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Abstract: The accurate estimation of pressure drop during multiphase fluid flow in vertical pipes
has been widely recognized as a critical problem in oil wells completion design. The flow of fluids
through the vertical tubing strings causes great losses of energy through friction, where the value
of this loss depends on fluid flow viscosity and the size of the conduit. A number of friction factor
correlations, which have acceptably accurate results in large diameter pipes, are significantly in error
when applied to smaller diameter pipes. Normally, the pressure loss occurs due to friction between
the fluid flow and the pipe walls. The estimation of the pressure gradients during the multiphase
flow of fluids is very complex due to the variation of many fluid parameters along the vertical pipe.
Other complications relate to the numerous flow regimes and the variabilities of the fluid interfaces
involved. Accordingly, knowledge about pressure drops and friction factors is required to determine
the fluid flow rate of the oil wells. This paper describes the influences of the pressure drop on the
measurement of the fluid flow by estimating the friction factor using different empirical friction
correlations. Field experimental work was performed at the well site to predict the fluid flow rate
of 48 electrical submersible pump (ESP) oil wells, using the newly developed mathematical model.
Using Darcy and Colebrook friction factor correlations, the results show high average relative errors,
exceeding ±18.0%, in predicted liquid flow rate (oil and water). In gas rate, more than 77% of the
data exceeded ±10.0% relative error to the predicted gas rate. For the Blasius correlation, the results
showed the predicted liquid flow rate was in agreement with measured values, where the average
relative error was less than ±18.0%, and for the gas rate, 68% of the data showed more than ±10%
relative error.

Keywords: pressure loss; pressure drop; friction factor; multiphase flow; flow rate; flow regime

1. Introduction

In the oil and gas industry, multiphase flow in vertical pipes often occurs. The flow of fluids
through the vertical pipe string causes a loss of energy through friction losses, where the value of
this loss depends on the fluid flow viscosity and the size of the conduit. Often, the friction loss is
an important part of the oil well completion design [1]. The pressure drop occurs as a result of the
changes in potential and kinetic energy of the fluid due to the friction on the pipe walls [2]. Generally,
the total pressure drop in the vertical conduit is basically related to four main components: frictional,
hydrostatic, acceleration, and pressure drop. Among these four components, calculation of the pressure
drop is the most complex component and has received extensive attention by researchers [3,4]. Many
researchers have attempted to determine the two-phase frictional pressure drop over the whole range
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of flow patterns through a vertical pipe. A substantial number of experiments have been carried out to
determine fluid flow friction losses in both Newtonian [1,2,5–11] and non-Newtonian systems [5,12].
A large number of experimental works was made in short tubes. Consequently, a lot of engineering
problems come up when efforts are made to extend these experimental results to real oil field conditions
where a longer pipe is used. In those experiments, the data shows only a limited number of variables,
and as a result, imprecisions are introduced when the friction correlations are applied outside the
limitations of the experimental data. As a consequence of the limited amount of data available for
these experiments, the effects of some significant variables were ignored in the early studies [13–17].
The accuracy of the pressure drop prediction in flowing wells has a significant influence on the fluid
flow measurement. There are many particular solutions, but they are valid only for some specific
conditions. This is due to the complexity of two-phase flow analysis. In some conditions, the gas travels
at a much higher velocity than the liquid. Accordingly, the flowing density of the gas–liquid mixture
is higher than the corresponding density. Moreover, the liquid’s velocity inside the pipe wall can be
different over a short distance and can cause a variable friction loss. The difference in velocity and
flow regime of the two phases strongly affect pressure drop computations [13], meaning that slippage
is a consequence of the difference between the combined velocities of the two phases, which is caused
by the physical properties of the fluids involved. For single-phase flow, the frictional pressure losses
do not normally increase with a decrease in the tubing size or an increase in well production flow rate.
This refers to the existence of a gas phase, which tends to slip by the liquid phase without essentially
contributing to its lift. Many researchers have tried to show a relationship between the slippage losses
and the friction losses [15–18]. A method for the estimation of gas–liquid flow rates in the vertical pipe
has been proposed [19]. The method was used to calibrate a differential pressure sensor to predict
the flow rates of both phases in air–water flow. The estimations were in good agreement with real
flow rate measurements. A study by Daev and Kairakbaev [20] proposed a new model of the liquid
flow through pipes that incorporated flow straighteners. The prediction of the flow rate of liquid was
studied and the parameters affecting the process of measuring the flow rate of liquid were considered.
An experimental study of the two-phase flow regime and frictional pressure drop inside the pipe was
done by Cai et al. [21]. The flow patterns were defined and recorded by a high-speed camera. A new
empirical correlation was proposed based on the experimental results to predict the liquid multiplier
factor of the test channel. A two-phase flow measurement applying a resistive void fraction meter
combined to a venturi, or orifice plate, was suggested by Oliveira et al. [22]. This method was applied
to determine the fluid mass flow rates using an air–water experimental apparatus. The results showed
that the flow path has no important effect on the meters in relation to the frictional pressure drop in
the experimental process range. The outcomes of the experimental work displayed a mean slip ratio of
less than 1.1, when slug and bubbly flow patterns were lower than 70%.

This research work aims to evaluate the influence of a pressure drop on the measurement of the
fluid flow rate in ESP oil wells. A new mathematical model was developed to determine the fluid
flow rate of the oil wells through the prediction of multiphase flow parameter variations inside a
vertical pipe based on local temperature and pressure changes with depth and applying multiphase
flow physics equations and empirical correlations. The objective of this study was to obtain data from
well tests conducted in a long vertical pipe and utilize this data to evaluate the effects of slippage
and friction factor, in different flow regimes, on the calculation accuracies of the fluid flow rate of the
oil wells. The approach measured the liquid hold-up along the conduit and used different friction
correlations such as Blasius, Darcy, and Colebrook friction factor correlations to compare the predicted
fluid flow rate with the measured fluid flow rate for each oil well. Generally, the results show that any
errors in pressure drop calculation will generate inaccuracies in the prediction of fluid flow rate.



Energies 2018, 11, 2937 3 of 23

2. Experimental Arrangements and Measurement Procedure

The experiments conducted in the present study were carried out for two-phase flow through a
vertical pipe of 48 oil wells using ESP pumps. A schematic of the experimental system is shown in
Figure 1. The flow measurement starts at the surface wellhead, and then down to the bubble point
pressure location depth in the well. Wellhead flowing pressure was measured at normal production
conditions before and after the wing valve shut-in, leaving the ESP pump running, to measure the
build-up of pressure at the wellhead. The total shut-in time period of the wellhead valve was then
recorded. The first free gas bubbles started liberating from the bubble point location depth inside the
tubing string. This occurred in the production flowing well before and after the wellhead wing valve
shut-in, and the changes of flow patterns inside the pipe were reallocated once again, due to variations
of temperature and pressure along the conduit. As a consequence, the liberated gas was dissolved in
the oil phase, and the location depth of the bubble point pressure relocated to another position after
the wellhead wing valve shut-in. The column of liquid that replaced the liberated gas column space,
during the shut-in time period, was the difference between the first and second bubble point location
depths. Figure 2 shows the bubble point location depths before and after the wellhead wing valve
shut-in. A conceptual basis of physics for prediction of fluid flow rate in the conduit was employed
along with multiphase empirical correlations to compute the variations of fluid flow parameters inside
the tubing.
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Figure 1. Schematic of the flow measurement stages in a vertical pipe before and after the well head
wing valve shut-in.

Several assumptions were made to conduct the calculations such as: assumed one-dimensional
flow in the conduit, assumed uniform cross-sectional area of the pipe, the phase’s properties varied
with depth, the frictional factor varied along the conduit, and the effect of the liquid compressibility
was neglected.
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Figure 2. Bubble point location depths before and after closing the well head wing valve.

2.1. Required Input Data

The input data required were the well parameters data and physical properties data of the fluid,
as seen in Table 1. To carry out this study, 48 ESP oil wells were selected where the wells were
producing from four different reservoirs using same production pipe diameter. Also, these reservoirs
had almost the same reservoir fluid properties: the bubble point pressure ranged from 924 psi to
1124 psi, the American Petroleum Institute (API) oil gravity ranged from 36 to 37 @ 60 ◦F, the oil
viscosity ranged from 0.784 cP to 1.0119 cP, and the reservoir temperature ranged from 157 ◦F to 186 ◦F.
Furthermore, Figure 3 classifies the input data required.

Table 1. Well and physical properties of the fluid.

Well Name
WHPb WHPa WHT GOR WC Total Shut-in Time

(PSIA) (PSIA) (F) (SCE/STB) (%) (min)

A33 140 200 98 360.92 93 1.55
A125 100 200 95 360.92 91.62 0.83
A64 180 250 107 360.92 81.52 1.06
A29 250 270 107 360.92 84.88 0.80
A23 210 260 127.7 360.92 82.11 0.24

A135 210 250 100 360.92 59.88 0.56
A126 250 300 98 360.92 66.91 0.20
A12 175 270 107 360.92 82.9 0.84

A108 260 300 97 360.92 81.31 0.28
5J5 150 300 95 360.92 4 3.36
5J2 100 170 101 360.92 52 1.39
5J4 250 300 101.6 360.92 58.95 0.27
5J7 250 300 98 360.92 30 0.47
E89 150 190 140 300 79 0.27

E210 80 120 110 300 83 0.33
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Table 1. Cont.

Well Name
WHPb WHPa WHT GOR WC Total Shut-in Time

(PSIA) (PSIA) (F) (SCE/STB) (%) (min)

E211 80 120 129 300 74 0.96
E286 70 100 146 300 90 0.25
E192 80 110 146 300 83 0.24
E327 80 110 115.5 300 77 0.35
E325 70 110 124.6 300 83 0.44
E197 90 110 146.1 300 82 0.11
E208 95 110 146.8 300 81 0.07
E226 80 110 138.4 300 91 0.25
E284 80 120 124.5 300 76 0.33
E258 65 90 142 300 86 0.23
E326 60 100 113 300 82 0.48
E227 100 150 142 300 84 0.36
4E_3 130 300 146 300 87 1.18
B56 120 170 120 384 42 2.3
B70 160 230 120 384 29.9 2.9

B121 100 160 120 364 67.29 0.5
B119 100 160 120 364 76.18 1.1
B50 180 250 110 364 68.65 0.55
B88 100 160 110 364 63.59 2.1
B14 250 270 110 364 76.28 0.15

B151 180 230 110 364 55.78 0.66
B164 100 170 120 364 26.3 2.1
B51 240 310 120 364 59.05 0.44
Q89 100 150 120 364 0 3.7
Q21 80 150 120 364 79.22 2.1
Q53 80 150 120 364 71.41 2.3
Q14 75 130 120 364 74.83 1.4
Q100 80 130 110 364 78.27 0.55
Q12 80 150 110 364 80.33 0.58
Q85 100 150 110 364 18.18 2.5
Q82 100 150 110 364 75.3 0.5
Q78 80 150 120 364 37.27 2.5
Q76 80 150 120 364 80.5 1.3
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2.2. Computational Algorithm

Figure 4 shows the algorithm steps to evaluate the mathematical model. The algorithm classified
all the main stages and sub-steps in the model. In this process, the calculations were performed to
obtain the bubble point pressure location depth before and after the wellhead wing valve shut-in.
The fluid flowing pressure gradient could be calculated anywhere inside the pipe. All the variables
needed to be identified to correctly evaluate the physics interactions between all the fluid parameters
using the suitable multi-physics equations and empirical correlations.
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Figure 4. Flowchart of the new mathematical model algorithm.

The calculation starts at the surface wellhead and then down to the location depth of the bubble
point pressure as a function of temperature and pressure variations with depth. To consider the fact
that flow regimes vary depending on the in situ flow rates of gas/liquid, the model calculates, at each
foot along the vertical pipe, the variations of supercritical velocities, viscosities, and densities for both
phases (liquid and gas). The in situ flow rate can also be calculated by the mathematical model at any
flow regime at any depth. As shown in Figures 5 and 6, the calculation iteration can stop at any depth
(i, ..., i + n) using all the equations (from Equation (1) to Equation (56)), where there is a different flow
regime along the vertical pipe.



Energies 2018, 11, 2937 7 of 23

Energies 2018, 11, x FOR PEER REVIEW  7 of 23 

 

 

Figure 5. Stages of computational methodology. 

 

Figure 6. Flow diagram of new computational method procedure. 

The following are the physics equations and the correlations applied to determine each 
independent variable at every single foot. 

Total pressure losses expressed as ∆ = ∆ + ∆  (1) 

Hydrostatic head is expressed as 

Figure 5. Stages of computational methodology.

Energies 2018, 11, x FOR PEER REVIEW  7 of 23 

 

 

Figure 5. Stages of computational methodology. 

 

Figure 6. Flow diagram of new computational method procedure. 

The following are the physics equations and the correlations applied to determine each 
independent variable at every single foot. 

Total pressure losses expressed as ∆ = ∆ + ∆  (1) 

Hydrostatic head is expressed as 

Figure 6. Flow diagram of new computational method procedure.

The following are the physics equations and the correlations applied to determine each
independent variable at every single foot.

Total pressure losses expressed as

∆PTotal = ∆PHH + ∆PFrictional (1)

Hydrostatic head is expressed as

∆PHH =
ρmg∆Z
144gc

(2)
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Darcy–Weisbach equation [23] was used to calculate the frictional pressure loss

∆P = f
L
D

ρV2

2
(3)

Reynolds number is given by

Re =
2.2× 10−2mt

DµL HL µg(1−HL)
(4)

Three different friction factor correlations were applied to evaluate the impact of the friction on
the computation of the fluid flow rate. The first correlation is the Blasius empirical correlation for
turbulent flow [24].

f = 0.316 (Re)−0.25 (5)

The second friction correlation applied is Darcy correlation [23]

f =
64
Re

(6)

The third friction factor correlation applied is from Colebrook [25]

1
√ f

= 2log10

(
ε/Dh

3.7
+

2.51
Re√ f

)
(7)

for Re <≈ 2300 and Re >≈ 4000.
The gas density is expressed as

ρg =
mg

VR
=

MgP
ZRT

(8)

The density at wellbore condition, is given by

ρg =
ρgs

Bg
(9)

The oil density is expressed as

ρo =
62.428γo + 0.014γgRs

Bo
(10)

where
γo = ρo/ρw (11)

γg =
ρg

ρair
=

ρg

0.077
(12)

ρg = 0.077γg (13)

Liquid density is given by
ρL = ρWWC + ρo(1−WC) (14)

Mixture density is expressed as

ρm = ρL HL + ρg(1− HL) (15)

The gas viscosity is determined by the following equation [26]:

µg = K1exp
(

XρY
)

(16)
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where

ρ =
pMg

zRT
= 0.0015

pMg

zT
(17)

K1 =

(
0.001 + 2× 10−6Mg

)
T1.5(

209 + 19Mg + T
) (18)

X = 3.5 +
986
T

+ 0.01Mg (19)

Y = 2.4− 0.2X (20)

Mixture viscosity is given by
µm = µHL

L + µ
(1−HL)
g (21)

Beggs and Brill equation [27] was applied to estimate the gas compressibility factor (Z)

Z = A +
(1− A)

eB + CPrD (22)

Using Standing and Katz equations [28] to obtain the pseudo critical temperature and pressure of
the gas mixture

Pr = 688.634− 21.983γg − 13.886γ2
g (23)

Tr = 158.01 + 342.12γg − 16.04γ2
g (24)

and
A = 1.39(Tr− 0.92)0.5 − 0.36Tr− 0.101 (25)

B = (0.62− 0.23Tr)Pr +
(

0.066
Tr− 0.86

− 0.037
)

Pr2 +
0.32

109(Tr−1)
Pr2 (26)

C = 0.132− 0.32log(Tr) (27)

D = 10(0.302−0.49Tr+0.182Tr2) (28)

Superficial gas velocity is expressed as

Vsg =
4qgBg

πD2 (29)

Superficial liquid velocity is expressed as

VsL =
4qL

πD2 (30)

The water vapor density using the Sloan correlation [29] is expressed as

W = exp
(

c1 +
c2

T
+ c3ln(p) +

c4

T2 +
c5ln(P)

T
+ c6(ln(P))2

)
(31)

where the values of constants c1 to c6 are shown in Table 2.

Table 2. Constants c1 to c6.

Constants Value

c1 28.911
c2 −9668.146
c3 −1.663
c4 −130,823.5
c5 205.323
c6 0.0385
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The gas formation volume factor is expressed as

Bg =
PscZT
TscP

= 0.028
ZT
P

(32)

Using the Vasquez and Beggs equation [30] to obtain the oil formation volume factor

Bob = 1 + C1Rsb + C2(T − 60)
(

γAPI
γg

)
+ C3Rsb(T − 60)

(
γAPI

γg

)
(33)

and oil gas ratio

Rsb =
γgPbC2

C1
10

( C3γAPI
T + 459.67

)
(34)

where the coefficients C1, C2 and C3 are given by

Coefficient ◦API ≤ 30 ◦API ≥ 30
C1 27.64 56.060
C2 1.0937 1.187
C3 11.172 10.393

To make sure that the obtained liquid and gas hold-up is accurate, some popular correlations,
used by the industry and are included in almost every commercial software package, were considered
to predict the liquid and gas hold-up inside each well. The correlations considered in this study are the
ones developed by Hagedorn and Brown [31], Duns and Ros [32], Orkiszewski [33], and Aziz et al. [34].
The statistical results for the various prediction methods when applied to all 25 well tests are shown in
Figure 7 and Table 3. These results indicate that the Hagedorn and Brown correlation seems to predict
liquid and gas hold-up better than the other correlations selected in this study. However, the overall
results show minor differences between the different correlations. This is because each correlation was
developed based on certain assumption and for a particular range of data.
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Table 3. Statistical results for the various prediction correlations.

Prediction Method
Average Error Standard Deviation

(%) (%)

Duns and Ros −1.06 13.06
Hagedorn and Brown −0.86 11.57

Orkiszewski 1.8 16.52
Aziz et al. 2.9 16.66

Using the Hagedorn-Brown empirical correlation [31] to obtain liquid and gas hold-up (HL and Hg)

NLv = 1.938νsL
4
√

ρ

σ
(35)

Ngv = 1.938νsg
4

√
ρL
σ

(36)

Nd = 120.872D
√

ρL

σ
(37)

NL = 0.157µL
4

√
1

ρLσ3 (38)

Y = −2.699 + 0.158X1 − 0.551X1
2 + 0.548X1

3 − 0.122X1
4 (39)

where
X1 = log(NL + 3) (40)

CNL = 10Y (41)

HL
ψ

= −0.103 + 0.618(logX2 + 6)− 0.633(logX2 + 6)2 + 0.296(logX2 + 6)3 − 0.04(logX2 + 6)4 (42)

where

X2 =
NVLP0.1CNL

NVg0.575Pa0.1ND
(43)

ψ = 0.912− 4.822X3 + 1232.25X2
3 − 22253.6X3

3 + 116174.3X4
3 (44)

where

X3 =
NVgNL

0.38

ND2.14 (45)

The liquid hold-up is

HL = ψ

(
HL
ψ

)
(46)

and
Hg = (1− HL) (47)

The liquid flow rate is expressed as

qL =
∆H·A

t
(48)

the cross section of the conduit is given by

A =
πr2

4
(49)

∆H = H2 − H1 (50)
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as
∆P = ∆H·ρL (51)

then
∆H =

∆P
ρL

(52)

and
∆P = WHPa −WHPb (53)

then
qL = ∆P

A
ρL

t (54)

The flow rates for gas, oil, and water are expressed as

qo = qL(1−WC) (55)

qg = qo Rs (56)

qw = qo WC (57)

3. Results and Discussion

The experiments were run on 48 ESP oil wells from four different reservoirs. For each friction
factor correlation, the measured oil flow rate values for each oil well were compared against the
predicted flow rate values. It should be noted that as the points near the dotted straight line drawn
at 45◦ (i.e., y = x) in the graph, the more accurate the prediction was. The results show that the
pressure drop value was the significant parameter that had the main influence on the fluid flow rate
computation. Indeed, any errors in pressure drop values would lead to high uncertainty errors of
fluid flow rate prediction. For this reason, the properties of independent variables needed to be
considered. Likewise, the interactions between each phase needed to be taken into account along with
mixture properties and in situ volume fractions of oil and gas inside the conduit. Each multiphase
flow correlation found the friction factor differently. Typically, each friction correlation made its own
assumptions and modifications to make them useable to multiphase conditions. The prediction of
frictional pressure drop in two-phase flow was usually complicated due to pressure and temperature
variations along the flow path. When estimating the friction factor, there were a number of methods for
calculating the Reynolds number depending on how much of the two-phase flow mixture was defined.
Therefore, the oil and water were considered as a single liquid phase while the gas was considered as
a separate phase.

By using the Blasius friction factor correlation, the differences between the predicted flow rate
and the measured flow rate were very small. R-squared (R2) explained exactly how the data points
were fitted close to the regression line (y = x). Figures 8–10 displayed the regression model for oil,
water, and gas flow rate measurements. It can be seen that the plots show that most data points lie on
or close to the unit slope line (e.g., best fit line), indicating that the predicted and actual values were in
excellent agreement and illustrated an accurate flow rate prediction for oil, water, and gas with good
correlating coefficients of 0.994, 0.993, and 0.966, respectively. This means that 99.4%, 99.3%, and 96.6%
of the variance in the oil, water, and gas data, respectively, was explained by the line and 0.6%, 0.7%,
and 3.4% of the variance was due to unexplained effects. The figures show that the predicted wells
flow rates fell within the accepted uncertainty when compared with the measured flow rates.
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By using the Darcy friction factor correlation, the differences between the predicted fluid flow
rates with the measured flow rates were larger than those of the Blasius correlation. Figures 11–13
displayed the regression model for oil, water, and gas flow rate measurements. From these figures,
one can easily recognize that the data plotted is under-estimated for oil and water flow rates and
scattered around the best fit line for gas flow rates. This discrepancy was more evident for high flow
rates where the correlation coefficients for oil, water, and gas flow rates accounted for 90.6%, 86.6%,
and 78.7% of the variance, respectively. The figures show that the predicted well flow rates did not fall
within the accepted uncertainty when compared with the measured flow rates.

By using the Colebrook friction factor correlation, the differences between the predicted fluid flow
rates with the measured flow rates were slightly better than the Darcy correlation performance, but
still less than the Blasius correlation performance. Figures 14–16 displays the data fitting for oil, water,
and gas flow rate measurements. Similar to the performance of the Darcy correlation, one can easily
recognize that the data plotted is under-estimated for oil and water flow rates and scattered around
the best fit line for gas flow rates. This discrepancy was more evident for high flow rates where the
correlation coefficients for oil, water, and gas flow rates accounted for 93.0%, 87.1%, and 80.8% of the
variance, respectively. The figures showed that the predicted wells flow rates did not fall within the
accepted uncertainty when compared with the measured flow rates.Energies 2018, 11, x FOR PEER REVIEW  14 of 23 
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In general, the validation results of the predicted fluid flow rates were satisfactory when using
the Blasius correlation rather than the Darcy or Colebrook correlations, where 96% and 98% of the
predicted fluid flow rates were in good agreement with the real measured oil and water flow rate,
respectively. Furthermore, the relative errors were less than ±18%, which were still within the
reasonable uncertainty, as shown in Figures 17 and 18. For the predicted and measured gas rates,
68% of the wells showed about ±10% relative errors, as shown in Figure 19. By using the Darcy
correlation, 63% and 70% of the wells were not in good agreement with the predicted and measured
oil and water rate, respectively, with more than ±18% for relative errors, as shown in Figures 20
and 21. For predicted and measured gas rates, 79% of the wells showed more than ±10% relative
errors, as shown in Figure 22. By using the Colebrook correlation, 67% and 75% of the wells were not
in good agreement with the predicted and measured oil and water rate, respectively, with more than
±18% relative errors, as shown in Figures 23 and 24. For predicted and measured gas rates, 77% of the
wells showed more than ±10% relative errors, as shown in Figure 25.
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The results showed high relative errors in gas rate prediction which can happen due to the oil
separator meters being insufficiently accurate. Also, these errors may occur due to fixed orifice plate
meters used to measure the gas flow rate despite the fact that orifice plates are not appropriate to
measure low gas rates. Besides, wear and corrosion can increase the orifice size and cause excessive loss.

4. Summary and Conclusions

The prediction of the fluid flow rate of oil wells using the new mathematical model has been
made and validated with experimentally measured fluid flow rate data. To evaluate the influence of
the frictional pressure drop value on the measurement of fluid flow rate of oil wells, Blasius, Darcy,
and Colebrook friction correlations were applied. Using the Blasius correlation, the analysis showed
that the predicted fluid flow rate values were in accord with the measured values, while by using the
Darcy and Colebrook friction correlations, the results were not in good agreement with the measured
values. This discrepancy was due to the fact that each friction correlation found the friction factor
differently. To determine the friction factor, many expressions were used to compute the Reynolds
number. Essentially, each empirical correlation states its own assumptions and modifications to defend
the variable components in order to be applicable to multiphase conditions. The two-phase flow
significantly complicated the pressure drop calculations, where any errors in determining the frictional
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pressure drop values would generate some inaccuracies in predicting the fluid flow rate of the oil
wells. Consequently, mixture properties and the interactions between the existing phase’s properties
must be considered. Therefore, the gas and liquid volume fractions throughout the conduit needed to
be determined. Overall, the performance of the new mathematical model indicated that the selection
of the appropriate friction factor correlation would lead to predicting the gas and liquid flow rate
within the acceptable accuracy. However, the friction loss dominated only with very high flow rates.
For relatively small flow rates, the hydrostatic pressure played the key role in the overall pressure drop
in the vertical tubing. Thus, different multiphase flow models, either empirical or mechanistic model,
used in the computation would output different predictions. That being said, the Blasius equation may
be superior to other models coupled with the Hagedorn-Brown empirical correlation, as it has been
shown in this work. Indeed, a very reasonable average relative error of 4.6% was observed between
the predicted and measured flow rates. However, it may not be as good as it is when coupled with
other mechanistic models that may further reduce this error. Further research is needed to further
validate the developed model by accounting for other sophisticated multiphase models.
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Nomenclature

A cross-sectional area, (sq ft)
API American Petroleum Institute
Bo oil formation volume factor, (bbl/stb)
Bob oil formation volume (at bubble point pressure), (bbl/STB)
Bg gas formation volume factor, (cf/scf)
Cnt count
dp/dz pressure gradient, (psi/ft)
d inside diameter, (ft)
ESP electrical submersible pump
f friction factor, (unitless)
g Gravity, (ft/s2)
HL liquid hold-up
HG gas hold-up
H1 bubble point pressure (at location depth before shut-in the well head valve), (ft)
H2 bubble point pressure (at location depth after shut-in the well head valve), (ft)
mt mass flow rate, (lb/day)
Ngv gas velocity number, (unitless)
NLv liquid velocity number, (unitless)
Nd pipe diameter number, (unitless)
NCL coefficient number of viscosity correction, (unitless)
NL liquid viscosity number, (unitless)
qo oil rate, (stb/day)
qg gas rate, (stb/day)
qw water rate, (stb/day)
qL liquid rate, (stb/day)
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qm measured flow rate, (stb/day)
QC quality check
P pressure, (psia)
Pr pseudo-critical pressure (for gas mixture), (psia)
Pb bubble point pressure, (psia)
Psc pressure at standard conditions (P = 14.7 atm, T = 60 ◦F), (psia)
PSD pump setting depth
SGG gas specific gravity
STB stock tank barrel (for liquid)
rw wellbore radius, (ft)
Rs gas-oil ratio, (scf/stb )
Rsb gas oil ratio at bubble point pressure, (cf/scf)
Re Reynolds number, (unitless)
T temperature, (◦F)
t total shut-in time, (min)
Tr pseudo-critical temperature (for gas mixture), (psia)
Tsc temperature at standard condition, (◦R)
Tr reservoir fluid temperature, (◦F)
VR gas volume at reservoir conditions, (ft3)
Vsc gas volume at standard condition, (ft3)
VSL superficial velocity for liquid, (ft/sec)
VSg superficial velocity for gas, (ft/sec)
Vm total mixture velocity, (ft/sec)
WHPa well head pressure (after shut-in the well), (psia)
WHPb well head pressure (before shut-in the well), (psia)
WC water cut (unitless)
WHT well head temperature, (◦F)
W water vapor density, (unitless)
Z gas compressibility factor (unitless)
Greek Symbols
∆P pressure drop, (psia)
HL/ψ hold-up correlation factor
γo oil gravity
γw water gravity
γg gas gravity
σ surface tension, (dyne/m)
∆H differences between bubble point pressure location depths (before and after shut-in the

well head valve), (ft)
ρo oil density, (lbm/ft3)
ρg gas density, (lbm/ft3)
ρw water density, (lbm/ft3)
ρL liquid density, (lb/ft3)
ρm mixture density, (lbm/ft3)
µo oil viscosity, cP
µg gas viscosity, cP
µL liquid viscosity, cP
Subscripts
gsc gas (at standard condition)
h hydrostatic
L liquid
m mixture (liquid and gas)
o oil
sc standard condition
w water
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