energies MBPY

Article
A Novel and Alternative Approach for Direct and
Indirect Wind-Power Prediction Methods

Neeraj Bokde *t (2, Andrés Feijéo 2**J, Daniel Villanueva >' and Kishore Kulat 1

1 Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology,

Nagpur 440010, India; kdk@ece.vnit.ac.in

Departamento de Enxefieria Eléctrica-Universidade de Vigo, Campus de Lagoas-Marcosende,

36310 Vigo, Spain; dvillanueva@uvigo.es

*  Correspondence: neerajdhanraj@gmail.com (N.B.); afeijoo@uvigo.gal (A.E.); Tel.: +91-90-2841-5974 (N.B.)
1t These authors contributed equally to this work.

check for
Received: 9 October 2018; Accepted: 24 October 2018; Published: 26 October 2018 updates

Abstract: Wind energy is a variable energy source with a growing presence in many electrical
networks across the world. Wind-speed prediction has become an important tool for many agents
involved in energy markets. In this paper, an approach to this problem is proposed by means
of a novel method that outperforms results obtained by current direct and indirect wind-power
prediction procedures. The first difference is that it is not strictly a direct or indirect method in
the conventional sense because it uses information from both wind-speed and wind-power data
series to obtain a wind-power series. The second difference is that it smooths down the wind-power
series obtained in the first stage, and uses the resulting series for predicting new wind-power values.
The process of smoothing is based on the label sequence generation process discussed in the pattern
sequence forecasting algorithm and the Naive Bayesian method-based matching process. The result
is a less chaotic way to predict wind speed than those offered by other existing methods. It has been
assessed in multiple simulations, for which three different error measures have been used.

Keywords: wind speed; wind power; prediction; indirect prediction approach; power curve

1. Introduction

Renewable energy sources, such as solar and wind, are gaining more importance and attention
because of the depletion of conventional energy sources, such as fossil fuels, and pollution generated by
the combustion of such fuels. Wind power is a clean and sustainable source of energy, and it does not
lead to any environmental hazards. Hence, energy generation with wind power has become the main
goal of many countries. However, effective power generation with wind energy is quite an uncertain
process because of the chaotic and intermittent nature of wind-power availability. This uncertainty in
wind power can imperil power availability, quality, and stability. Eventually, this can lead to a huge
loss in the energy market. Hence, precise prediction of wind power is a critical task with deep impact
and large benefits for humanity.

There are various approaches to forecasting wind power and these can be classified broadly into
three categories: (1) model-driven approaches, (2) data-driven approaches, and (3) hybrid approaches [1].
Model-driven approaches require abundant meteorological knowledge and information of various
physical factors affecting wind power [2]. In data-driven approaches, on the other hand, data-driven
statistical models are used for forecasting. With the advancement in the artificial-intelligence and
data-science fields, more accurate prediction results can be achieved with this approach [3]. Historical
data are the only requirement for such models. Many research articles describe the performance of
distinct data-driven models, such as the basic persistence model [4], and complex models, including
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support vector machines (SVM) [5,6], neural networks (NN) [7,8], and autoregressive integrated
moving average (ARIMA) [9]. However, due to the highly stochastic and intermittent nature of
wind-power time series, it is difficult to predict within a significantly accurate range.

Wind-power prediction studies are broadly classified into direct and indirect approaches. In direct
approaches, wind-power data are directly predicted by various methods. The advantage of this kind
of approach is that there is no need to study the relations between wind-power and wind-speed
parameters. However, the prediction accuracy of a direct approach is not always good enough since
wind-power data usually show high levels of randomness and a chaotic nature. Such wind-power
data are very difficult to efficiently process with the prediction methods.

To overcome this difficulty, another part of the available studies focused on indirect prediction
approaches. In this kind of approach, wind-speed data are firstly forecasted, and then the predicted
data converted into wind-power data by means of various techniques. However, in practice, while
transforming wind-speed into wind-power data, further errors are made in prediction accuracy because
of inaccuracies in nonlinear power curve analysis. Generally, wind power and wind speed are related
in terms of cubic or higher-order powers. Hence, a small change in wind speed leads to larger and
significant deviations in wind power. The success of an indirect approach is in how it evaluates the
nonlinear dependence between wind-power and wind-speed data. Such error evaluations lead to a
rise in learning accuracy and comprehensibility. Instead of manufacturer power curves, statistical
techniques seem to be a better option to describe the nonlinear relationship between wind power
and wind speed. Higher-order polynomial equations, exponential, fitted power, regression, logistic,
and many other models are used to estimate wind power by using explanatory wind-speed datasets.

While reviewing the literature related to short-term wind-power prediction, there is a large
number of articles that are focused on direct wind-power as well as wind-speed predictions [10-12].

However, there are very few articles that have compared the performance of direct and indirect
approaches. Most of them have evidenced that the best prediction accuracy comes with direct
approaches [10,11], whereas Reference [12] concluded that an indirect approach performed better than
the alternative.

In this paper, a novel approach is presented in order to eliminate the drawbacks of both direct
and indirect prediction methods used in wind-power predictions. The proposed method cannot be
classified into any of the commented groups because it uses combined information from wind-speed
and wind-power series. In this sense, it is an alternative method and behaves as a direct-indirect
hybrid that does not directly or indirectly predict power. It starts by smoothing down a wind-power
time series by keeping respective wind-speed data as a reference. The process of smoothing down is
based on the label sequence generation process discussed in the PSF algorithm and the Naive Bayesian
method-based matching process following the next procedure. Wind-speed and wind-power data
are converted into a sequence of labels. Then, these labels are mapped and their best combination is
estimated. Keeping these combinations as a reference, the wind-power labels are smoothed down
and further predicted with the steps involved in the PSF method. After following this procedure,
an important consequence is to reduce the degree of chaos contained in the resulting predicted series.

Multiple simulations have been carried out with the aim of collecting a contingent of results.
Three different error measures have been used in order to quantify how much the proposed method
outperforms existing ones.

The rest of the paper is organized as follows: Section 2 describes the steps involved in the PSF
algorithm. Section 3 introduces the proposed methodology and the description of the prediction
methodology for wind-power forecasting. Section 4 shows the results obtained by the proposed
approach in predicting wind power, including their quality measurements. Comparisons between
the proposed method and other techniques are also provided. Finally, Section 5 summarizes the
conclusions achieved with regard to wind-power predictions.
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2. Conventional PSF Methodology

The PSF algorithm is one of the most popular types of univariate time-series prediction
methodology, proposed in Reference [13] and further analyzed in Reference [14]. The basic principle
behind predictions with the PSF algorithm is an optimum search of pattern sequences present in a
time series. This methodology consists of several processes that operate in two steps. During the first
step, data are clustered, and during the second, the forecasting process is carried out based on the
previously clustered data, as shown in Figure 1. The novelty of the PSF algorithm is the utilization
of labels for respective pattern sequences present in a time series, instead of the use of the original
time-series data.

The clustering step consists of various tasks, including data normalization, the selection of an
optimum number of clusters, and the application of k-means clustering. The ultimate aim of this step
is to discover clusters of time-series data and accordingly label them. This starts with a normalization
process, in which the time series is normalized with Equation (1) in order to remove the redundancies
present in it.

X % (1)
b X

where X; is the jth value of each cycle in the input time series, and N is its size in time units. Secondly,
the normalized series is assigned with the labels according to different patterns present in it with the
help of clustering methods. In PSE, a k-means clustering method is used because of its popularity,
simplicity, and fast computing nature. However, it requires prior knowledge of a number of centers so
that the series can be clustered in respective numbers of clusters. Reference [13] utilized the Silhouette
index [15] to decide the number of clusters in PSF methodology, whereas Reference [14] suggested the
‘best among three’ policy to decide the optimum number of clusters, in which three different indices
(the Silhouette index [15], Dunn index [16], and Davies-Bouldin index [17]) are used. In this policy,
the cluster size is finalized with the use of multiple statistical tests to ensure efficiency in the clustering
process. Further, References [18-20] used a single index (Silhouette index [15]) to simplify computation
complexity in the clustering process.

Then, with respect to cluster heads (K) generated with the k-means clustering method, the values
in the original time series are transformed into label series. These label series are further used for the
prediction procedure. This prediction procedure consists of window-size selection, pattern sequence
matching, and an estimation process.
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Figure 1. Steps involved in PSF method.

Consider that x(f) is the vector of time-series data of length N, such that x(t) =
[x1(t), x2(t), ..., xn(t)]. After clustering and labeling, the vector is converted into y(t) = [Ly, Ly, ..., Ln],
where L; are labels representing the cluster centers to which data in vector x(t) belongs. Then, during
the process, the last W labels are searched in vector y(t). If this sequence of the last W labels is not
found in y(t), then the search process is repeated for the last W — 1 labels. In PSF, the length of this
label sequence of size W is denoted as the window size. Therefore, window size can vary from W
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to 1, although this is not usual. In the window-size selection process, the sequence of labels of length
size W were picked from the backward direction, and this sequence was searched in the label series.
The selection of optimum window (W) is one of the most challenging processes in prediction with PSF
in order to minimize the prediction errors. The mathematical expression for an optimum window size
is the minimization of Equation (2):

L [IX®) - x)] @)

teTS
where X(t) is a predicted value at time t, X(t) is the measured data at same time instance, and TS
represents the time series under study. Practically, the estimation of an optimum window size is done
by means of errors validation. However, while searching a sequence W in the label series, if this
sequence is not found, then the size of W is reduced by one unit. Again, this process continues until a
new window sequence repeats itself in the label series at least once. This confirms that at least one
sequence appears more than once in the label series. Once the optimum window size is obtained,
the available pattern sequence in the window is searched in y(t), and the label present just after each
discovered sequence is noted in a new vector ES. Finally, the future time-series value is predicted by
averaging the values in vector ES as in Equation (3).

_ 1 size(ES)
X = size(ES) Z; ES(j) @)
]:

where size(ES) is the length of vector ES. Finally, the predicted labels are replaced with the appropriate
value in a range of an original measured time series with a denormalization process. However, in order
to predict future values for multiple time indices, the current predicted value is appended to the
original time series, and this procedure continues until the desired number of prediction values are
obtained. The usability and superior performance of the PSF method for distinct univariate time-series
prediction applications are discussed in References [20-24].

3. Proposed Methodology

The conventional PSF algorithm has gained popularity because of its superior and promising
prediction performance for univariate time series. Also, PSF has shown its capability in wind-power
and wind-speed predictions in [25]. The methodology proposed in this paper is focused on predicting
wind-power data samples framed in a time series with the assistance of corresponding wind-speed
data. The prediction concept is based on the PSF algorithm. This novel methodology is proposed
as an alternative to direct and indirect wind-power prediction approaches. In this methodology,
the wind-power time series is predicted with modifications in conventional PSF and dataset smoothing.
In contradiction to state-of-the-art methods and approaches, the significant difference in the proposed
approach is the utilization of both wind-power and wind-speed datasets to achieve better accuracy in
wind-power predictions.

Usually, researchers have used indirect wind-power prediction approaches due to the highly
chaotic nature of wind-power time series. In comparison to wind-speed time series, the nature of
respective wind-power time series is more chaotic and intermittent. Hence, it is difficult to predict them
more accurately. Contrary to this, indirect approach methods are associated with additional errors
accumulated by the curve fitting of power curves. The proposed approach attempts to reduce the
prediction errors associated with both direct and indirect approaches. Firstly, this approach smooths
down wind-power time series with the help of wind-speed time series by using the same labeling
sequence technique as the one used in the conventional PSF algorithm. Secondly, it predicts the future
values of wind-power time series with PSF principles.

Given wind-speed and wind-power values recorded in the past at a specific interval (5, 15, 30,
and 60 min) up to the day (d — 1), the prediction of future values of wind power is expected at the next
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few intervals (of same precision) for day d. Consider that TSp and T'Sg are the time series composed of
‘n’ samples of wind power and wind speed, respectively, as follows:

TSP = [xl, X2, ,Xn] (4)

TSS = [ylzyZ/u-,yn] (5)

Similar to the procedure followed in PSF, TSp and TSg are converted into label sequence LSp and
LSg, respectively.

Let L;, i € {1,...,K} be the labels of day i obtained in the labeling step of the PSF method, where
K is the number of clusters. LSp and LSg are the label sequence of W consecutive days, as follows:

Lsﬁvjvlv = [Lpt—w,Lpt-w+1,---, Lpi-1] ©

LSQ}}, = [Ls—w,Lst—w+1,---, L 1] ()

The next step is to map the LSp sequence with the LSg sequence. This mapping is done with
decision matrix (M) that uses the Naive Bayesian method. The motive of this matrix is to represent the
pair of each label in LSg with all corresponding labels from LSp with respective occurrence probabilities
of each pair. The formulation of decision matrix (M) is done with four parameters: labels from LSg at ¢
and ¢t — 1, labels from LSp at t, and the probability of occurrence of respective combinations, where ¢ is
the label sequence index (LSp and LSg).

M = f(LSs(t—1), LSs(t), LSp(t), PO) ®)

where PO stands for probability of occurrence.

Table 1 shows a sample decision matrix, where the first three columns are the combinations
of labels of LSs(t — 1), LSs(t), and LSp(t), and the fourth one is the probability of occurrence of a
combination of labels. It can often be possible in a decision matrix that each label in LSg has multiple
alternatives in respective labels in LSp, with different probabilities of occurrence. In such cases,
the Naive Bayesian method is used to map the most suitable pairs in LSp and LSg. This mapping of
labels generates a look-up table (LUT), as shown in Table 2, which is referred further to smooth down
the TSp sequence as indicated in Equation (9):

LUT = f(NB(LSp, LSs)) )

where NB is the Naive Bayesian function.

The next process is the smoothing of the TSp series. This process is performed with the
consideration of the above-mentioned look-up table. Firstly, all labels in LSg are compared with
the respective labels in LSp. The ideal cases are considered wherever these matching pairs follow the
pairs, as mentioned in the look-up table as shown in Equation (10):

[Lss Lst—1,Lps) € LUT (10)

Whereas for mismatched cases, the labels in LSp are replaced with the labels corresponding to the
respective LSg in the look-up table, as shown in Equation (11):

[Ls,t, Lst—1,Lpt] < [Lst Lsi—1,Lprut, (11)

where [Lgy, Lst—1,Lps) ¢ LUT, Ls;, Lp are the labels in LSp and LSg, respectively, and Lp 17 is a
replacement of Lp; from the look-up table at nonideal cases.
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Table 1. Decision matrix.

Probability of
LSs(t—1) LSs(t) LSp(t) Occurrence (%)
L, Ly Ls 63.15
L, Ly L, 27.66
Ly Lq Ly 09.19
Ls L Ls 65.78
Ls L Ly 11.05
Ls Ly Ls 58.33
Ly L, Ly 23.27
Ly Ly Lg 41.66
Ly Ly Ls 38.03
L Ls L1 70.12
Lq Ls Ly 17.32
Lq L3 Ly 12.56
L, Lz L 80.67
Ly Ls Ly 19.33
Ly L Ly 100.00
Ls Ls Ly 35.50
Table 2. Look-up table.
LSs(t—1) Matching of Labels
L LSs (t) Li Ly L3 Ly Ls
! Lsp(t) - - Li L Ly
L LSs (t) Ly Ly Ly Ly Ls
2 LSp(t) Ly - Ly Ly Ly
L LSs(t) L1 Ly L3 Ly Ls
3 LSp(t) Lz Ls - Ly Ly
LSs(t) L1 Ly L3 Ly Ls
Ly )

LSp(t)

Ly

L, -

6 of 19

Eventually, this leads to the removal of labels in LSp responsible for making the wind-power
time series more chaotic and intermittent, and to generate a smoother sequence of wind-power labels

(LSp). This new sequence series (LSp) possesses a positive but much smaller Maximum Lyapunov
Exponent (MLE) compared to that of LSp, as shown in Section 4.3. The correlation coefficient between
LSp and LS is also smaller than the one between LSp and LSs. This assures that the LSp sequence is
smoother and more favorable for future values prediction than LSp. The procedure of the proposed
methodology is illustrated in graphical form and a block diagram in Figures 2 and 3, respectively. It is

also expressed in terms of pseudocode in Figure 4.
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Figure 2. Steps involved in the proposed methodology.
Wind power and wind Conversion to Formation of Formation of Look-up
speed time series sequence of labels Decision Matrix table with Naive .
(TSpand TSg) (LSpand LSg) (M) Bayesian approach |

Prediction with PSF Smoother sequence
— Denormalization of wind power labels Smoothing of LSp
(TSp) (LSp)

Figure 3. Block diagram of the proposed methodology.

Furthermore, the prediction process after smoothing LSp is adopted from a conventional
PSF algorithm. It starts with the calculation of optimum window (W) selection. Similar to the
conventional PSF algorithm, the last W-sized label sequences in LSp are searched for in the whole
LSp series. The mean of the very next label of each repetition of this window (W) sequence is noted
as the future value of LSp, and it is again replaced with a value within the range of TSp with the
denormalization process.
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Input: Dataset D, number of clusters K, labeled dataset [L1, Ly, .., Ly—2, L;_1]

Variables: Label sequence of power LSp iy and speed LSg  data, length of window W, test set T, decision matrix
M, and look-up table LUT

Output: Forecasts TSp(t) for all time intervals of T

Proposed Methodology()

ESt — {}
TSp(t) +~0
for each time index t € T
LS;;JV < [Lpt—w,Lps—w1,.- -, Lp_1]

Lstsfv}/ < [Lst—w,Lst—ws1,-- -, Lse-1]
M « mapping (LS54, LSEL)

LUT « Neive_Bayesian(M)

LS « smoothing(LSh %, f(LUT))
for each j such as TSp(j) € D

Sly ~ [Li-w+1, Li—w42, -+, Lj—1, Lj]
if(Sly = Siy")
ESf — ESt U]

foreachj € ES;
TSp(t) — TSp(t) + TSp(j+ 1)
ﬁp(t) — TSP(IL) /Sl'ZC(ES[)
D+« D> TSp(t)
[L1,Ly,...,Li—1, Lt] < clustering(D, K)
t—t+1
return TSp(t) for all time intervals of T

Figure 4. Pseudocode for the proposed methodology.

4. Case Study

4.1. Description of Experimental Data

The proposed methodology can be better understood if it is accompanied by a numerical example.
This section aims at proving that the proposed method can outperform results obtained by only
using a PSF algorithm without involving the smoothing process. In this study, the performance of the
proposed prediction approach was evaluated using wind-power and wind-speed datasets collected
from the website of the National Renewable Energy Laboratory (NREL), USA [26]. The wind data
were measured in 2012 at a time interval of 5 min. With the same resolution of 5 min, the wind-speed
and -power datasets were segmented for a week from the four seasons (winter, spring, summer,
and autumn). Both wind power and wind speed were measured at the same time interval at the same
location. The basic statistical parameters of these datasets are discussed in Table 3. The mean, median,
minimum, and maximum values of all datasets are shown, which express the variation and deviation
in wind data with respect to the change in seasonal conditions.

4.2. Observations

The proposed methodology has been tested by checking three error performance measures.
These are Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE), which are as given in Equations (12)—-(14).

RMSE = | — % 1%, — X[° (12)
N = 1 1

1 Y .
MAE:N;|XI-—XZ-| (13)
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_ X
: d X 100% (14)

1Y X
MAPE_ﬁi;iXZ

where X; and X; are the measured and predicted data at time ¢, respectively. N is the number of data
for prediction evaluation.

Table 3. Statistical characteristics of datasets.

Season Min Median Mean Max

Power 0.000 2.995 3.604 12.784
Speed  0.204 6.251 6.191 11.011

Power  0.000 9.049 8.601  14.000
Speed 0.164 9.274 12.203  21.100
Power  0.000 2.883 3.806  14.000

Summer Speed  0.161 6.397 6.215  22.740

Power 0.000 1.549 2.699  13.987
Speed  0.061 5212 5294 13483

Power 0.000 3.411 4985  14.000
Speed  0.036 6.655 6.998  30.367

Winter

Spring

Autumn

One Year

The RMSE and MAE values indicate sample standard deviation and variation between measured
and predicted data, respectively, whereas MAPE values show accurate sensitivity measurements for
minute changes in the predicted data.

Further, the prediction accuracy of the proposed method is compared with seven distinct
state-of-the-art methods used for short-term wind-power prediction applications with similar time
horizons. The performance of the proposed method is compared with ARIMA [11,27], Persistence
Model (PM) [28,29], Nonlinear AutoRegressive eXogenous model (NARX) [30], SVM [31,32],
and Multilayer Perceptron neural network (MLP) [33], Extreme Learning Machine neural network
(ELM) [34], and PSF [25] models for each week’s dataset from all four seasons, as well as for the
one-year dataset. All comparisons are performed for 5, 15, 30, and 60 min ahead of value prediction.

Since the proposed method is presented as an alternative to direct and indirect prediction
approaches, its comparison is done with both direct and indirect approaches. In the direct approach,
wind-power datasets are directly predicted with all methods under study, whereas in the indirect
prediction approach, wind-speed datasets are predicted with prediction methods and then transformed
into wind-power data with the use of power curves. In this study, four different power curve fitting
techniques are used, these being the fourth-order polynomial, exponential, fitted-power, and regression
models. The corresponding seasonwise equations are discussed in Appendix A. These equations are
derived by fitting the power curves of datasets of each season as illustrated in Figure 5. Further in
Appendix B, Tables A5 and A6 show the prediction results of state-of-the-art methods with direct
prediction approaches, and those of indirect approaches are tabulated in Tables A5b and A6a—c for the
fourth-order polynomial, exponential, fitted-power, and regression models, respectively. On the same
comparison platform, the prediction results of the proposed approach are shown in Table 4.
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(a) Power Curve for winter data (b) Power Curve for summer data
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Figure 5. Power curves for datasets from (a) winter, (b) summer, (c) spring, and (d) autumn.

Table 4. Performance of proposed methodology for wind power predictions.

Prediction Horizon

Seasons (in Minutes) 5 15 30 60
RMSE 0.005 0.054 0.077  0.127
Winter MAE 0.005  0.050 0.072  0.108
MAPE 0.16 0.776 1.321 2.033
RMSE 0.032 0.124 0.127 0.116
Spring MAE 0.032  0.094 0.109  0.097
MAPE 1972 5.586 7671  6.577
RMSE 0.07 0.172 0.356  0.388
Summer MAE 0.07 0.156 0.310 0.333
MAPE 7.772 22131 37.117 43.49
RMSE 0.051 0.146 0.213 0.316
Autumn MAE 0.051 0.125 0.168  0.251
MAPE 1524 3.456 4475  6.523

However, by primarily observing these tables, the lower RMSE, MAE and MAPE values in the
case of the proposed approach indicates its better prediction accuracy and usability. A more detailed
comparative analysis of the case study is discussed below.

4.3. Discussion

Tables A5 and A6 provide a comparison between distinct prediction models in terms of three
statistical measures for different datasets at different prediction horizons. By simply observing this
table, it can be stated that none of the methods shows superior performance in any cases. Hence, it is
extremely difficult to make a generalized statement regarding any model that could provide the best
prediction method for any wind-power time series. Furthermore, it can be observed that the methods’
performance varies with changes in the prediction horizon. In other words, It does not necessarily
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happen that the method performing the best very short-term prediction horizon is also the best one for
short-term horizon prediction. It is even difficult to generally state which method is superior between
direct or indirect approaches.

In order to address this ambiguity, the results in Tables A5 and A6 were further analyzed in
a different format, as shown in Tables 5 and 6. Table 5 indicates the performance of all methods
excluding the proposed method, collectively for all datasets (one-week data for all four seasons).
Each value in this table represents the percentage of the respective methods that outperformed all other
methods in the comparison. The overall comparison shows that ARIMA, SVM, and PSF showed the
best performance in most cases. These methods outperformed other methods in 16.25%, 22.50%, and
26.25% of cases, respectively. However, if the comparison is done on the basis of prediction horizons,
prediction-method performance significantly varied. In this study, for a 5 min ahead prediction
horizon, PSF showed the best performance in 45% of cases, whereas such dominant performance
was not observed by any method in the 15, 30, and 60 min ahead prediction horizons. Nearly similar
and mixed performance was achieved with most of the methods. It is important to note that the
performance of the ELM models was better in most cases, but while representing the best-performing
methods in Table 5, it only reflected 7.5%. Such misleading results are reflected because prediction
accuracy associated with ELM was very near but quite larger than the best-performing methods.
Contrary to this, the PM method showed the worst prediction accuracy in almost all cases.

Table 5. Percentages of best performance of state-of-the-art methods for different prediction horizons.

Prediction Horizon inMin.) 5 15 30 60 Overall

ARIMA 0 20 25 20 16.25
PM 5 5 10 20 7.50
NARX 15 15 15 15 15
SVM 25 25 15 25 22.50
MLP 10 20 20 10 15
ELM 0 10 5 10 6.25
MLP 45 15 20 25 26.25

Interestingly, the best performance percentage in Table 5 changed significantly with the inclusion
of the proposed method, because the errors corresponding to the proposed method were lesser than the
contemporary methods. The prediction errors for all seasons with the proposed methods are tabulated
in Table 4. The proposed method showed the best performance in almost all cases. This quantified
comparison shows the superiority of the proposed method for wind-power predictions. Additionally,
this case study examined and compared the performance of direct and indirect prediction approaches
with the proposed approach as shown in Table 6. This table presents the percentage of cases at which the
corresponding technique (direct or indirect) performed best among other techniques with all prediction
methods in the dataset study from all seasons. These techniques are compared for different prediction
horizons (5, 15, 30, and 60 min). In this study, the direct prediction approach has outperformed all
indirect techniques for all four prediction horizons. Eventually, the direct approach performed best
in overall situations for all seasons. By comparing the performance of indirect approach techniques,
the regression model showed better prediction accuracy in more cases than other techniques for all
prediction horizons.

So far, the comparative study explained the superior performance of the proposed methodology
for week-sized datasets collected from the different seasons in a year. However, it would be interesting
to observe its performance during a whole one-year dataset, and to know the effects of seasonal
variations on prediction accuracy. Figure 6a,b illustrates the wind-speed and wind-power time series
(initial 5000 samples) of the whole one-year dataset, respectively. The power curve between these
time series is also shown in Figure 6¢. As discussed in Section 3, the proposed methodology smooths
down the wind-power time series as shown in Figure 6d. The changes in amplitudes of smoother time
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series (TSp as shown in Figure 6d) at various samples are clearly visible as compared to measured
wind power time series (TSp). These significant changes in amplitudes of TSp remove the chaotic
components in it, so that maximum Lyapunov exponent, which was 0.9898 for TSp is reduced to
0.9221 for TSp. It was also observed that TSp was more correlated to the TSg time series (Correlation
coefficient was 0.981) than to that of TSp (correlation coefficient was 0.9421). This makes time series
more favorable for prediction with PSF methodologies.

(a) Wind speed time series (b) Wind power time series
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Figure 6. Illustrations of a whole one-year dataset used in the study: initial 5000 samples of
(a) wind-speed and (b) wind-power time series; (c¢) power curve; (d) smoother wind-power time
series with the proposed method.

Further, Figure 7 shows the prediction comparison of the initial 100 samples of the observed and
predicted values respective to the validating time series. The comparison of prediction error values
for the whole one-year dataset for distinct time horizons for the proposed and other contemporary
methods is also shown in Table 7. Similar to earlier comparisons for datasets from different seasons,
Figure 7 and Table 7 reflect the superior prediction performance of the proposed methodology.

Table 6. Percentages of best performance of direct and indirect prediction approaches for different
prediction horizons.

Prediction Horizon
(in Minutes)

Direct Approach 67.84 4285 3214 2857  42.85
Forth order polynomial 0 714 1071 10.71 7.14
Exponential models 1071 714 714 2042 11.60
Fitted power model 357 1428 1785 17.85  13.39
Regression model 1785 3571 3214 2042 26.78

Last four rows are curve-fitting techniques used for indirect approaches.

5 15 30 60 Overall
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Figure 7. Comparison of observed and predicted values of a whole one-year dataset (initial 100 samples).

Table 7. Comparison of proposed methodology with contemporary methods for a whole one-year dataset.

Errors ™€ ARIMA PM NARX SVM MLP ELM  Ppsp  Lroposed
(min) Method
5 0227 0508 018 0742 0170 0182 0221 0.134
s 1B 0365 1203 0912 1016 0.621 0364 0371 0.289
30 1991 394 2758 2593 2159 1908  1.836 1.178
60 1952 7301 2727 2549 2036 1.842  1.935 1210
5 0227 0508 018 0742 0120 0182 0221 0.134
MAE 1B 0319 1203 0700 0966 0450 0291  0.358 0.267
30 1515 394 2217 2216 1693 1445 1.733 1.059
60 1553 7301 2330 2234 1634 1451  1.860 1.180
5 3.841 7904 2756 12547 2339  3.081  3.791 2.127
Mapg 18 5054  19.61 10953 15475 6989 4569  5.117 3.969
30 1791 5672 26777 27499 20231 17.042 17552 15238

60 18.68 99.49  28.827 27924 19.741 17410 18.734 15.688

5. Conclusions

In this paper, a wind-power forecasting algorithm has been proposed, which can be considered
an alternative method to direct and indirect approaches. While a direct approach directly predicts
power, and an indirect approach does so with the help of power curves after previous predictions of
wind speed, the proposed method combines both wind-speed and wind-power data, smooths down
the resulting wind-power series, and uses them for predicting wind power in a clearly less chaotic
way than existing methods do.

Multiple simulations were carried out with the aim of collecting a contingent of results.
Three different error measures were used in order to quantify how much the proposed method
can be said to outperform existing ones. Our conclusions are outlined in the next few paragraphs.

Direct prediction approaches show more accuracy in forecasts in comparison to indirect approaches
in terms of all three error measures. The crucial reason behind these observations is that power curves are
only based on the average deterministic relationships between wind-speed and -power datasets. However,
such relationships are actually stochastic in nature. Power-curve variability is the significant factor to
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reduce wind-power prediction accuracy. In contrast, in the proposed method, all time instances in a
wind-power time series are handled and modified individually on a case-by-case basis. This smooths
down the time series and removes stochastic patterns in it up to an extent.

As shown in Table 6 and discussed in the corresponding section, between the contemporary
methods, ARIMA, SVM, and PSF showed the best performance for both direct and indirect approaches
of wind-power predictions. However, Table 5 shows how much the proposed methodology
outperforms ARIMA, SVM, PSE, and other methods for all seasons. It shows, on average, 22.79%,
24.65%, and 17.26% improvement of the proposed method compared to ARIMA, SVM, and PSF,
respectively, for collectively all seasons and time horizons. Similar improvement is observed for the
whole one-year data.

There is scope for future developments. For instance, in this paper, the method used only values
at time instants ¢ and t — 1. A possibility is to use more time instants, suchast —2,t —3,...,t —n.
In a way, this presents certain similarities with Markov processes, where several-order Markov chain
matrices could be established, regarding whether data of one or more previous states are taken into
account when the probability of a state must be calculated.
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Abbreviations

The following abbreviations are used in this manuscript:

ARIMA  Autoregressive integrated moving average
ELM Extreme-learning machine

LUT Look-up table

MAE Mean absolute error

MAPE  Mean absolute percentage error

MLP Multilayer perceptron

NARX  Nonlinear autoregressive exogenous

NB Naive Bayesian

NN Neural networks

NREL National Renewable Energy Laboratory
PM Persistence model

PSF Pattern sequence based forecasting
RMSE Root mean square error

SVM Support vector machine

Appendix A. Power Curve Fitting Equations

Generally, the indirect wind-power prediction approach starts with the prediction of wind-speed
time series, and the predicted values are converted with power-curve equations of the turbines.
However, the practical power curves obtained with the measured wind-power and wind-speed
datasets are different from the turbine power-curve equations provided by turbine manufacturers.
The environmental and seasonal parameters are the factors that significantly affect the power curves.
In this paper, four curve-fitting techniques were used to derive the power-curve equations for four
different seasons (winter, spring, summer, and autumn). These curve-fitting techniques are the
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fourth-ordered polynomial equation, exponential, fitted-power, and regression models. The seasonwise
equations used for these models are shown in Tables A1-A4.

Table Al. Fourth-order polynomial equations.

Seasons Power Curve Fitting Equations

y = —0.1027 4 0.2359 - x — 0.01907 - x?

Winter +0.5247 - x3 — 0.0024 - x*
Sprin y = +3.8504 — 3.8539 - x 4 0.9158 - x2
prng ~ 0.0585 - x3 4+ 0.0011 - x*
Summer Y = 124992 — 23994 - x +0.5681 x?
—0.0305 - 3 + 0.0004 - x*
Autumn ¥ = —0-0462 +0.2038 - x —0.1927 x2

+0.0537 - x3 — 0.0025 - x*

Table A2. Exponential model equations.

Seasons Power Curve Fitting Equations

Winter y = o(~10995+03544-x)
Spring y = ¢(01369+0.0932:x)
Summer y = ¢(03780+01525x)
Autumn y = e(~07418+02908x)

Table A3. Fitted-power model equations.

Seasons Power Curve Fitting Equations

Winter y= 5(0.7992+/-0.0051)
Spring y= 5(0.2342+/-0.0019)
Summer y = x(0.8713+/-0004)
Autumn y = x(0-8138+/-0.0065)

Table A4. Regression model equations.

Seasons Power Curve Fitting Equations

Winter y = —4.7922 4 1.3561 - x
Spring y = —4.3794 +1.0761 - x
Summer y = —3.6410+1.1980 - x
Autumn y = —3.8480 +1.2370 - x

Appendix B. Performance of State-of-the-Art Methods

The comparison of various state-of-the-art methods for wind-power prediction is shown in
Tables A5 and A6. It compares the performance of the ARIMA, PM, NARX, SVM, MLP, ELM, and PSF
methods for direct and indirect prediction approaches for different prediction horizons.
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Table A5. Comparison of wind-power prediction results with (a) direct prediction approach and indirect prediction approach with curve-fitting techniques:
(b) fourth-order polynomial model.

(a) Direct Approach

Errors Z;m:) ARIMA PM NARX SVM MLP ELM PSF
1

Win  Spr Sum Aut  Win  Spr Sum Aut Win  Spr Sum Aut Win  Spr Sum Aut Win Spr Sum Aut  Win  Spr Sum Aut  Win  Spr Sum Aut
RMSE 5 0.016 0.114 0106  0.028 0.018 0.67 0112 0151 0.022 0.049 0094 0.015 0.087 0.129 027 0.044  0.0177 0.061 0113 0.011 0.016 0.148 0.106 0.2  0.006 0.032 0129  0.065
15 0012 0272 0255 011 0.043 0451 0.66 0423 0037 0076 0297 0061 0185 0287 0236 0.039 0031 0127 0281 0061 0024 0319 0287 0223 0.061 0158 0477  0.098
30 0079 0335 038 0437 0148 0.618 0873 1.094 0041 0163 0484 00558 0227 0388 0.32 0318 0.041 0.118 0462 0353 0.041 038 0462 0342 0.087 0251 0753 0417
60 0.219  0.261 0.461 0.648 023  1.033 1.585 1632 011 0786  0.667 0477 0324 0867 0415 0.39 0.103 0474 0635 0516 0.102 0304 0606 0511 0128 0224 0946  0.591
MAE 5 0.016 0.114  0.106  0.028 0.018 0.167 0112 0151 0.022 0.049 0094 0.015 0.087 0.129 0.27 0.044  0.017 0061 0113 0.011 0.016 0.148 0.106 012 0.006 0.032 0129  0.065
15 0.012  0.25 0.198  0.091 0.043 0451 0.66 0423 0035 0074 0233 0.054 0.185 028 0213 0032 0.029 0119 0.221 0.047 0.023 0298 0226 0.196 0.048 0.132 0372 0.085
30 0054 0318 034 0338 0.148 0.618 0873 1.094 0038 0122 0425 0045 0225 038 0299 0281 0037 0107 0405 0259 0.035 0369 0406 0293 0077 0225 0662 0322
60 0173 0225 0415 0566 023 1.033 1585 1.632 0.091 0582 0611 028 0319 0851 0381 0352 0.087 0358 0.58 0441 0.086 0.26 0556 0457 0.118 0201 0838 0516
MAPE 5 0.289  6.511 12.014 0.868 0.325 9.216 12.698 4.76 0.406  2.909 10.502 0478  1.76 1531 1747  11.798 0.321 3.578 12868 0.36  0.291 8.303 11961 382 018 1983 2905 1.941
15 0218 14411 22786 2697 0774 27.283 26.33 12.808 0.64 4832 2512 153 2.757 6103 29.053 18584 0529 7558 24495 136 0421 16.642 24768 5407 0.881 8283  31.672 2512
30 0962 18.341 39.267 9.79 2666 39.778 4921 3615 0.697 10.122 4345 1319 3.129 143 39.689 17444 0675 7261 42612 7281 0.64 20.661 42.685 8.04 1428 13706 51.537 9.255

(b) Indirect Approach (Forth order polynomial)

Errors Time ARIMA PM NARX SVM MLP ELM PSF
(min)  Win  Spr Sum Aut  Win  Spr Sum Aut Win  Spr Sum Aut Win  Spr Sum Aut Win Spr Sum Aut  Win  Spr Sum Aut  Win  Spr Sum Aut
RMSE 5 0.026  0.12 0.208  0.175 0.063 0.191 0254 0202  0.041 0058 0125 0.027 0231 0155 0404 0136 0.033 008 0262 0.036 0.037 0212 026 0.138 0.019 0.055 0.21 0.104

15 0.059 0.21 0218 0.148 0.159 0538 0.694 0526 0076 0.086 0347 0.18 0.247 0341 0498 0.168 0059 0136 0.326 0.095 0.059 0849 0225 0297 0.08 0223 0.68  0.191
30 0.152  0.28 0.165 0259 0231 0717  0.951 1235 0124 0252 0.609 0273 031 0.75  0.561 0779 0073 0279 0.607 0404 0.104 1.48 0295 0397 0.121 0329 0925 0.643
60 0302 0.221 0.195 0402 0.339 1.341 1.725 1.824 0197 0.891 0.757  0.765 0538 147 0824 1.04 0217 0703 0.828 0.684 0.193 2.35 0363  0.611 0.174 0421 1317  0.813
MAE 5 0.026 0.12 0208 0175 0.063 0.191 0254 0202 0.041 0.058 0.125 0.027 0231 0.155 0404 0136 0033 0077 0262 0036 0037 0212 026 0.138 0.019 0.055 0209 0.104
15 0.023 0.17 0.2 0.143 0159 0538 0.694 0526 0072 0078 0313 0176 0244 034 0497 0.167 0054 0127 0308 0.093 0.051 0738 0205 0291 0.069 0234 0.664 0.187
30 0.157  0.25 0.131 0218 0231 0.717 0951 1235 0119 0.198 0467 0271 0297 0.654 0.535 0765 0.069 0.254 0.688 0381 0.096 132 0278 0306 0.119 0308 0922  0.624
60 0297 0.18 0.159 0353 0.339 1.341 1.725 1824 0186 0.73¢ 0.675 0.603 0529 144 08 1.01 0199 0671 0793  0.625 0.187 213 0.328  0.531 0.167 0.422 1309  0.809
MAPE 5 047 728 25303 5.034 073 11.54 1737 574 0712 2.69 1376 0.663 2371 203 2282 1014 0571 8.03 1587 057 0503 1143 3548 4.001 027 2665 36.11 1.32

15 0.73 10.34 3164 4016 1.61 28.8 38.4 16.14  0.855 5.31 3792  2.685 3.589 9.12 36.82 18.87  0.773 1012 28,68 235 0.711 31.05 28.19 6.62 0987 9.95 33.02 412
30 1.02 15108 2249 5926 29 424 58.05 3492 0903 20.28 52.8 3.786  4.84 2224 4474 295 0.912 12.24 4892 881 0931 4471 3803 8706 193 218 64.14 15.68

60 559 11.09 4351 9.361 6.08 6814 6185 4566 1.87 3335 6855 12.097 6.287 3391 5373 3112 235 4391 5883 1644 202 5441 4464 1509 3.04 2501 79.73  28.07
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Table A6. Comparison of wind-power prediction results with (a) exponential model; (b) fitted-power model; and (c) regression model.

(a) Indirect Approach (Exponential models)

Errors Time ARIMA PM NARX SVM MLP ELM PSF
(min)  Win  Spr Sum Aut  Win  Spr Sum  Aut Win  Spr Sum  Aut  Win  Spr Sum  Aut Win  Spr Sum  Aut  Win  Spr Sum  Aut Win  Spr Sum  Aut
RMSE 5 0.036 0.125 0.119 0.135 0.026 0262 012 0122 0.026 0224 012 0116 0.067 0.119 0.17 0037 0.028 0245 012 0125 0.029 0.184 012 0155 001 048 0.1 0.141

15 0.056 0.242 0428 0.227 0.059 039 043 0177 0043 0394 043 0148 0193 0213 048 0.041 0045 0394 043 0197 0047 049 043 0282 0.096 0.64 041 0.263
30 0.073 035 0597 0553 0.153 044 059 034 005 0448 0.6 033 024 0339 065 0072 0.063 0445 0.6 0499 0.068 0.623 0.6 0.644 0.112 071 058  0.308
60 0174 0441 0.688 0.779 0.237 1356 0.68 0.46 0.187 0.348 0.69 0348 039 0788 074 012 0.091 0348 0.69 0706 0.128 0.6 069 089 0287 0.615 0.68 0.504
MAE 5 0.036 0125 0119 0135 0.026 0262 0.12 0122 0026 0244 012 0116 0.067 0119 017 0.037 0.028 0245 0.12 0125 0029 0284 012 0155 0.009 048 0.1 0.141
15 0.056 0241 0.364 0.215 0.057 0384 036 0172 0041 038 036 0145 0172 0204 042 0.04 0.043 038 036 0188 0.044 0474 036 0264 0.091 0631 0406 0.26
30 0.07 0348 0.546 0472 0.152 0432 054 0308 0049 0436 055 0289 0224 0328 0.16 0.071 0.061 0434 054 0423 0.061 0.601 054 0556 0.109 0703 053  0.304
60 0.168 0376 0.645 0.707 0.229 1.325 0.64 0.3431 0.133 0301 065 0307 0353 0.755 0.7 0.099  0.087 0.3 0.65 0.639 0116 0.586 0.65 0.819 0285 0592 064 0497
MAPE 5 054  6.61 1073 427 024 1375 108 3.82 0.41 1292 108 362 1197 7822 1531 13112 0.68 1299 1079 392 034 1473 1079 491 0249 2286 942 4.6
15 0.61 1662 3276 6.63 087 2052 329 523 076 2031 3289 439 2295 685 3621 19.03 091 2033 3286 576 0.66 2396 32.86 83 098  29.69 31.87 449
30 162 2055 49.18 1431 2701 2339 49.1 8.76 092 2354 4962 816 3194 1851 5176 2002 162 2346 493 1259 098 2953 493 17.4 1.795 3312 486 1592
60 436 2471 5829 2128 4725 376 5817 11.8 1.79 1641 58.62 8.11 3.689 2049 6029 3262 27 1634 5848 1877 175 2769 5848 2565 396 27.85 58 18.46

(b) Indirect Approach (Fitted power model)

Errors  Time ARIMA PM NARX SVM MLP ELM PSF
(min)  Win  Spr Sum Aut  Win  Spr Sum  Aut Win  Spr Sum  Aut  Win  Spr Sum  Aut Win  Spr Sum  Aut  Win  Spr Sum  Aut Win  Spr Sum  Aut
RMSE 5 0062 0.156 0.188 0.5 0064 0155 019 0145 0062 0162 019 0143 0057 0134 026 0041 0043 0.181 018 0.146 0.023 0.147 018 0156 0.011 0.084 0.158 0.13

15 0.071 0177 0487 0.282 0.071 0.105 0491 0.267 0069 0.113 0492 0258 0166 022 0.55 0.054 0.076 0.113 0491 0273 0.047 0.128 0491 03 0.037 0131 0465 0.26
30 014 0234 0.659 0.62 0.148 0.115 0.652 0.575 0139 012 066 0571 0234 0371 073 0.083  0.148 0.119 0.665 0.619 0.145 0.168 066 0664 0.094 0178 0.641 0.381
60 019 0273 075 0.88 0208 0.17 0.804 0.752 0.163 0.195 0768 0.74 0381 0615 082 021 0.185 0.29 0761 0.86 0.194 0.152 075 0919 0.184 0.169 0.742 0.67
MAE 5 0.056 0.155 0.188 0.15 0.064 0.155 0.19 0.145 0.062 0162 0.19 0143 0.057 0.134 026 0.041 0.043 0181 0.18 0.146 0.023 0.147 0.18 0.156 0.011 0.084 0.158 0.12
15 0.07 0165 0432 0264 0.07 0101 0436 0.251 0.069 0.091 0436 0243 0.166 0.198 05 0.052  0.073 0.09 043 0256 0.047 0.114 043 028 0.036 012 0406 0.25
30 012 0215 0.613 0.54 0.147 0.091 0.608 0.501 0.136 0.104 0.621 0496 0.233 0.331 0.68 0.079  0.146 0.103 0.61 0535 0.144 0.155 0.61 0576  0.091 0.165 0.592 0.374
60 018 0271 0.711 0.807 0.205 0.136 0.702 0.788 0.15 0.154 0.729 0.678 037 0.559 0.78 0.14 0177 0251 072 0786 0.138 0.134 072 0.842 0.176 0.143 0.7 0.61
MAPE 5 11 8.52 1585 4.74 113 1043  16.04 4.6 0.103 1093 16.05 4.53 1188 2642 2099 8.6 0.415 4.89 16.03 463 0224 987 16.03 495 097 543 375 5.08
15 227 16.63 36.66 8.3 226 5942 36.80 7.84 122 618 3684 757 204 525 4049 972 0.93 614 3681 8.017 0535 756 3681 8.84 1.44 7.71 3516 5.68
30 377 1814 5209 1716 279 6.804 5201 1533 256 709 5236 1514 3512 10.15 55 11.03 1.077 7.01 5228 166 0817 1016 5228 1817 217 1061 5112 6.94
60 6.59 1985 60.62 2514 299 9267 6044 22 3.844 1068 61.12 20.17 4203 2051 6296 12.89 1.74 1039 6093 2431 1623 865 60.89 26.56 2.33 1957 60.16 9.03

(c) Indirect Approach (Regression model)

Errors  Time ARIMA PM NARX SVM MLP ELM PSF
(min) Win  Spr Sum Aut  Win  Spr Sum  Aut Win  Spr Sum  Aut  Win  Spr Sum  Aut Win  Spr Sum  Aut  Win  Spr Sum  Aut Win  Spr Sum  Aut
RMSE 5 0.037 0.145 0.18 012 0.034 0126 032 0156 0.037 0237 0932 0.148 0066 0071 0024 0575 0.036 0.228 0.119 0.09 0.035 0.105 0.121 0.1007 0.068 0.166 0282 0.181

15 0.032 0133 0.239 025 0.033 0.153 0.63 0.184 0.037 0.181 1.221 0.247 0.071 0.161 0.168 0589 0.029 0.177 0289 0.112 0.028 0495 0.284 0.223 0.137 0.281 0.294 0.195
30 0.071 0.165 0.317 047 0.063 0259 098  0.298 0.104 0226 1492 039 0159 0361 0.191 0692 0.074 0242 0379 0402 0.067 0.68 036  0.588 0163 0.349 046 0.253
60 014 0.16 0.487 0.68 0.078 0.321 0.804 0.564 026 0.665 1.87 0487 0204 049 0469 0903 0174 039% 0748 0.592 0.138 0.731 0474 0.683 0.266 0.257 0.809 0.487
MAE 5 0.037 0.145 0.186 0.17 0.034 0.126 032 0.156 0.037 0.237 0932 0.148 0.066 0.071 0.024 0575 0.036 0.228 0.119 0.096 0.035 0.105 0.121 0.1007 0.068 0.166 0.282 0.181
15 0.031 0.12 0227 023 0.033 0.15 0.68  0.179 0.037 0175 1196 0.241 0.071 0.159 0.166 0586 0.028 0.172 0278 0.102 0.026 0489 0.26  0.203 0136 0.278 0.284 0.193
30 0.059 0.154 0.307 038 0.056 0.239 094 0271 0.084 0.21 1458 0393 0.154 036 0.189 0689 0.059 0226 035 0319 0.053 0.64 034 0491 0.163 0.345 0409 0.25
MAPE 5 0.673 9.73 1657 3.3 0.614 8.31 1829 373 0.676 16.84 4839 347 1217 1805 1348 1193 0.647 16.09 18.04 3.86 0.628 8.19 18.11 3.93 0.954 1148 30.67 4.06
15 057 795 2828 413 0592 1152 316 54 0.661 13.16 6141 44 1.302 163 18.4 18.81 0508 1295 2678 5.045 0476 1922 20.87 6.24 1264 16.14 3937 498
30 1.065 1013 3696 1121 1.015 2197 4284 7.87 1493 1792 7162 7.143 299 1832 3028 21.34 1.063 1998 4052 9.149 0965 2255 2647 15.08 2.3 18.67 4517 6.79
60 2166 918 5031 17.69 1.325 2577 614 7.92 3731 2033 7891 1044 4.657 1748 4252 2606 2569 262 5655 14.72 2111 31.09 35.84 2312 275 14.82 6021 8.04
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