equivalently, Equation (35)) has to be considered as equal to zero. Likewise, if there is a link
where at least one of two speeds is lower than the maximum speed of the train in the Time Optimal
condition, relation (34) (or, equivalently, relation (35)) has to be considered as a strict inequality.

Hence, since there is at least a link for any direction where Equations (34) and (35) are strictly
decreasing (as, for instance, the links where trains reach the maximum travel speed in the Time Optimal
condition), TRTESS

ot (·) and TRTESS
rt (·) may be expressed as strictly decreasing functions, that is:(

TRTESS
ot

(
vlim1

ot

)
− TRTESS

lot

(
vlim2

ot

))
·
(

vlim1
ot − vlim2

ot

)
< 0 ∀ vlim1

ot 6= vlim2
ot ∈

[
vmin

ot , vmax
ot

]
(36)

(
TRTESS

rt

(
vlim1

rt

)
− TRTESS

rt

(
vlim2

rt

))
·
(

vlim1
rt − vlim2

rt

)
< 0 ∀ vlim1

rt 6= vlim2
rt ∈

[
vmin

rt , vmax
rt

]
(37)

Hence, since both the condition on the definition set convexity and the condition of objective
function monotonicity are satisfied, the lower level has at most one solution (uniqueness property). �

Corollary 2. The solution of the lower level exists and is unique if equations described in Section 3 are satisfied.

Proof. The corollary may be stated by combining Theorems 3 and 4. Indeed, according to Theorem 3,
the number of solutions has to be not lower than 1. Likewise, according to Theorem 4, the number of
solutions has to be not higher than 1. Hence, the number of solutions has to be 1. �

3.3. Solution Algorithm Development

The definition of the theoretical properties (i.e., existence and uniqueness) of the proposed
optimization problem is a necessary condition for developing and implementing a solution algorithm.
Obviously, an algorithm has to be convergent in order to be useful and applicable.

In this context, we propose a convergent solution algorithm based on a bilevel framework. Indeed,
our proposal consists in:

• A master algorithm for solving the upper level;
• A slave algorithm for solving the lower level.

In particular, at any iteration of the master algorithm, it is necessary to implement the slave
algorithm (i.e., solving the lower level) in order to provide speed limits (i.e., v̂lim

ot and v̂lim
rt ) as to
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calculate the corresponding value of objective function. Hence, since the slave algorithm may be
considered as a subroutine of the master algorithm, the whole procedure terminates when stopping
test of the master algorithm is satisfied.

However, the implementation of the master algorithm requires the estimation of travel demand
and the solution of the slave algorithm has to be supported by a simulation model of the rail convoy
movements. Hence, it is possible to identify two algorithm frameworks:

• Approach 1 (see Figure 2), where running times and energy consumptions are calculated by a
train movement simulator at any iteration of the slave algorithm;

• Approach 2 (see Figure 3), where all feasible speed profiles are preliminary calculated by a train
movement simulator and all results in terms of running times and energy consumption are
collected in a performance matrix. In this case, the slave algorithm queries the performance matrix
without the need of implementing again the train movement simulator.

The adoption of the second approach could increase calculation times in the initial phases of the
algorithm (in order to define the performance matrix) but may reduce computing times of the slave
algorithm since it does not longer need the train movement simulator.Energies 2018, 11, x FOR PEER REVIEW  13 of 27 
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3.3.1. The Proposed Master Algorithm

Since, as shown in Section 3.2, the upper level seeks for the minimum value of a strictly convex
function defined on a non-empty and compact set, it is possible to apply a traditional bisection
algorithm, which has been customized to our context as follows:
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• Phase 1: Definition of the initial analysis set;
• Phase 2: Partition of the analysis set;
• Phase 3: Objective function calculation;
• Phase 4: Identification of the optimal solution;
• Phase 5: Stop test or definition of a new analysis set.

In the first phase, the initial analysis set is fixed according to constraint (16). The partition of the
analysis set (phase 2) is obtained by dividing the analysis set in n values, where n is a positive integer
number (i.e., n ∈ Z+) greater than 1. Hence, we obtain n values of αTLT as follows:

αk
TLT(i) =

αk
max − αk

min
(n− 1)

· (i− 1) + αk
min with i ∈ [1 , n] ∩ Z+

where αk
TLT(i) is the i-th value of parameter αTLT at the k-th iteration; αk

min and αk
min are the endpoint

of the analysis set defined at k-th iteration.
Phase 3 consists in calculating, for any αk

TLT(i), the corresponding objective function value.
Obviously, it is necessary preliminary to implement the slave algorithm in order to obtain the
corresponding speed limits (i.e., v̂lim

ot and v̂lim
rt ). Then in phase 4, it is identified the αk

TLT(i) which
correspond to the minimum objective function value.

The last phase compares the optimal value of the objective function at iteration k with the one
obtained in the previous iteration. Obviously, in the case of the first iteration, the comparison cannot be
performed, and a new analysis set is generated. However, the comparison verifies if the improvement
in objective function is lower than a prefixed threshold, that is:

Zk−1
opt − Zk

opt

Zk−1
opt

< ε (38)

where Zk
opt is the optimal value of the objective function at k-th iteration; ε is the prefixed threshold.

If the termination test (38) is verified, the algorithm is stopped; otherwise, a new analysis test is
generated, and the algorithm returns to phase 2. The new analysis set is generated as follows:

αk+1
min =

{
αk

TLT
(
î
)

if î = 1
αk

TLT
(
î− 1

)
if î > 1

(39)

αk+1
max =

{
αk

TLT
(
î + 1

)
if î < n

αk
TLT
(
î
)

if î = n
(40)

where î is the value of i corresponding to the optimal value of the objective function.

3.3.2. The Proposed Slave Algorithm

Since, as shown in Section 3.2, the lower level seeks for the maximum value of a strictly decreasing
function defined on a non-empty and compact set, it is possible to apply a traditional ascendant
algorithm, which has been customized to our context as follows:

• Phase 1: Definition of the initial value of the speed limits;
• Phase 2: Calculation of the subsequent Total Running Times;
• Phase 3: Stop test or definition of new speed limits.

Obviously, since running times, as well as speed limits, of the outward trip are independent of
the corresponding value of the return trip, the slave algorithm has to be implemented twice: the first
time for the outward trip and the second time for the return trip.
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In the first phase, the speed limits are fixed equal to the maximum travel speeds reached by rail
convoys in the Time Optimal scenario (i.e., vmax

ot and vmax
rt ).

Phase 2 consists in calculating the subsequent Total Running Times (i.e., TRTESS
ot and TRTESS

rt ),
which in the case of the first iteration correspond to the Time Optimal scenario values (i.e., TRTTO

ot
and TRTTO

rt ).
The stopping test is based on the verification of constraints (28) and (29). In particular, if these

constraints are verified, new speed limits are generated, and the algorithm returns to Step 2. Otherwise,
the algorithm terminates, and the final solutions are the speed limits of the previous iteration, that is:

v̂lim
ot = vmax,h−1

ot

v̂lim
rt = vmax,h−1

rt

where vmax,h
ot and vmax,h

rt are the speed limits at h-th iteration associated, respectively, with the outward
trip (ot) and the return trip (rt).

Obviously, since the initial solution (i.e., the solution based on vmax
ot and vmax

rt ) always verifies
constraints (28) and (29), the algorithm provides always a valid solution.

Moreover, since speed limits in the real world have to be positive integer numbers, the new values
of speed limits may be generated by a simple descendent algorithm as follows:

vmax,h+1
ot = vmax,h

ot − 1 with vmax,1
ot = vmax

ot (41)

vmax,h+1
rt = vmax,h

rt − 1 with vmax,1
rt = vmax

rt (42)

Finally, if the speed limit reaches the minimum value of allowed speed, that is:

vmax,h
ot = vmin

ot

vmax,h
rt = vmin

rt

the descendent algorithm terminates without generating a new solution according to Equations (41)
and (42). Therefore, although constraints (28) and (29) are still verified, the slave algorithm terminates
by adopting the following solutions:

v̂lim
ot = vmin

ot

v̂lim
rt = vmin

rt

4. Application to a Real Network

In order to show the utility and the feasibility of the proposed methodology, we applied it to the
regional ‘Naples–Sorrento’ rail line serving the metropolitan area of Naples in Italy (see Figure 4).

In particular, although the line has a 17-km single-track section between Moregine and Sorrento
(i.e., almost 41% of the line), we assumed the whole line as a double-track line since the doubling
has been planned. Moreover, although the terminus in Naples (Napoli Porta Nolana) has 12 tracks,
we assumed that only one track is used for the regular service, while the others are adopted as recovery
or maintenance tracks. Similarly, the terminus in Sorrento, equipped with 6 tracks, was assumed
with only one track adopted for regular service. General details of the line are described in Table 1 in
the case of three different confidence levels (i.e., 90th, 95th and 97.5th percentiles) for the buffer time
(and therefore cycle time) definition.

Under the above assumptions, the application consisted in identifying some operational schemes
and related maximum reductions in energy consumptions, for each one of the three considered
confidence levels.
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Table 1. Main operational parameters of the regional ‘Naples-Sorrento’ rail line.

Values

Naples-Sorrento Direction Sorrento-Naples Direction

Total Running Times 3262 s
[54.4 min]

3220 s
[53.7 min]

Total Dwell Times 1080 s
[18.0 min]

1080 s
[18.0 min]

Inversion times 180 s
[3.0 min]

180 s
[3.0 min]

Buffer times
[90th percentile]

225 s
[3.8 min]

228 s
[3.8 min]

Planned Cycle Time
[90th percentile]

9455 s
[157.6 min]

Buffer times
[95th percentile]

252 s
[4.2 min]

253 s
[4.2 min]

Planned Cycle Time
[95th percentile]

9507 s
[158.5 min]

Buffer times
[97.5th percentile]

275 s
[4.6 min]

275 s
[4.6 min]
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Table 1. Cont.

Values

Naples-Sorrento Direction Sorrento-Naples Direction

Planned Cycle Time
[97.5th percentile]

9552 s
[159.2 min]

Minimum headways 374 s
[6.2 min]

359 s
[6.0 min]

Travel distance 42.6 km 42.6 km

Energy consumption in Time
Optimal (TO) condition 621.2 kWh 564.2 kWh

Preliminarily, according to Equation (14), it was necessary to identify feasible operational
configurations since the allocation between the outward and return trips may affect the minimum
feasible headway of the line. Hence, in Tables 2–4, for each headway higher than the minimum
infrastructural headway identified in Table 1 (i.e., 6.2 min), we set a certain number of convoys (feasible
with limits expressed by Equation (13)) and calculated the TLTTO term together with thresholds of
αTLT parameter (expressed by Equation (12)). In particular, by solving the following optimization
problem, that is:

αopt = arg min
αTLT

Hmin(αTLT) (43)

subject to:

αTLT ∈
[

max
{

0 ; 1 − H − btrt

TLTTO

}
; min

{
H − btot

TLTTO ; 1
}]

we are able to determine the value of αTLT parameter providing the minimum service headway which
has to be compared with the assumed headway. Indeed, whether the identified minimum headway is
not greater than the initial value (i.e., assumed headway), the configuration is feasible; otherwise, the
assumed configuration is unfeasible since it is based on a headway lower than its minimum. For the
sake of clarity, it is worth further making clear that αopt, in Equation (43), is the value of αTLT which
provides the minimum service headway, thus allowing the identification of feasible configurations
complying with Equation (14). However, this is only a preliminary verification step; while, the actual
bilevel optimization process is aimed at identifying α̂TLT , i.e., the value of αTLT minimizing the objective
function Z(·) (see Equation (15)).

In Tables 2–4, feasible configurations are shown in black, while unfeasible configurations are
reported in red. Moreover, parameters NCmin and NCmax represent, respectively, the lower and the
upper bound of parameter NC expressed by Equation (13). Likewise, parameters αmin and αmax

represent, respectively, the lower and the upper bound of parameter αTLT expressed by Equation (12).
However, for any confidence level, we have found 11 feasible solutions.

Finally, for each feasible configuration identified in the previous step, we solved the bilevel
optimization problem (15), by determining parameter α̂TLT , i.e., the value of αTLT which minimizes
objective function Z(·). Clearly, the procedure is carried out for any of the considered confidence
levels. The travel demand was estimated by means of traditional approaches proposed in the literature
(details on the travel demand estimation in the case of the analyzed line may be found in [74,75].
Likewise, we adopted the commercial software OPENTRACK [76] as train movement simulator.

In Tables 5–7 are shown application results, where ∆OTot and ∆OTrt represent variations in
passenger on-board time associated, respectively, with the outward trip (ot) and the return trip (rt);
∆ECot and ∆ECrt represent variations in energy consumption associated, respectively, with the outward
trip (ot) and the return trip (rt); ∆ECdaily represents the daily variation in energy consumption.
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Table 2. Operational schemes in the case of 90th percentile (black = feasible configurations; red =
unfeasible configurations).

H [min] NCmin NCmax NC TLTTO [min] αmin αmax αopt Hmin(·) [min] Feasibility

6.5 25 25 25 4.92 45.1% 55.9% 48.0% 12.34 NO
7.0 23 23 23 3.42 6.3% 95.1% 47.1% 11.59 NO
7.5 22 22 22 7.42 50.1% 50.6% 48.7% 13.59 NO
8.0 20 20 20 2.42 0.0% 100.0% 45.9% 11.09 NO
8.5 19 19 19 3.92 0.0% 100.0% 47.4% 11.84 NO
9.0 18 18 18 4.42 0.0% 100.0% 47.7% 12.09 NO
9.5 17 17 17 3.92 0.0% 100.0% 47.4% 11.84 NO

10.0 16 17 16 2.42 0.0% 100.0% 45.9% 11.09 NO
10.0 16 17 17 12.42 50.1% 50.3% 49.2% 16.09 NO
10.5 16 16 16 10.42 35.7% 64.8% 49.0% 15.09 NO
11.0 15 15 15 7.42 2.9% 97.8% 48.7% 13.59 NO
11.5 14 15 14 3.42 0.0% 100.0% 47.1% 11.59 NO
11.5 14 15 15 14.92 48.4% 52.0% 49.3% 17.34 NO
12.0 14 14 14 10.42 21.3% 79.2% 49.0% 15.09 NO
12.5 13 14 13 4.92 0.0% 100.0% 48.0% 12.34 YES
12.5 13 14 14 17.42 50.0% 50.2% 49.4% 18.59 NO
13.0 13 13 13 11.42 19.4% 81.0% 49.1% 15.59 NO
13.5 12 13 12 4.42 0.0% 100.0% 47.7% 12.09 YES
13.5 12 13 13 17.92 45.9% 54.4% 49.4% 18.84 NO
14.0 12 12 12 10.42 2.1% 98.4% 49.0% 15.09 NO
14.5 11 12 11 1.92 0.0% 100.0% 44.8% 10.84 YES
14.5 11 12 12 16.42 34.8% 65.5% 49.4% 18.09 NO
15.0 11 12 11 7.42 0.0% 100.0% 48.7% 13.59 YES
15.0 11 12 12 22.42 50.0% 50.2% 49.6% 21.09 NO
16.0 10 11 10 2.42 0.0% 100.0% 45.9% 11.09 YES
16.0 10 11 11 18.42 33.8% 66.5% 49.5% 19.09 NO
17.0 10 10 10 12.42 0.0% 100.0% 49.2% 16.09 YES
18.0 9 10 9 4.42 0.0% 100.0% 47.7% 12.09 YES
18.0 9 10 10 22.42 36.7% 63.6% 49.6% 21.09 NO
19.0 9 9 9 13.42 0.0% 100.0% 49.3% 16.59 YES
20.0 8 9 8 2.42 0.0% 100.0% 45.9% 11.09 YES
20.0 8 9 9 22.42 27.7% 72.5% 49.6% 21.09 NO
25.0 7 8 7 17.42 0.0% 100.0% 49.4% 18.59 YES
25.0 7 8 8 42.42 50.0% 50.1% 49.8% 31.09 NO
30.0 6 7 6 22.42 0.0% 100.0% 49.6% 21.09 YES
30.0 6 7 7 52.42 50.0% 50.1% 49.8% 36.09 NO

Table 3. Operational schemes in the case of 95th percentile (black = feasible configurations; red =
unfeasible configurations).

H [min] NCmin NCmax NC TLTTO [min] αmin αmax αopt Hmin(·) [min] Feasibility

6.5 25 25 25 4.05 43.6% 56.8% 47.1% 12.34 NO
7.0 23 23 23 2.55 0.0% 100.0% 45.4% 11.59 NO
7.5 22 22 22 6.55 49.9% 50.4% 48.2% 13.59 NO
8.0 20 20 20 1.55 0.0% 100.0% 42.5% 11.09 NO
8.5 19 19 19 3.05 0.0% 100.0% 46.2% 11.84 NO
9.0 18 18 18 3.55 0.0% 100.0% 46.7% 12.09 NO
9.5 17 17 17 3.05 0.0% 100.0% 46.2% 11.84 NO

10.0 16 17 16 1.55 0.0% 100.0% 42.5% 11.09 NO
10.0 16 17 17 11.55 49.9% 50.2% 49.0% 16.09 NO
10.5 16 16 16 9.55 34.2% 66.0% 48.8% 15.09 NO
11.0 15 15 15 6.55 0.0% 100.0% 48.2% 13.59 NO
11.5 14 15 14 2.55 0.0% 100.0% 45.4% 11.59 NO
11.5 14 15 15 14.05 48.2% 52.0% 49.2% 17.34 NO
12.0 14 14 14 9.55 18.5% 81.7% 48.8% 15.09 NO
12.5 13 14 13 4.05 0.0% 100.0% 47.1% 12.34 YES
12.5 13 14 14 16.55 49.9% 50.2% 49.3% 18.59 NO
13.0 13 13 13 10.55 16.7% 83.4% 48.9% 15.59 NO
13.5 12 13 12 3.55 0.0% 100.0% 46.7% 12.09 YES
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Table 3. Cont.

H [min] NCmin NCmax NC TLTTO [min] αmin αmax αopt Hmin(·) [min] Feasibility

13.5 12 13 13 17.05 45.6% 54.5% 49.3% 18.84 NO
14.0 12 12 12 9.55 0.0% 100.0% 48.8% 15.09 NO
14.5 11 12 11 1.05 0.0% 100.0% 38.9% 10.84 YES
14.5 11 12 12 15.55 33.9% 66.2% 49.2% 18.09 NO
15.0 11 12 11 6.55 0.0% 100.0% 48.2% 13.59 YES
15.0 11 12 12 21.55 50.0% 50.1% 49.5% 21.09 NO
16.0 10 11 10 1.55 0.0% 100.0% 42.5% 11.09 YES
16.0 10 11 11 17.55 32.9% 67.2% 49.3% 19.09 NO
17.0 10 10 10 11.55 0.0% 100.0% 49.0% 16.09 YES
18.0 9 10 9 3.55 0.0% 100.0% 46.7% 12.09 YES
18.0 9 10 10 21.55 36.0% 64.0% 49.5% 21.09 NO
19.0 9 9 9 12.55 0.0% 100.0% 49.1% 16.59 YES
20.0 8 9 8 1.55 0.0% 100.0% 42.5% 11.09 YES
20.0 8 9 9 21.55 26.8% 73.3% 49.5% 21.09 NO
25.0 7 8 7 16.55 0.0% 100.0% 49.3% 18.59 YES
25.0 7 8 8 41.55 50.0% 50.1% 49.7% 31.09 NO
30.0 6 7 6 21.55 0.0% 100.0% 49.5% 21.09 YES
30.0 6 7 7 51.55 50.0% 50.0% 49.8% 36.09 NO

Table 4. Operational schemes in the case of 97.5th percentile (black = feasible configurations; red =
unfeasible configurations).

H [min] NCmin NCmax NC TLTTO [min] αmin αmax αopt Hmin(·) [min] Feasibility

6.5 25 25 25 3.30 41.9% 58.1% 46.2% 12.34 NO
7.0 23 23 23 1.80 0.0% 100.0% 43.1% 11.59 NO
7.5 22 22 22 5.80 49.7% 50.3% 47.8% 13.59 NO
8.0 20 20 20 0.80 0.0% 100.0% 34.4% 11.09 NO
8.5 19 19 19 2.30 0.0% 100.0% 44.6% 11.84 NO
9.0 18 18 18 2.80 0.0% 100.0% 45.5% 12.09 NO
9.5 17 17 17 2.30 0.0% 100.0% 44.6% 11.84 NO

10.0 16 17 16 0.80 0.0% 100.0% 34.4% 11.09 NO
10.0 16 17 17 10.80 49.8% 50.2% 48.8% 16.09 NO
10.5 16 16 16 8.80 32.8% 67.2% 48.6% 15.09 NO
11.0 15 15 15 5.80 0.0% 100.0% 47.8% 13.59 NO
11.5 14 15 14 1.80 0.0% 100.0% 43.1% 11.59 NO
11.5 14 15 15 13.30 48.0% 52.0% 49.1% 17.34 NO
12.0 14 14 14 8.80 15.7% 84.3% 48.6% 15.09 NO
12.5 13 14 13 3.30 0.0% 100.0% 46.2% 12.34 YES
12.5 13 14 14 15.80 49.9% 50.1% 49.2% 18.59 NO
13.0 13 13 13 9.80 14.1% 85.9% 48.7% 15.59 NO
13.5 12 13 12 2.80 0.0% 100.0% 45.5% 12.09 YES
13.5 12 13 13 16.30 45.3% 54.7% 49.2% 18.84 NO
14.0 12 12 12 8.80 0.0% 100.0% 48.6% 15.09 NO
14.5 11 12 11 0.30 0.0% 100.0% 8.3% 10.84 YES
14.5 11 12 12 14.80 33.0% 67.0% 49.2% 18.09 NO
15.0 11 12 11 5.80 0.0% 100.0% 47.8% 13.59 YES
15.0 11 12 12 20.80 49.9% 50.1% 49.4% 21.09 NO
16.0 10 11 10 0.80 0.0% 100.0% 34.4% 11.09 YES
16.0 10 11 11 16.80 32.0% 68.0% 49.3% 19.09 NO
17.0 10 10 10 10.80 0.0% 100.0% 48.8% 16.09 YES
18.0 9 10 9 2.80 0.0% 100.0% 45.5% 12.09 YES
18.0 9 10 10 20.80 35.5% 64.5% 49.4% 21.09 NO
19.0 9 9 9 11.80 0.0% 100.0% 48.9% 16.59 YES
20.0 8 9 8 0.80 0.0% 100.0% 34.4% 11.09 YES
20.0 8 9 9 20.80 25.9% 74.1% 49.4% 21.09 NO
25.0 7 8 7 15.80 0.0% 100.0% 49.2% 18.59 YES
25.0 7 8 8 40.80 50.0% 50.0% 49.7% 31.09 NO
30.0 6 7 6 20.80 0.0% 100.0% 49.4% 21.09 YES
30.0 6 7 6 20.80 0.0% 100.0% 49.4% 21.09 YES
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Table 5. Energy saving optimization in the case of 90th percentile.

H
[min] NC α̂TLT

v̂lim
ot

[km/h]
v̂lim

rt
[km/h]

∆OTot
[s]

∆OTrt
[s]

∆ECot
[kWh]

∆ECrt
[kWh]

∆ECdaily
[kWh]

Reduction in Energy
Consumption

12.5 13 49.52% 67 68 129 147 −136.8 −139.8 −21,019 −23.33%
13.5 12 37.04% 70 67 87 163 −110.9 −149.1 −18,315 −21.91%
14.5 11 43.21% 74 76 49 65 −80.6 −80.3 −10,544 −13.58%
15.0 11 58.71% 61 66 241 180 −186.5 −156.2 −21,587 −28.91%
16.0 10 34.57% 74 73 49 90 −80.6 −103.5 −10,943 −15.51%
17.0 10 38.55% 60 55 263 434 −193.0 −242.9 −24,166 −36.72%
18.0 9 37.04% 70 67 87 163 −110.9 −149.1 −13,783 −21.94%
19.0 9 58.30% 54 59 436 320 −237.7 −211.8 −22,478 −37.93%
20.0 8 33.33% 75 73 41 90 −73.5 −103.5 −8,389 −14.89%
25.0 7 55.56% 51 55 542 434 −261.6 −242.9 −19,172 −42.56%
30.0 6 46.96% 50 49 588 668 −265.2 −283.8 −17,285 −46.26%

Table 6. Energy saving optimization in the case of 95th percentile.

H
[min] NC α̂TLT

v̂lim
ot

[km/h]
v̂lim

rt
[km/h]

∆OTot
[s]

∆OTrt
[s]

∆ECot
[kWh]

∆ECrt
[kWh]

∆ECdaily
[kWh]

Reduction in Energy
Consumption

12.5 13 41.43% 70 69 87 134 −110.9 −132.8 −18,523 −20.56%
13.5 12 39.51% 71 70 79 123 −103.8 −124.2 −16,064 −19.22%
14.5 11 54.32% 77 82 29 27 −61.8 −42.9 −6869 −8.84%
15.0 11 61.32% 62 68 218 147 −178.7 −139.8 −20,067 −26.87%
16.0 10 27.85% 79 76 21 65 −48.8 −80.3 −7669 −10.87%
17.0 10 34.57% 62 55 218 434 −178.7 −242.9 −23,369 −35.51%
18.0 9 45.68% 70 71 87 113 −110.9 −118.2 −12,144 −19.33%
19.0 9 66.67% 53 63 473 233 −247.8 −179.8 −21,378 −36.07%
20.0 8 27.85% 79 76 21 65 −48.8 −80.3 −6119 −10.86%
25.0 7 84.22% 46 68 780 147 −296.2 −139.8 −16,567 −36.78%
30.0 6 33.33% 55 46 402 814 −232.5 −304.9 −16,892 −45.20%

Table 7. Energy saving optimization in the case of 97.5th percentile.

H
[min] NC α̂TLT

v̂lim
ot

[km/h]
v̂lim

rt
[km/h]

∆OTot
[sec]

∆OTrt
[sec]

∆ECot
[kWh]

∆ECrt
[kWh]

∆ECdaily
[kWh]

Reduction in Energy
Consumption

12.5 13 50.89% 70 73 87 90 −110.9 −103.5 −16,294 −18.09%
13.5 12 37.04% 73 72 59 100 −87.8 −108.2 −13,809 −16.52%
14.5 11 100% 80 90 18 0 −41.0 0.0 −2708 −3.49%
15.0 11 67.90% 62 72 218 100 −178.7 −108.2 −18,077 −24.21%
16.0 10 6.17% 88 79 2 43 −5.2 −61.3 −3932 −5.57%
17.0 10 41.98% 60 58 263 350 −193.0 −222.0 −23,018 −34.97%
18.0 9 60.08% 70 76 87 65 −110.9 −80.3 −10,136 −16.13%
19.0 9 48.42% 58 58 315 350 −211.2 −222.0 −21,661 −36.55%
20.0 8 6.17% 88 79 2 43 −5.2 −61.3 −3133 −5.56%
25.0 7 66.67% 50 60 588 298 −265.2 −204.0 −17,830 −39.58%
30.0 6 43.21% 52 49 507 668 −251.3 −283.8 −16,839 −45.06%

The simulation outcome clearly shows the trade-off phenomenon between the increase in train
running time (resulting in an increase in user on-board time) and the reduction in energy consumption.
Moreover, as can be seen, the reduction in energy consumption decreases with the increase of the
selected percentile. This is due to the fact that higher the confidence level, higher the value of buffer
time and, therefore, lower the value of the total layover time to be exploited for compensating the
increase in running times resulting from the adoption of eco-driving strategies. Indeed, the maximum
reduction occurs in the case of the 90th percentile with a headway of 30 min where decreases in energy
consumption are higher than 46%.

Moreover, algorithm performances are shown in Tables 8–10, where objective function values and
calculation times are indicated for any analyzed scenario. It is worth noting that in terms of calculation
times, the approach 1 requires globally 81.88 h for analyzing all scenarios, while the approach 2,
which needs 15.25 min for the definition of the performance matrix, requires 18.75 min providing a
reduction in computing times equal to 99.62%.
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Table 8. Solution algorithm performance in the case of 90th percentile.

H
[min] NC α̂TLT

TECESS

[€/Daily]
TUGCESS

[€/Daily]
Z(·)

[€/Daily]

Master
Algorithm
Iterations

Slave Algorithm
Iterations

Approach 1
Computing
Times [h]

Approach 2
Computing

Times [s]

12.5 13 49.52% 13,814 150,511 164,325 31 1473 2.70 13.71
13.5 12 37.04% 13,056 154,000 167,056 21 938 1.72 8.00
14.5 11 43.21% 13,425 156,664 170,089 31 995 1.77 8.99
15.0 11 58.71% 10,618 161,367 171,985 31 1724 3.21 8.04
16.0 10 34.57% 11,923 162,469 174,392 21 358 1.30 5.33
17.0 10 38.55% 8330 171,736 180,066 31 1074 3.98 6.44
18.0 9 37.04% 9808 171,797 181,606 21 479 1.72 4.57
19.0 9 58.30% 7358 180,661 188,019 31 2131 4.08 5.62
20.0 8 33.33% 9589 177,513 187,102 21 727 1.30 3.82
25.0 7 55.56% 5174 206,508 211,683 21 1563 3.03 2.89
30.0 6 46.96% 4016 227,726 231,743 41 3430 6.72 3.60

Table 9. Solution algorithm performance in the case of 95th percentile.

H
[min] NC α̂TLT

TECESS

[€/Daily]
TUGCESS

[€/Daily]
Z(·)

[€/Daily]

Master
Algorithm
Iterations

Slave Algorithm
Iterations

Approach 1
Computing
Times [h]

Approach 2
Computing

Times [s]

12.5 13 41.43% 14,313 149,897 164,210 41 1817 3.31 15.49
13.5 12 39.51% 13,507 153,461 166,968 21 859 1.56 7.60
14.5 11 54.32% 14,160 156,033 170,194 21 507 0.89 6.77
15.0 11 61.32% 10,922 160,751 171,673 31 1627 3.02 8.93
16.0 10 27.85% 12,578 161,868 174,446 31 877 1.55 8.02
17.0 10 34.57% 8490 171,232 179,722 21 1347 2.56 5.26
18.0 9 45.68% 10,136 171,217 181,353 21 861 1.56 4.79
19.0 9 66.67% 7578 180,084 187,663 21 1383 2.64 4.34
20.0 8 27.85% 10,043 176,984 187,027 31 877 1.55 5.24
25.0 7 84.22% 5696 205,669 211,365 31 2197 4.24 3.84
30.0 6 33.33% 4095 227,409 231,504 21 1676 3.28 2.32

Table 10. Solution algorithm performance in the case of 97.5th percentile.

H
[min] NC α̂TLT

TECESS

[€/Daily]
TUGCESS

[€/Daily]
Z(·)

[€/Daily]

Master
Algorithm
Iterations

Slave Algorithm
Iterations

Approach 1
Computing
Times [h]

Approach 2
Computing

Times [s]

12.5 13 50.89% 14,759 149,409 164,168 31 1251 2.26 11.81
13.5 12 37.04% 13,958 152,995 166,953 21 778 1.40 7.54
14.5 11 100% 14,992 155,634 170,626 21 277 0.48 6.33
15.0 11 67.90% 11,320 160,227 171,547 21 1028 1.90 6.25
16.0 10 6.17% 13,325 161,469 174,795 31 562 0.98 7.30
17.0 10 41.98% 8560 170,801 179,361 21 1315 2.49 4.89
18.0 9 60.08% 10,538 170,657 181,195 31 1155 2.08 5.92
19.0 9 48.42% 7522 179,699 187,221 31 2051 3.90 5.38
20.0 8 6.17% 10,640 176,585 187,225 31 562 0.98 5.03
25.0 7 66.67% 5443 205,414 210,857 21 1503 2.90 2.87
30.0 6 43.21% 4106 226,873 230,979 31 2509 4.90 2.89

Finally, Figure 5 shows the objective function trend during the master algorithm in the first
scenario of 95th percentile (i.e., H = 12.5 min and NC = 13 rail convoys).
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5. Conclusions and Research Prospects

Given the key role of energy-saving policies within rail transport management, the proposed
approach aims to provide a decision support tool for handling the implementation of eco-driving
profiles. The challenge is to reduce energy consumption without prejudicing service stability and by
preserving passengers’ satisfaction.

For this purpose, a bilevel analytical framework has been developed which allows to properly
estimate all the involved operational factors and the correlations existing among them. Moreover, the
allocation of reserve times has been optimized, with the aim of compensating for the increase in train
running time generated by such energy-saving measures, and the trade-off between reductions in
energy consumption and increases in passenger generalized cost has been investigated.

The presented methodology enables a very realistic assessment of the system, however, as research
prospect, we propose to estimate dwell times as flow-dependent factors, rather than as fixed values,
so as to derive them with a high degree of accuracy. This could result very useful in an energy-saving
perspective; indeed, also eventual time rates exceeding the minimum dwell time required for the
boarding/alighting process may be exploited for supporting the implementation of energy-saving
strategies preserving service stability.

Moreover, the proposed approach consists in identifying the compromise between energy
reductions and travel time increases among solutions which maximize the layover time use
(i.e., maximise energy reduction). Hence, as research prospect, we propose to investigate the possibility
of developing a different multidimensional optimization problem without the constraint of layover
time use maximization. Indeed, greater the freedom degree of the objective function, lower the
minimum value achievable.

In order to validate the described methodology, we propose to apply the bilevel optimization
problem in the case of a railway network more complex than an isolated railway line. Finally, we
suggest investigating effects in terms of solution goodness and/or compromise achievements (between
energy reductions and travel time increases) in the case of integration of the slave algorithm with a
procedure for determining optimal speed profiles with coasting strategy adoption.
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