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Abstract: This paper proposes a multi-functional Photovoltaic (PV) inverter based on the Unified
Power Quality Conditioner (UPQC) configuration. Power quality improvement is a difficult issue to
solve for isolated areas or islands connected to the mainland through long submarine cables. In the
proposed system, the line voltage is compensated for by the series inverter while the shunt inverter
delivers the PV generating power to the grid. Depending on the technical conditions of power quality
and system environment, it has five different operating modes. Especially during poor power quality
conditions, the sensitive load is separated from the normal load to provide a different power quality
level by using the microgrid conception. In this paper, the control method and the power flow for
each mode are described, and the operational performance is verified through a PSiM simulation
so that it can be applied to the power quality improvement of weak grid power systems such as in
isolated areas or on islands connected to the mainland by long submarine cables.

Keywords: PV generation; submarine cables; shunt inverter; series inverter; voltage compensation;
power quality

1. Introduction

Recently, renewable energy has spread rapidly due to concerns over climate change and
environmental issues. The penetration of renewable energy in distribution systems has grown fast to
catch up with population growth and reduce the use of conventional energy sources like coal power
plants. Distributed generation (DG), such as photovoltaic (PV) systems or windtrubine generation
systems, plays a major role in evolving a microgrid. PV energy has been developing for more than
160 years and its growth has increased exponentially in the last two decades. The total installed
capacity at the end of 2016 amounted to 303 GW globally [1].

Since the PV system is designed to have significant penetration to the distribution line or
submarine cable, the power flow can be reserved and the distribution system is no longer a passive
circuit but an active one that can determine the power flow based on the distributed generation as well
as the load. The low energy density and long-distance distribution system can make the grid system
weak or its short circuit ratio (SCR) low [2,3].

People who live in isolated areas need electricity to manage their daily life. An islands’
power system is usually connected to the mainland through a submarine cable system. However,
the undervoltage or overvoltage problems can occur frequently due to the load capacity [4]. As in
IEEE 1159, undervoltage is defined as a typical voltage magnitude less than 0.9 pu for a duration
longer than 1 min, and overvoltage is defined as a typical voltage magnitude higher than 1.1 pu for a
duration longer than 1 min [5]. In normal or heavy load conditions, undervoltage will occur due to
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cable resistance or cable inductance. On the other hand, in light loads, overvoltage can occur due to
submarine cable capacitance—the so-called Ferranti effect [6,7]. In this condition, sensitive electric
equipment can be damaged due to undervoltage or overvoltage grid conditions. In real measurements
undertaken at Pramuka Island in Indonesia, the undervoltage was so serious that the line voltage
decreased by up to 20% in the evening, but the overvoltage caused by the base load was not serious.

At the load side, some loads or equipment are sensitive to power quality problems. These sensitive
loads can be differentiated from normal loads by a switch, so the microgrid technology allows each
load group to be supplied power at different power quality levels [8]. To supply the electricity to
sensitive loads with high power quality, additional power quality solutions (PQS), such as the active
power filter or dynamic Uninterruptible Power Supply (UPS), can be installed for sensitive loads [9–11].
It is easy to apply all kinds of existing PQS at any location of grid to improve the power quality, but
it requires a space for PQS and is a little bit more costly. As an alternative solution, it is possible to
add a function of improving power quality to the power inverter of a microgrid [12]. The power
inverter in the microgrid system is generally used for the conversion of the DC generating power to
AC, so the main function of the inverter is to supply the converted power to the main grid under the
output current control. However, the control of the inverter or the topology of the inverter itself can be
modified to cover the additional function for the compensation of harmonics or voltage.

In recent years, the development of voltage compensation has led to the implementation of a
Dynamic Voltage Restorer (DVR) [13–15]. The concept of using DVR for voltage mitigation has had
positive results and has achieved popularity since its first use. The DVR with rechargeable energy was
suggested to meet the power requirements for voltage disturbance mitigation [13,14], but the authors
do not consider the penetration of renewable energy as a source of DVR. Several DVR strategies
based on control strategies have also been developed in [15], but the authors do not consider the
maximum voltage, which can be compensated for by DVR and the type of the load based on the
voltage sensitivity.

The proposed PV inverter system in this research has the voltage compensation function, while
the PV power is delivered to the grid. The configuration of the inverter is similar to that of the
Unified Power Quality Conditioner (UPQC) [16,17]. It has the topology of the back-to-back inverter, in
which one output is connected to the grid in a shunt and the other is connected to the grid in series.
To improve the limited function of the conventional DVR in [13,14], the integrated PV system can
supply energy to both the DVR and the grid. Therefore, instead of compensating for the harmonics
or reactive power in the UPQC, the generated PV power is delivered to the grid through the shunt
inverter while the series inverter compensates for the voltage when undervoltage or overvoltage is
occurred in the grid [18,19].

To improve the power quality at the system level, all loads are divided into normal loads and
sensitive loads groups by integrating the microgrid concept to maintain the power quality at different
levels [20]. The voltage compensation operation should be performed only for the sensitive loads group.
Depending on the state of the grid voltage, the voltage is compensated for under the grid-connected
mode or the regulated voltage is generated under the stand-alone mode without connection to the
grid [21]. Therefore, if the grid voltage is in the normal range, the shunt inverter operates only in
the PV generation mode. If the grid voltage is outside of the normal range, the grid voltage for only
sensitive load is compensated for by the series inverter while the generated PV power is delivered to
the grid through the shunt inverter. On the other hand, if the grid voltage deviates from the voltage
compensation range, the sensitive loads group is disconnected from the grid and is supplied the power
from the PV systems through the shunt inverter. In this mode, it is not necessary to compensate for
the voltage through the series inverter, and the normal loads group received power from the grid
continuously although the power quality was very poor.

The topology and operation of the PV inverter, which has the additional function of voltage
compensation, depending on the state of grid voltage, are described in this paper. The operation
mode is defined as a normal mode, a voltage compensation mode, and the stand-alone mode when
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the grid voltage is in the range of ±10%, ±10 to ±20%, or over ±20%, respectively. During the low
irradiance condition, the Battery Energy Storage System (BESS) [22,23] can be a power source in
place of the PV source. However, the operation of BESS is applied only for the voltage compensation
mode or the stand-alone mode considering the capacity of the batteries. In the voltage compensation
mode, the voltage compensation is performed through the series inverter. On the other hand, in
stand-alone mode, the shunt inverter supplies the power to the grid without voltage compensation
through the series inverter. To analyze the performance of the proposed voltage compensation method,
a simulation based on PSIM is conducted.

In this paper, the modeling and problems caused by the submarine cable are described in Section 2.
The topology of the proposed PV system with series and shunt inverter is shown in Section 3. In Section 4,
the control algorithm and the power flow in every case are explained. Finally, the simulation results
and analyses are reported in Section 5, with conclusions in Section 6.

2. Modeling and Analysis of Submarine Cable

2.1. Modeling of Submarine Cable

A submarine cable is installed under the sea to supply power to an isolated island from the
mainland or connect an offshore wind turbine system to the main grid. Since it is located near the
ground level and has thick insulation, a submarine cable has better capacitive characteristics than an
overhead line. Based on a theoretical parallel plate capacitor, the capacitance is inversely proportional
to the gap between plates, which corresponds to the distance from the earth in this case. Other
factors, such as the distance to other cables (relatively short compared to the overhead line) and the
capacitance between conductor and insulation cable, make the submarine cable have better capacitive
characteristics than an overhead line.

As with the transmission line, the submarine cable can be represented sufficiently well by the
resistance (R), inductance (L), and capacitance (C). The difference between the transmission line and
the submarine cable is in the short length. The transmission line assumed the shunt admittance of the
line is small and can be neglected, but in the submarine cable, the shunt admittance is relatively high
and can have an impact on the calculation, as shown in Figure 1. Therefore, in a short submarine cable,
the shunt admittance is included in the calculation.

For short and medium lengths, lumped parameters are used, which give better accuracy. However,
for the exact solution of any lines longer than 240 km, it should be considered that the parameters of
the line are not lumped but distributed uniformly in the line [24].
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Figure 1. Modeling of short and medium-length submarine cables.

2.2. Voltage Profile of Submarine Cable

Most of the submarine systems for loads on isolated islands are radial configuration, which gives
high impedances. These high impedances lead to the voltage drop or Ferranti effect along the cable
from the sending end to the receiving end load. The voltage drop can be calculated from the basic
analysis of a two-bus distribution system, as in Figures 2 and 3.
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The relationship between the sending end bus voltage, Vs, and the receiving end bus voltage, Vr,
is given as in Equation (1):

Vs = Is(R + jXl) + Vr = (Ir + Ic)(R + jXl) + Vr. (1)

Substituting Ir and Ic, described as in Equation (2), into Equation (1), we get Equation (3):

Ir =
Pload − jQload

Vr
Ic =

Vr

−2jXc
(2)

Vs = (
RPload + XlQload

Vr
− VrXl

2Xc
+ Vr) + j(

Xl Pload − RQload
Vr

+
RVr

2Xc
). (3)

If the phase difference between Vs and Vr is neglected based on Vs, then the voltage difference
between Vs and Vr can be described as in Equation (4):

∆Vr = Vs −Vr =
RPload + XlQload

Vr
− VrXl

2Xc
. (4)

This shows that the bus voltage can increase or decrease depending on the amount of active
and reactive power consumed at the load and supplied from the Distributed Generator (DG). Based
on Equation (4), two conditions can result depending on the load capacity. The voltage difference
in Equation (4) can be categorized into two parts: The first part is RPload+Xl Qload

Vr
, and the second part

is −VrXl
2Xc

. In the heavy load condition, the first part is dominant, and the voltage difference, ∆Vr,
is positive, which means that there is a voltage drop at the receiving end. On the other hand, in light or
no-load conditions, the second part is dominant, and the voltage difference, ∆Vr, is negative, which
means that there is a voltage rise at the receiving end [25]. This is the so-called “Ferranti Effect”.

The PV penetration in the distribution system can increase the voltage in the Point of Common
Coupling (PCC) bus depending on the power injected by the PV system. Figure 3 shows how the
DG can change the voltage at the receiving end since the DG and the power electronics technology



Energies 2018, 11, 2927 5 of 22

can control the active and reactive power injection. In this case, Equation (4) can be modified as in
Equation (5):

∆Vr = Vs −Vr =
R(PLoad − PDG) + X(QLoad −QDG)

Vr
− Vrω2LC

2
. (5)

3. Configuration and Operation of Proposed PV Inverter with Voltage Compensation

3.1. Proposed PV Inverter

The conventional PV system delivers the power to the grid directly in the grid-connected mode or
supplies the power to the load in stand-alone mode without any ability to improve the power quality.
However, the proposed system, which has the back-to-back inverter topology of shunt and series
inverters based on UPQC configuration, has the additional function of voltage compensation to the
conventional PV system, as shown in Figure 4. The sensitive load can be separated from the normal
load by disconnecting the switch, and it can be supported at a different power quality level from the
normal load by the voltage compensation of the series inverter.
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3.2. Operation of Series Inverter

The series inverter is used to compensate for the voltage in the sensitive load in a weak grid
system [26–30]. During the light load condition, as shown in Figure 5a, overvoltage, V’

G, is occurred,
and then the series inverter injected the negative voltage, V’series inverter, into the grid to mitigate it.
On the other hand, during heavy load conditions, as shown in Figure 5b, undervoltage, V’

G, occurs, so
the series inverter injects the positive voltage, V’series inverter, into the grid to mitigate it.

After applying the in-phase voltage compensation method, which makes the series inverter
voltage synchronized to the grid voltage, an exchange of active and reactive power between the series
inverter and the grid occurs [31]. The voltage and power calculation for series inverter in-phase control
scheme is as follows:

V′series =
√

2
[
Vload −V′grid,abc

]
(6)

Pseries =
3
2
[
Vd,series Id,series + Vq,series Iq,series

]
(7)

Qseries =
3
2
[
Vd,series Iq,series −Vq,series Id,series

]
. (8)
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3.3. Operation of Shunt Inverter

In this proposed method, the operation of the shunt inverter can be divided into four functions.
Firstly, in normal voltage conditions, the shunt inverter injects the maximum power generated from
the PV by the Maximum Power Point Tracking (MPPT) method to the grid. Secondly, in undervoltage
or overvoltage conditions, the maximum power injected to the grid depends on the power exchanged
through the series inverter. In undervoltage conditions, the maximum power injected by the shunt
inverter is reduced due to the power necessary for the voltage compensation through the series inverter.
On the other hand, in overvoltage conditions, the series inverter absorbs the power from the grid,
so the maximum power injected to the grid through the shunt inverter is increased due to the power
absorbed from the grid through the series inverter. Thirdly, if the grid voltage is outside the range of
voltage compensation or the battery back operation is necessary due the low irradiance, the sensitive
load is isolated from the grid by disconnecting the switch. Then, the shunt inverter fully covers the
sensitive load in stand-alone mode while the grid supplies power to the normal load even if the power
quality is poor. Finally, if the State of Charge (SoC) of BESS is lower than the lower limit during low
irradiance conditions, the shunt inverter absorbs power from the grid side and delivers it to the series
inverter for voltage compensation. In this mode, the load will be increased due to the power received
through the shunt inverter, and this load increase may make the voltage drop in the grid worse. The
delivered power through the shunt inverter is described as follows:

Pshunt =
3
2

[
Vd,shunt Id,shunt + Vq,shunt Iq,shunt

]
(9)

Qshunt =
3
2

[
Vd,shunt Iq,shunt −Vq,shunt Id,shunt

]
. (10)

4. System Operation Mode and Control of Proposed PV Inverter

There are five operation modes in the proposed PV inverter system, depending on the irradiance
condition and the grid voltage magnitude: the normal mode, the voltage compensation mode with PV
power, the stand-alone mode, the voltage compensation mode with battery energy, and the voltage
compensation mode with the grid power.

4.1. Normal Mode

When the grid voltage is under the±10% range of the rated value, the PV inverter is in the normal
mode. In the normal mode, the shunt inverter delivers power to the grid based on the MPPT scheme
without any voltage compensation, but the series inverter does not work in this mode. The control
scheme for the shunt inverter is shown in Figure 6a. The maximum active power is set to be a reference
value of the active power for the PQ control. On the other hand, the reference reactive power is set
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to be zero to meet the unity power factor operation. The reference values for the active and reactive
powers are converted to the reference values of Id and Iq by Equations (11) and (12). Hereinafter,
the reference values, I*d and I*q, are subtracted from the real values, Id and Iq, and the PI control is
applied to regulate Id and Iq to follow the reference values, I*d and I*q. Finally, the reference dq-frame
signal is be transformed to abc domain for Pulse Width Modulation (PWM) generation. The power
flow during this mode is shown in Figure 6b.

I∗d,PQ =
2
3 P ∗PQ +Vq,PQ.Iq,PQ

Vd,PQ
(11)

I∗q,PQ =
2
3 Q ∗PQ +Vq,PQ.Id,PQ

Vd,PQ
(12)
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4.2. Voltage Compensation Mode with PV Power

When the grid voltage is between ±10% and ±20% of the rated voltage, it is in the voltage
compensation mode. Then the line voltage is compensated for by the series inverter while the PV
power is mostly delivered by the shunt inverter. In the voltage compensation mode, the series inverter
injects the voltage into the grid which is in phase with the grid voltage after fault. In this case, the series
inverter injects the minimum magnitude voltage compared to other series inverter methods like
pre-sag compensation and quadrature injection [31].

Figure 7a,b shows the control blocks for voltage compensation. Figure 7a shows the control
scheme for shunt inverter. The reference currents, I*

d and I*
q, are generated to deliver the power

through the shunt inverter, the same as the power difference between the PV generated power and
the power delivered to the grid through the series inverter. Then the current-controlled PWM is
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applied to let the output current of shunt inverter, Id and Iq, follow this reference value. On the other
hand, the reference voltages, V*

d and V*
q, are generated to supply the compensation voltage, and the

voltage-controlled PWM is applied to regulate the output voltage of the series inverter, Vd and Vq,
to follow this reference value, as shown in Figure 7b. The power flow during this mode is shown in
Figure 7c.
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4.3. Stand-Alone Mode

When the line voltage is out of range for compensation, the static switch disconnects the sensitive
load from the grid, and then the PV power is delivered to the load by the shunt inverter under the
stand-alone mode without any voltage compensation by the series inverter, as shown in Figure 8a,b.
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The load voltage, Vd and Vq, is controlled to follow the reference voltage, V*d and V*q.
This controller is composed of the outer voltage controller and the inner current controller. Then, the
output abc signals are fed to PWM to generate the gating pulses for the shunt inverter.

For transferring between the power control under the grid connected mode and the voltage
control under the stand-alone mode, the multiplexer is installed before the dq to abc transformation.
The multiplexer may multiply the signal in voltage control to be zero when the grid voltage is in the
range of the grid connected. The same treatment can be applied in power control, so the multiplexer
will make the power control signal have a zero value when the grid voltage is in the range of the
stand-alone mode.

4.4. Voltage Compensation Mode from BESS

In low irradiance or at night, the PV cannot produce power, so the BESS system provides the
power for the series inverter only as shown in Figure 9a,b. In undervoltage conditions, the BESS will
not supply the power to the shunt inverter due to the limitations of BESS capacity. On the other hand,
the BESS system supports the series inverter only to mitigate the voltage disturbance in this mode.
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The control scheme is the same as the voltage compensation mode of the series inverter; the only
difference is the power source. In the voltage compensation mode with PV power, the power source is
the PV power, but in this mode, the power source is the BESS power. The BESS capacity SoC in this
simulation is assumed to be 1 or fully charged.

Energies 2018, 11, 2927 10 of 22 

 

The load voltage, Vd and Vq, is controlled to follow the reference voltage, V*d and V*q. This 

controller is composed of the outer voltage controller and the inner current controller. Then, the 

output abc signals are fed to PWM to generate the gating pulses for the shunt inverter. 

For transferring between the power control under the grid connected mode and the voltage 

control under the stand-alone mode, the multiplexer is installed before the dq to abc transformation. 

The multiplexer may multiply the signal in voltage control to be zero when the grid voltage is in the 

range of the grid connected. The same treatment can be applied in power control, so the multiplexer 

will make the power control signal have a zero value when the grid voltage is in the range of the 

stand-alone mode.  

4.4. Voltage Compensation Mode from BESS 

In low irradiance or at night, the PV cannot produce power, so the BESS system provides the 

power for the series inverter only as shown in Figure 9a,b. In undervoltage conditions, the BESS will 

not supply the power to the shunt inverter due to the limitations of BESS capacity. On the other hand, 

the BESS system supports the series inverter only to mitigate the voltage disturbance in this mode. 

The control scheme is the same as the voltage compensation mode of the series inverter; the only 

difference is the power source. In the voltage compensation mode with PV power, the power source 

is the PV power, but in this mode, the power source is the BESS power. The BESS capacity SoC in this 

simulation is assumed to be 1 or fully charged. 

dq
abc

( , , )Load a b cV
desiredV




d




dq
abc( , , )DVR a b cV

dq
abc

d




*

qV

q







*
dV

(a) 

 
(b) 

Figure 9. Voltage compensation mode from BESS: (a) Control scheme; (b) power flow condition. Figure 9. Voltage compensation mode from BESS: (a) Control scheme; (b) power flow condition.

4.5. Voltage Compensation Mode from Grid

In this condition, we assumed that the BESS power almost reached 0.1 SoC. There will be times
when the BESS cannot support the series inverter anymore. In this condition, the BESS switch will be
turned off. The shunt inverter will be a load from the grid side to absorb the power and deliver it to the
series inverter, as shown in Figure 10. Thus, the series inverter can compensate for the undervoltage
in this condition. The control scheme for the series inverter is the same as the voltage compensation
mode. For the shunt inverter, there are some modifications due to supply power to the series inverter.
The power absorbed from this mode is based on the power required by the series inverter. Thus,
the value of the power desired in this condition is based on Equations (11) and (12), which will be
determined by the demand from the series inverter.
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4.6. Automatic Transfer Switches

There are four switches in this proposed scheme. Switch 1, S1, is located between the grid and
the sensitive load; Switch 2, S2, is between the series inverter and the sensitive load; Switch 3, S3+,
is between the shunt inverter and the grid; and Switch 4, S3-, is between the BESS and inverters,
respectively. The control scheme of switches for series and shunt inverters are based on the value
of the grid voltage. If the sensitive load voltage is 0.9 to 1 pu, S1 is turned on. The shunt inverter is
connected to the grid and supplies the power to the sensitive load without voltage compensation,
as shown in Figure 11a,c. If the voltage magnitude is 0.8 to 0.9 pu, Switch S2 is turned on and the
voltage compensation is applied by the series inverter, while the shunt inverter delivers the generated
PV power to the grid through the shunt inverter. If the line voltage is lower than 0.8pu rated voltage,
then both S1 and S2 are turned off, as shown in Figure 11a, to separate the sensitive load from the
normal load. Then it operates as the stand-alone mode and the shunt inverter supplies the power
directly to the sensitive load under the voltage control, while the normal load is supplied power from
the grid with poor power quality.

The same control strategy can be applied for overvoltage condition. If the line voltage is between
1.1 and 1.2 pu, Switches S1 and S2 are turned on and the series inverter compensates for the overvoltage
while the shunt inverter delivers the PV power to the grid. When the line voltage is higher than 1.2 pu,
Switches S1 and S2 are turned to the off position and the stand-alone mode is applied, the same as in
undervoltage conditions.
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On the other hand, during a no PV generation condition, the BESS supports the series inverter
without the operation of the shunt inverter by turning off Switch S3-. However, when the SoC of BESS
is lower than 0.1, the shunt inverter absorbs the power from the grid to support the series inverter by
turning on Switch S3+.
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5. Simulation Results and Discussion

5.1. Simulation Conditions and Parameters

In this simulation, the PV with MPPT model, the series inverter, the shunt inverter, the grid, and
the loads are presented. Table 1 and Figure 12 present the simulation parameters and the system
operation flowchart for PSIM simulation. The PV model is implemented by using the physical model,
which is available in PSiM software (version, city country). The BESS is lithium-ion and the model is
available in PSiM software.

Each case has been tested in several conditions. For the undervoltage case, the normal condition
is shown first, followed by the grid undervoltage between 0.8 to 0.9 pu and the stand-alone mode,
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which is the grid undervoltage less than 0.8pu. For the overvoltage, the normal condition is presented
from t < 1 s, followed by the grid overvoltage in the range of 1 to 1.1 pu and the stand-alone mode
when the grid voltage is more than 1.1 pu.

The next case is the voltage compensation without PV power mode. In this condition, it is
assumed that the BESS can supply the power to the series inverter, so the BESS generates the power to
the series inverter only for voltage compensation. The last case is when the BESS cannot support the
series inverter anymore, so the shunt inverter delivers the power from the grid to the series inverter.

Table 1. Simulation parameters.

Part of Circuit Descriptions Value

Grid
Main Voltage 220; 190; 150 V

220; 230; 264 V
Frequency 50 Hz

Battery Capacity 50 Ah

Undervoltage Load Sensitive Load Active 80 kW
Sensitive Load Reactive 60 kVar

Overvoltage Load Sensitive Load Active 72 kW
Sensitive Load Reactive 50 kVar

DC Capacitor Capacity Cdc = 10 mF

PV System

Max Power 113 kW
Open Circuit Voltage 684 V
Short Circuit Current 180 A

Vmpp 675 V
Immp 168 A

Series Connection
Transformer 1:1

Filter Cse = 50 µF, Lse = 1 mH
PI-1, PI-2 & PI-3 20

Shunt Connection
Filter Csh = 20 µF, Lsh = 2 mH

PI-1 & PI-2 (Power Control) 200
PI-1 & PI-2 (Voltage and Load Mode) 10

PWM Sampling Frequency 5 kHz

5.2. Undervoltage Case

In this simulation, there are three cases within certain periods, as shown in Figure 13. Before
1 s, no undervoltage occurred. Therefore, there is no action from the series inverter while the shunt
inverter injects the active power to the grid. During 1 < t < 2 s, the undervoltage occurs under 0.9 pu.
The switch S2 is turned on and the series inverter injects the voltage to compensate for the grid voltage.
After t > 2 s, if the voltage is lower than 0.8 pu, the shunt inverter takes care of the sensitive load in
stand-alone mode while the grid covers the normal load in grid mode. In Figure 13c, it is verified that
the voltage waveform of the sensitive load is well regulated during the undervoltage condition by the
voltage compensation of the series inverter. In this period, the shunt inverter control is transferred
from the power control mode to the voltage control mode.

The simulation results for power flow are shown in Figure 14. During the period t < 1 s, the grid
injects power for the normal condition as shown in Figure 14a. In Figure 14b,c, there is no power flow
through the series inverter, which is in the off position, but the shunt inverter injects the active power
generated by PV to the grid system. When undervoltage occurs during 1 < t < 2 s, the grid power is
decreased due to the voltage drop, as shown in Figure 14a. The series inverter injects the power to
compensate for the undervoltage, while the remaining PV generating power flows through the shunt
inverter, as shown in Figure 14b,c. The active and reactive power of sensitive load are constant in
this period since the series inverter compensates for the undervoltage through the series inverter as



Energies 2018, 11, 2927 14 of 22

shown in Figure 14d,e. During the last period (t > 2 s), the grid voltage is less than 0.8 pu. The series
inverter is in off mode and the shunt inverter takes care of the sensitive load in the stand-alone mode.
Therefore, the normal load is covered by the grid as shown in Figure 14a,d,e, while the shunt inverter
supplies the power to the sensitive load, separate from the normal load, as shown in Figure 14c–e.Energies 2018, 11, 2927 14 of 22 
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5.3. Overvoltage Case

The performance analysis in the overvoltage case is applied in reverse to the under–voltage case.
As shown in Figure 15, the series inverter does not operate under the normal before 1 s while the shunt
inverter injects the active power to the grid. During 1 < t < 2 s, the overvoltage occurs over 1.1 pu, then
the series inverter compensates for the voltage by absorbing the power from the grid. After t > 2 s,
the voltage is higher than 1.2 pu, then the shunt inverter keeps the voltage for the sensitive load in
stand-alone mode. In Figure 15c, it is verified that the voltage waveform of sensitive load is well
regulated during the overvoltage condition by the voltage compensation of the series inverter.
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Figure 15. Simulation results of overvoltage case: (top) Grid voltage; (middle) series inverter voltage;
(bottom) sensitive load voltage.

The power flow under the overvoltage case is same as that of undervoltage case as shown in
Figure 16. Before 1 s, the grid is under the normal condition, so there is no power flow through the
series inverter while the shunt inverter injects the generated PV power to the grid system. When
the overvoltage occurs during 1 < t < 2 s, the series inverter compensates for the voltage while the
remaining PV generating power flows through the shunt inverter as shown in Figure 16b,c. The active
and reactive power of sensitive load is constant in this period since the series inverter compensates for
the overvoltage through the series inverter as shown in Figure 16d,e. During the last period (t > 2 s),
the grid voltage is higher than 1.2 pu. The series inverter is in off mode and the shunt inverter takes
care of the sensitive load in the stand-alone mode. Therefore, the normal load is covered by the grid
as shown in Figure 16a,d,e, while the shunt inverter supplies the power to the sensitive load only,
as shown in Figure 16c-e.

5.4. Voltage Compensation without PV Power Case

This case is the condition of low irradiance or during the night. Figure 17a shows the voltage
compensation after 1 s by discharging the battery. Before 0.5 s, the PV-generated power is supplied to
the grid through the shunt inverter, so the grid injects less active power to the grid due to the power
delivery of shunt inverter shown in Figure 17a-c. During 0.5 to 1.0 s, the PV cannot generate active
power due to the low irradiance condition and the grid injects more power to the loads shown in
Figure 17a. After t > 1.0 s, undervoltage occurs, so the BESS supplies power to the series inverter to
compensate for the voltage shown in Figure 17b,c. The active and reactive power for the sensitive load
can stay constant, as shown in Figure 17d. During this range, the BESS can be the power source of the
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series inverter instead of the PV power source, so the SoC of BESS is reduced due to the power supply
to the series inverter, as shown in Figure 17e.
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5.5. Voltage Compensation with Power from Grid Case

The last mode is the voltage compensation with the grid power mode as shown in Figure 18 and
the continuation of the case after the voltage compensation without PV power case. Before t < 2 s,
the BESS has to support the series inverter due to no PV power generation as shown in Figure 18b,e,
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and the response is the same of the voltage compensation without PV power after 1 s. Switch S3+ is in
the off position and Switch S3- is in the on position. The grid still supplies the sensitive load, though
the grid voltage is in the undervoltage condition, as shown in Figure 18a,d. When the SoC of BESS
reaches 0.1, as shown in Figure 18e, the BESS cannot supply the power to the series inverter anymore
under the assumption of the Depth of Discharge (DoD) BESS of 0.1. When the DoD of BESS is less than
0.1, the shunt inverter will act as a load to the grid. Therefore, the shunt inverter absorbs the power
from the grid and delivers it to the series inverter and the series inverter compensates for the load
voltage as shown in Figure 18c. The control of the shunt inverter will be transferred to the load mode.
The power absorbed from the shunt inverter will be delivered to the DC capacitor to keep the voltage
constant. In Figure 18b, it is shown that during t > 2 s the undervoltage is worse due to the additional
load from the shunt inverter. The loads will increase because of the shunt inverter as an additional
load and due to that the undervoltage will increase too. That is why the series inverter injects more
voltage to compensate for the grid voltage after t > 2 s.
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6. Conclusions

This paper proposes multi-functional PV inverters based on the UPQC configuration in which the
back-to-back inverters are connected to the grid by series and shunt. The line voltage is compensated
for by the series inverter, while the shunt inverter delivers the PV generating power to the grid.
From the point of view of voltage compensation, it has been compared to the conventional DVR, which
can be divided by the external voltage compensator for the distributed generating system. The UPQC
configuration has been used in place of the conventional grid-connected inverter and the external
DVR for the compensation of voltage while delivering the PV generating power. Finally, the microgrid
concept has been applied to keep the different power quality levels depending on the importance of
the loads.

Depending on the grid voltage and the condition of weather and battery SOC, it can operate in
one of five different modes: normal mode, voltage compensation mode, stand-alone mode, voltage
compensation mode from BESS and voltage compensation mode from grid. The operation performance
at each mode is analyzed by using the PSiM simulation with the voltage waveforms and the active
and reactive power flows. From the simulation results, the proposed idea is well verified so that it can
be applied for the power quality improvement of a weak grid power system such as in isolated areas
or on islands connected to the mainland by long submarine cables.
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