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Abstract: Wind energy is a variable energy source with a growing presence in many electrical
networks across the world. Wind-speed prediction has become an important tool for many agents
involved in energy markets. In this paper, an approach to this problem is proposed by means
of a novel method that outperforms results obtained by current direct and indirect wind-power
prediction procedures. The first difference is that it is not strictly a direct or indirect method in
the conventional sense because it uses information from both wind-speed and wind-power data
series to obtain a wind-power series. The second difference is that it smooths down the wind-power
series obtained in the first stage, and uses the resulting series for predicting new wind-power values.
The process of smoothing is based on the label sequence generation process discussed in the pattern
sequence forecasting algorithm and the Naive Bayesian method-based matching process. The result
is a less chaotic way to predict wind speed than those offered by other existing methods. It has been
assessed in multiple simulations, for which three different error measures have been used.
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1. Introduction

Renewable energy sources, such as solar and wind, are gaining more importance and attention
because of the depletion of conventional energy sources, such as fossil fuels, and pollution generated by
the combustion of such fuels. Wind power is a clean and sustainable source of energy, and it does not
lead to any environmental hazards. Hence, energy generation with wind power has become the main
goal of many countries. However, effective power generation with wind energy is quite an uncertain
process because of the chaotic and intermittent nature of wind-power availability. This uncertainty in
wind power can imperil power availability, quality, and stability. Eventually, this can lead to a huge
loss in the energy market. Hence, precise prediction of wind power is a critical task with deep impact
and large benefits for humanity.

There are various approaches to forecasting wind power and these can be classified broadly into
three categories: (1) model-driven approaches, (2) data-driven approaches, and (3) hybrid approaches [1].
Model-driven approaches require abundant meteorological knowledge and information of various
physical factors affecting wind power [2]. In data-driven approaches, on the other hand, data-driven
statistical models are used for forecasting. With the advancement in the artificial-intelligence and
data-science fields, more accurate prediction results can be achieved with this approach [3]. Historical
data are the only requirement for such models. Many research articles describe the performance of
distinct data-driven models, such as the basic persistence model [4], and complex models, including
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support vector machines (SVM) [5,6], neural networks (NN) [7,8], and autoregressive integrated
moving average (ARIMA) [9]. However, due to the highly stochastic and intermittent nature of
wind-power time series, it is difficult to predict within a significantly accurate range.

Wind-power prediction studies are broadly classified into direct and indirect approaches. In direct
approaches, wind-power data are directly predicted by various methods. The advantage of this kind
of approach is that there is no need to study the relations between wind-power and wind-speed
parameters. However, the prediction accuracy of a direct approach is not always good enough since
wind-power data usually show high levels of randomness and a chaotic nature. Such wind-power
data are very difficult to efficiently process with the prediction methods.

To overcome this difficulty, another part of the available studies focused on indirect prediction
approaches. In this kind of approach, wind-speed data are firstly forecasted, and then the predicted
data converted into wind-power data by means of various techniques. However, in practice, while
transforming wind-speed into wind-power data, further errors are made in prediction accuracy because
of inaccuracies in nonlinear power curve analysis. Generally, wind power and wind speed are related
in terms of cubic or higher-order powers. Hence, a small change in wind speed leads to larger and
significant deviations in wind power. The success of an indirect approach is in how it evaluates the
nonlinear dependence between wind-power and wind-speed data. Such error evaluations lead to a
rise in learning accuracy and comprehensibility. Instead of manufacturer power curves, statistical
techniques seem to be a better option to describe the nonlinear relationship between wind power
and wind speed. Higher-order polynomial equations, exponential, fitted power, regression, logistic,
and many other models are used to estimate wind power by using explanatory wind-speed datasets.

While reviewing the literature related to short-term wind-power prediction, there is a large
number of articles that are focused on direct wind-power as well as wind-speed predictions [10–12].

However, there are very few articles that have compared the performance of direct and indirect
approaches. Most of them have evidenced that the best prediction accuracy comes with direct
approaches [10,11], whereas Reference [12] concluded that an indirect approach performed better than
the alternative.

In this paper, a novel approach is presented in order to eliminate the drawbacks of both direct
and indirect prediction methods used in wind-power predictions. The proposed method cannot be
classified into any of the commented groups because it uses combined information from wind-speed
and wind-power series. In this sense, it is an alternative method and behaves as a direct–indirect
hybrid that does not directly or indirectly predict power. It starts by smoothing down a wind-power
time series by keeping respective wind-speed data as a reference. The process of smoothing down is
based on the label sequence generation process discussed in the PSF algorithm and the Naïve Bayesian
method-based matching process following the next procedure. Wind-speed and wind-power data
are converted into a sequence of labels. Then, these labels are mapped and their best combination is
estimated. Keeping these combinations as a reference, the wind-power labels are smoothed down
and further predicted with the steps involved in the PSF method. After following this procedure,
an important consequence is to reduce the degree of chaos contained in the resulting predicted series.

Multiple simulations have been carried out with the aim of collecting a contingent of results.
Three different error measures have been used in order to quantify how much the proposed method
outperforms existing ones.

The rest of the paper is organized as follows: Section 2 describes the steps involved in the PSF
algorithm. Section 3 introduces the proposed methodology and the description of the prediction
methodology for wind-power forecasting. Section 4 shows the results obtained by the proposed
approach in predicting wind power, including their quality measurements. Comparisons between
the proposed method and other techniques are also provided. Finally, Section 5 summarizes the
conclusions achieved with regard to wind-power predictions.
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2. Conventional PSF Methodology

The PSF algorithm is one of the most popular types of univariate time-series prediction
methodology, proposed in Reference [13] and further analyzed in Reference [14]. The basic principle
behind predictions with the PSF algorithm is an optimum search of pattern sequences present in a
time series. This methodology consists of several processes that operate in two steps. During the first
step, data are clustered, and during the second, the forecasting process is carried out based on the
previously clustered data, as shown in Figure 1. The novelty of the PSF algorithm is the utilization
of labels for respective pattern sequences present in a time series, instead of the use of the original
time-series data.

The clustering step consists of various tasks, including data normalization, the selection of an
optimum number of clusters, and the application of k-means clustering. The ultimate aim of this step
is to discover clusters of time-series data and accordingly label them. This starts with a normalization
process, in which the time series is normalized with Equation (1) in order to remove the redundancies
present in it.

Xj =
Xj

1
N ∑N

i=1 Xi
(1)

where Xj is the jth value of each cycle in the input time series, and N is its size in time units. Secondly,
the normalized series is assigned with the labels according to different patterns present in it with the
help of clustering methods. In PSF, a k-means clustering method is used because of its popularity,
simplicity, and fast computing nature. However, it requires prior knowledge of a number of centers so
that the series can be clustered in respective numbers of clusters. Reference [13] utilized the Silhouette
index [15] to decide the number of clusters in PSF methodology, whereas Reference [14] suggested the
‘best among three’ policy to decide the optimum number of clusters, in which three different indices
(the Silhouette index [15], Dunn index [16], and Davies–Bouldin index [17]) are used. In this policy,
the cluster size is finalized with the use of multiple statistical tests to ensure efficiency in the clustering
process. Further, References [18–20] used a single index (Silhouette index [15]) to simplify computation
complexity in the clustering process.

Then, with respect to cluster heads (K) generated with the k-means clustering method, the values
in the original time series are transformed into label series. These label series are further used for the
prediction procedure. This prediction procedure consists of window-size selection, pattern sequence
matching, and an estimation process.

Figure 1. Steps involved in PSF method.

Consider that x(t) is the vector of time-series data of length N, such that x(t) =

[x1(t), x2(t), ..., xN(t)]. After clustering and labeling, the vector is converted into y(t) = [L1, L2, ..., LN ],
where Li are labels representing the cluster centers to which data in vector x(t) belongs. Then, during
the process, the last W labels are searched in vector y(t). If this sequence of the last W labels is not
found in y(t), then the search process is repeated for the last W − 1 labels. In PSF, the length of this
label sequence of size W is denoted as the window size. Therefore, window size can vary from W
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to 1, although this is not usual. In the window-size selection process, the sequence of labels of length
size W were picked from the backward direction, and this sequence was searched in the label series.
The selection of optimum window (W) is one of the most challenging processes in prediction with PSF
in order to minimize the prediction errors. The mathematical expression for an optimum window size
is the minimization of Equation (2):

∑
tεTS

∥∥X̂(t)− X(t)
∥∥ (2)

where X̂(t) is a predicted value at time t, X(t) is the measured data at same time instance, and TS
represents the time series under study. Practically, the estimation of an optimum window size is done
by means of errors validation. However, while searching a sequence W in the label series, if this
sequence is not found, then the size of W is reduced by one unit. Again, this process continues until a
new window sequence repeats itself in the label series at least once. This confirms that at least one
sequence appears more than once in the label series. Once the optimum window size is obtained,
the available pattern sequence in the window is searched in y(t), and the label present just after each
discovered sequence is noted in a new vector ES. Finally, the future time-series value is predicted by
averaging the values in vector ES as in Equation (3).

X̄ =
1

size(ES)
×

size(ES)

∑
j=1

ES(j) (3)

where size(ES) is the length of vector ES. Finally, the predicted labels are replaced with the appropriate
value in a range of an original measured time series with a denormalization process. However, in order
to predict future values for multiple time indices, the current predicted value is appended to the
original time series, and this procedure continues until the desired number of prediction values are
obtained. The usability and superior performance of the PSF method for distinct univariate time-series
prediction applications are discussed in References [20–24].

3. Proposed Methodology

The conventional PSF algorithm has gained popularity because of its superior and promising
prediction performance for univariate time series. Also, PSF has shown its capability in wind-power
and wind-speed predictions in [25]. The methodology proposed in this paper is focused on predicting
wind-power data samples framed in a time series with the assistance of corresponding wind-speed
data. The prediction concept is based on the PSF algorithm. This novel methodology is proposed
as an alternative to direct and indirect wind-power prediction approaches. In this methodology,
the wind-power time series is predicted with modifications in conventional PSF and dataset smoothing.
In contradiction to state-of-the-art methods and approaches, the significant difference in the proposed
approach is the utilization of both wind-power and wind-speed datasets to achieve better accuracy in
wind-power predictions.

Usually, researchers have used indirect wind-power prediction approaches due to the highly
chaotic nature of wind-power time series. In comparison to wind-speed time series, the nature of
respective wind-power time series is more chaotic and intermittent. Hence, it is difficult to predict them
more accurately. Contrary to this, indirect approach methods are associated with additional errors
accumulated by the curve fitting of power curves. The proposed approach attempts to reduce the
prediction errors associated with both direct and indirect approaches. Firstly, this approach smooths
down wind-power time series with the help of wind-speed time series by using the same labeling
sequence technique as the one used in the conventional PSF algorithm. Secondly, it predicts the future
values of wind-power time series with PSF principles.

Given wind-speed and wind-power values recorded in the past at a specific interval (5, 15, 30,
and 60 min) up to the day (d− 1), the prediction of future values of wind power is expected at the next
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few intervals (of same precision) for day d. Consider that TSP and TSS are the time series composed of
‘n’ samples of wind power and wind speed, respectively, as follows:

TSP = [x1, x2, . . . , xn] (4)

TSS = [y1, y2, . . . , yn] (5)

Similar to the procedure followed in PSF, TSP and TSS are converted into label sequence LSP and
LSS, respectively.

Let Li, i ∈ {1, ..., K} be the labels of day i obtained in the labeling step of the PSF method, where
K is the number of clusters. LSP and LSS are the label sequence of W consecutive days, as follows:

LSt−1
P,W = [LP,t−W , LP,t−W+1, . . . , LP,t−1] (6)

LSt−1
S,W = [LS,t−W , LS,t−W+1, . . . , LS,t−1] (7)

The next step is to map the LSP sequence with the LSS sequence. This mapping is done with
decision matrix (M) that uses the Naïve Bayesian method. The motive of this matrix is to represent the
pair of each label in LSS with all corresponding labels from LSP with respective occurrence probabilities
of each pair. The formulation of decision matrix (M) is done with four parameters: labels from LSS at t
and t− 1, labels from LSP at t, and the probability of occurrence of respective combinations, where t is
the label sequence index (LSP and LSS).

M = f (LSS(t− 1), LSS(t), LSP(t), PO) (8)

where PO stands for probability of occurrence.
Table 1 shows a sample decision matrix, where the first three columns are the combinations

of labels of LSS(t− 1), LSS(t), and LSP(t), and the fourth one is the probability of occurrence of a
combination of labels. It can often be possible in a decision matrix that each label in LSS has multiple
alternatives in respective labels in LSP, with different probabilities of occurrence. In such cases,
the Naïve Bayesian method is used to map the most suitable pairs in LSP and LSS. This mapping of
labels generates a look-up table (LUT), as shown in Table 2, which is referred further to smooth down
the TSP sequence as indicated in Equation (9):

LUT = f (NB(LSP, LSS)) (9)

where NB is the Naïve Bayesian function.
The next process is the smoothing of the TSP series. This process is performed with the

consideration of the above-mentioned look-up table. Firstly, all labels in LSS are compared with
the respective labels in LSP. The ideal cases are considered wherever these matching pairs follow the
pairs, as mentioned in the look-up table as shown in Equation (10):

[LS,t, LS,t−1, LP,t] ∈ LUT (10)

Whereas for mismatched cases, the labels in LSP are replaced with the labels corresponding to the
respective LSS in the look-up table, as shown in Equation (11):

[LS,t, LS,t−1, LP,t]← [LS,t, LS,t−1, LP,LUT,t] (11)

where [LS,t, LS,t−1, LP,t] /∈ LUT, LS,t, LP,t are the labels in LSP and LSS, respectively, and LP,LUT,t is a
replacement of LP,t from the look-up table at nonideal cases.
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Table 1. Decision matrix.

LSS(t − 1) LSS(t) LSP(t) Probability of
Occurrence (%)

L2 L1 L3 63.15
L2 L1 L2 27.66
L2 L1 L4 09.19
L3 L1 L3 65.78
L3 L1 L4 11.05
...

...
...

...
L3 L2 L5 58.33
L3 L2 L4 23.27
...

...
...

...
L4 L2 L6 41.66
L4 L2 L5 38.03
...

...
...

...
L1 L3 L1 70.12
L1 L3 L2 17.32
L1 L3 L4 12.56
L2 L3 L1 80.67
L2 L3 L2 19.33
L4 L3 L2 100.00
L5 L3 L7 35.50
...

...
...

...

Table 2. Look-up table.

LSS(t − 1) Matching of Labels

L1
LSS(t) L1 L2 L3 L4 L5 · · ·
LSP(t) - - L1 L2 L7 · · ·

L2
LSS(t) L1 L2 L3 L4 L5 · · ·
LSP(t) L3 - L1 L2 L7 · · ·

L3
LSS(t) L1 L2 L3 L4 L5 · · ·
LSP(t) L3 L5 - L2 L7 · · ·

L4
LSS(t) L1 L2 L3 L4 L5 · · ·
LSP(t) - L6 L2 L2 - · · ·

...
...

...
...

...
...

... · · ·

Eventually, this leads to the removal of labels in LSP responsible for making the wind-power
time series more chaotic and intermittent, and to generate a smoother sequence of wind-power labels
(LSP). This new sequence series (LSP) possesses a positive but much smaller Maximum Lyapunov
Exponent (MLE) compared to that of LSP, as shown in Section 4.3. The correlation coefficient between
LSP and LSS is also smaller than the one between LSP and LSS. This assures that the LSP sequence is
smoother and more favorable for future values prediction than LSP. The procedure of the proposed
methodology is illustrated in graphical form and a block diagram in Figures 2 and 3, respectively. It is
also expressed in terms of pseudocode in Figure 4.
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Figure 2. Steps involved in the proposed methodology.

Figure 3. Block diagram of the proposed methodology.

Furthermore, the prediction process after smoothing LSP is adopted from a conventional
PSF algorithm. It starts with the calculation of optimum window (W) selection. Similar to the
conventional PSF algorithm, the last W-sized label sequences in LSP are searched for in the whole
LSP series. The mean of the very next label of each repetition of this window (W) sequence is noted
as the future value of LSP, and it is again replaced with a value within the range of TSP with the
denormalization process.
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Input: Dataset D, number of clusters K, labeled dataset [L1, L2, ..., Lt−2, Lt−1]
Variables: Label sequence of power LSP,W and speed LSS,W data, length of window W, test set T, decision matrix
M, and look-up table LUT
Output: Forecasts TSP(t) for all time intervals of T

Proposed Methodology()
ESt ← {}
TSP(t)← 0
for each time index t ∈ T

LSt−1
P,W ← [LP,t−W , LP,t−W+1, . . . , LP,t−1]

LSt−1
S,W ← [LS,t−W , LS,t−W+1, . . . , LS,t−1]

M←mapping(LSt−1
P,W , LSt−1

S,W)

LUT ← Neive_Bayesian(M)

LSt−1
P,W ← smoothing(LSt−1

P,W , f (LUT))
for each j such as TSP(j) ∈ D

Sj
W ←

[
Lj−W+1, Lj−W+2, . . . , Lj−1, Lj

]
if(Sj

W = St−1
W )

ESt ← ESt
⋃

j
for each j ∈ ESt

TSP(t)← TSP(t) + TSP(j + 1)
TSP(t)← TSP(t)/size(ESt)
D ← D B TSP(t)
[L1, L2, ..., Lt−1, Lt]← clustering(D, K)
t← t + 1

return TSP(t) for all time intervals of T

Figure 4. Pseudocode for the proposed methodology.

4. Case Study

4.1. Description of Experimental Data

The proposed methodology can be better understood if it is accompanied by a numerical example.
This section aims at proving that the proposed method can outperform results obtained by only
using a PSF algorithm without involving the smoothing process. In this study, the performance of the
proposed prediction approach was evaluated using wind-power and wind-speed datasets collected
from the website of the National Renewable Energy Laboratory (NREL), USA [26]. The wind data
were measured in 2012 at a time interval of 5 min. With the same resolution of 5 min, the wind-speed
and -power datasets were segmented for a week from the four seasons (winter, spring, summer,
and autumn). Both wind power and wind speed were measured at the same time interval at the same
location. The basic statistical parameters of these datasets are discussed in Table 3. The mean, median,
minimum, and maximum values of all datasets are shown, which express the variation and deviation
in wind data with respect to the change in seasonal conditions.

4.2. Observations

The proposed methodology has been tested by checking three error performance measures.
These are Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE), which are as given in Equations (12)–(14).

RMSE =

√√√√ 1
N

N

∑
i=1

∣∣Xi − X̂i
∣∣2 (12)

MAE =
1
N

N

∑
i=1

∣∣Xi − X̂i
∣∣ (13)
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MAPE =
1
N

N

∑
i=1

∣∣Xi − X̂i
∣∣

Xi
× 100% (14)

where Xi and X̂i are the measured and predicted data at time t, respectively. N is the number of data
for prediction evaluation.

Table 3. Statistical characteristics of datasets.

Season Min Median Mean Max

Winter Power 0.000 2.995 3.604 12.784
Speed 0.204 6.251 6.191 11.011

Spring Power 0.000 9.049 8.601 14.000
Speed 0.164 9.274 12.203 21.100

Summer Power 0.000 2.883 3.806 14.000
Speed 0.161 6.397 6.215 22.740

Autumn Power 0.000 1.549 2.699 13.987
Speed 0.061 5.212 5.294 13.483

One Year Power 0.000 3.411 4.985 14.000
Speed 0.036 6.655 6.998 30.367

The RMSE and MAE values indicate sample standard deviation and variation between measured
and predicted data, respectively, whereas MAPE values show accurate sensitivity measurements for
minute changes in the predicted data.

Further, the prediction accuracy of the proposed method is compared with seven distinct
state-of-the-art methods used for short-term wind-power prediction applications with similar time
horizons. The performance of the proposed method is compared with ARIMA [11,27], Persistence
Model (PM) [28,29], Nonlinear AutoRegressive eXogenous model (NARX) [30], SVM [31,32],
and Multilayer Perceptron neural network (MLP) [33], Extreme Learning Machine neural network
(ELM) [34], and PSF [25] models for each week’s dataset from all four seasons, as well as for the
one-year dataset. All comparisons are performed for 5, 15, 30, and 60 min ahead of value prediction.

Since the proposed method is presented as an alternative to direct and indirect prediction
approaches, its comparison is done with both direct and indirect approaches. In the direct approach,
wind-power datasets are directly predicted with all methods under study, whereas in the indirect
prediction approach, wind-speed datasets are predicted with prediction methods and then transformed
into wind-power data with the use of power curves. In this study, four different power curve fitting
techniques are used, these being the fourth-order polynomial, exponential, fitted-power, and regression
models. The corresponding seasonwise equations are discussed in Appendix A. These equations are
derived by fitting the power curves of datasets of each season as illustrated in Figure 5. Further in
Appendix B, Tables A5 and A6 show the prediction results of state-of-the-art methods with direct
prediction approaches, and those of indirect approaches are tabulated in Tables A5b and A6a–c for the
fourth-order polynomial, exponential, fitted-power, and regression models, respectively. On the same
comparison platform, the prediction results of the proposed approach are shown in Table 4.
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(a) Power Curve for winter data
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(c) Power Curve for spring data
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(b) Power Curve for summer data
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(d) Power Curve for autumn data

Figure 5. Power curves for datasets from (a) winter, (b) summer, (c) spring, and (d) autumn.

Table 4. Performance of proposed methodology for wind power predictions.

Seasons Prediction Horizon
(in Minutes) 5 15 30 60

Winter
RMSE 0.005 0.054 0.077 0.127
MAE 0.005 0.050 0.072 0.108

MAPE 0.16 0.776 1.321 2.033

Spring
RMSE 0.032 0.124 0.127 0.116
MAE 0.032 0.094 0.109 0.097

MAPE 1.972 5.586 7.671 6.577

Summer
RMSE 0.07 0.172 0.356 0.388
MAE 0.07 0.156 0.310 0.333

MAPE 7.772 22.131 37.117 43.49

Autumn
RMSE 0.051 0.146 0.213 0.316
MAE 0.051 0.125 0.168 0.251

MAPE 1.524 3.456 4.475 6.523

However, by primarily observing these tables, the lower RMSE, MAE and MAPE values in the
case of the proposed approach indicates its better prediction accuracy and usability. A more detailed
comparative analysis of the case study is discussed below.

4.3. Discussion

Tables A5 and A6 provide a comparison between distinct prediction models in terms of three
statistical measures for different datasets at different prediction horizons. By simply observing this
table, it can be stated that none of the methods shows superior performance in any cases. Hence, it is
extremely difficult to make a generalized statement regarding any model that could provide the best
prediction method for any wind-power time series. Furthermore, it can be observed that the methods’
performance varies with changes in the prediction horizon. In other words, It does not necessarily
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happen that the method performing the best very short-term prediction horizon is also the best one for
short-term horizon prediction. It is even difficult to generally state which method is superior between
direct or indirect approaches.

In order to address this ambiguity, the results in Tables A5 and A6 were further analyzed in
a different format, as shown in Tables 5 and 6. Table 5 indicates the performance of all methods
excluding the proposed method, collectively for all datasets (one-week data for all four seasons).
Each value in this table represents the percentage of the respective methods that outperformed all other
methods in the comparison. The overall comparison shows that ARIMA, SVM, and PSF showed the
best performance in most cases. These methods outperformed other methods in 16.25%, 22.50%, and
26.25% of cases, respectively. However, if the comparison is done on the basis of prediction horizons,
prediction-method performance significantly varied. In this study, for a 5 min ahead prediction
horizon, PSF showed the best performance in 45% of cases, whereas such dominant performance
was not observed by any method in the 15, 30, and 60 min ahead prediction horizons. Nearly similar
and mixed performance was achieved with most of the methods. It is important to note that the
performance of the ELM models was better in most cases, but while representing the best-performing
methods in Table 5, it only reflected 7.5%. Such misleading results are reflected because prediction
accuracy associated with ELM was very near but quite larger than the best-performing methods.
Contrary to this, the PM method showed the worst prediction accuracy in almost all cases.

Table 5. Percentages of best performance of state-of-the-art methods for different prediction horizons.

Prediction Horizon (in Min.) 5 15 30 60 Overall

ARIMA 0 20 25 20 16.25
PM 5 5 10 20 7.50

NARX 15 15 15 15 15
SVM 25 25 15 25 22.50
MLP 10 20 20 10 15
ELM 0 10 5 10 6.25
MLP 45 15 20 25 26.25

Interestingly, the best performance percentage in Table 5 changed significantly with the inclusion
of the proposed method, because the errors corresponding to the proposed method were lesser than the
contemporary methods. The prediction errors for all seasons with the proposed methods are tabulated
in Table 4. The proposed method showed the best performance in almost all cases. This quantified
comparison shows the superiority of the proposed method for wind-power predictions. Additionally,
this case study examined and compared the performance of direct and indirect prediction approaches
with the proposed approach as shown in Table 6. This table presents the percentage of cases at which the
corresponding technique (direct or indirect) performed best among other techniques with all prediction
methods in the dataset study from all seasons. These techniques are compared for different prediction
horizons (5, 15, 30, and 60 min). In this study, the direct prediction approach has outperformed all
indirect techniques for all four prediction horizons. Eventually, the direct approach performed best
in overall situations for all seasons. By comparing the performance of indirect approach techniques,
the regression model showed better prediction accuracy in more cases than other techniques for all
prediction horizons.

So far, the comparative study explained the superior performance of the proposed methodology
for week-sized datasets collected from the different seasons in a year. However, it would be interesting
to observe its performance during a whole one-year dataset, and to know the effects of seasonal
variations on prediction accuracy. Figure 6a,b illustrates the wind-speed and wind-power time series
(initial 5000 samples) of the whole one-year dataset, respectively. The power curve between these
time series is also shown in Figure 6c. As discussed in Section 3, the proposed methodology smooths
down the wind-power time series as shown in Figure 6d. The changes in amplitudes of smoother time
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series (TSP as shown in Figure 6d) at various samples are clearly visible as compared to measured
wind power time series (TSP). These significant changes in amplitudes of TSP remove the chaotic
components in it, so that maximum Lyapunov exponent, which was 0.9898 for TSP is reduced to
0.9221 for TSP. It was also observed that TSP was more correlated to the TSS time series (Correlation
coefficient was 0.981) than to that of TSP (correlation coefficient was 0.9421). This makes time series
more favorable for prediction with PSF methodologies.
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Figure 6. Illustrations of a whole one-year dataset used in the study: initial 5000 samples of
(a) wind-speed and (b) wind-power time series; (c) power curve; (d) smoother wind-power time
series with the proposed method.

Further, Figure 7 shows the prediction comparison of the initial 100 samples of the observed and
predicted values respective to the validating time series. The comparison of prediction error values
for the whole one-year dataset for distinct time horizons for the proposed and other contemporary
methods is also shown in Table 7. Similar to earlier comparisons for datasets from different seasons,
Figure 7 and Table 7 reflect the superior prediction performance of the proposed methodology.

Table 6. Percentages of best performance of direct and indirect prediction approaches for different
prediction horizons.

Prediction Horizon
(in Minutes) 5 15 30 60 Overall

Direct Approach 67.84 42.85 32.14 28.57 42.85
Forth order polynomial 0 7.14 10.71 10.71 7.14

Exponential models 10.71 7.14 7.14 20.42 11.60
Fitted power model 3.57 14.28 17.85 17.85 13.39
Regression model 17.85 35.71 32.14 20.42 26.78

Last four rows are curve-fitting techniques used for indirect approaches.
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Figure 7. Comparison of observed and predicted values of a whole one-year dataset (initial 100 samples).

Table 7. Comparison of proposed methodology with contemporary methods for a whole one-year dataset.

Errors Time
(min)

ARIMA PM NARX SVM MLP ELM PSF Proposed
Method

RMSE

5 0.227 0.508 0.186 0.742 0.170 0.182 0.221 0.134
15 0.365 1.203 0.912 1.016 0.621 0.364 0.371 0.289
30 1.991 3.94 2.758 2.593 2.159 1.908 1.836 1.178
60 1.952 7.301 2.727 2.549 2.036 1.842 1.935 1.210

MAE

5 0.227 0.508 0.186 0.742 0.120 0.182 0.221 0.134
15 0.319 1.203 0.700 0.966 0.450 0.291 0.358 0.267
30 1.515 3.94 2.217 2.216 1.693 1.445 1.733 1.059
60 1.553 7.301 2.330 2.234 1.634 1.451 1.860 1.180

MAPE

5 3.841 7.904 2.756 12.547 2.339 3.081 3.791 2.127
15 5.054 19.61 10.953 15.475 6.989 4.569 5.117 3.969
30 17.91 56.72 26.777 27.499 20.231 17.042 17.552 15.238
60 18.68 99.49 28.827 27.924 19.741 17.410 18.734 15.688

5. Conclusions

In this paper, a wind-power forecasting algorithm has been proposed, which can be considered
an alternative method to direct and indirect approaches. While a direct approach directly predicts
power, and an indirect approach does so with the help of power curves after previous predictions of
wind speed, the proposed method combines both wind-speed and wind-power data, smooths down
the resulting wind-power series, and uses them for predicting wind power in a clearly less chaotic
way than existing methods do.

Multiple simulations were carried out with the aim of collecting a contingent of results.
Three different error measures were used in order to quantify how much the proposed method
can be said to outperform existing ones. Our conclusions are outlined in the next few paragraphs.

Direct prediction approaches show more accuracy in forecasts in comparison to indirect approaches
in terms of all three error measures. The crucial reason behind these observations is that power curves are
only based on the average deterministic relationships between wind-speed and -power datasets. However,
such relationships are actually stochastic in nature. Power-curve variability is the significant factor to



Energies 2018, 11, 2923 14 of 19

reduce wind-power prediction accuracy. In contrast, in the proposed method, all time instances in a
wind-power time series are handled and modified individually on a case-by-case basis. This smooths
down the time series and removes stochastic patterns in it up to an extent.

As shown in Table 6 and discussed in the corresponding section, between the contemporary
methods, ARIMA, SVM, and PSF showed the best performance for both direct and indirect approaches
of wind-power predictions. However, Table 5 shows how much the proposed methodology
outperforms ARIMA, SVM, PSF, and other methods for all seasons. It shows, on average, 22.79%,
24.65%, and 17.26% improvement of the proposed method compared to ARIMA, SVM, and PSF,
respectively, for collectively all seasons and time horizons. Similar improvement is observed for the
whole one-year data.

There is scope for future developments. For instance, in this paper, the method used only values
at time instants t and t− 1. A possibility is to use more time instants, such as t− 2, t− 3, . . . , t− n.
In a way, this presents certain similarities with Markov processes, where several-order Markov chain
matrices could be established, regarding whether data of one or more previous states are taken into
account when the probability of a state must be calculated.
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The following abbreviations are used in this manuscript:

ARIMA Autoregressive integrated moving average
ELM Extreme-learning machine
LUT Look-up table
MAE Mean absolute error
MAPE Mean absolute percentage error
MLP Multilayer perceptron
NARX Nonlinear autoregressive exogenous
NB Naïve Bayesian
NN Neural networks
NREL National Renewable Energy Laboratory
PM Persistence model
PSF Pattern sequence based forecasting
RMSE Root mean square error
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Appendix A. Power Curve Fitting Equations

Generally, the indirect wind-power prediction approach starts with the prediction of wind-speed
time series, and the predicted values are converted with power-curve equations of the turbines.
However, the practical power curves obtained with the measured wind-power and wind-speed
datasets are different from the turbine power-curve equations provided by turbine manufacturers.
The environmental and seasonal parameters are the factors that significantly affect the power curves.
In this paper, four curve-fitting techniques were used to derive the power-curve equations for four
different seasons (winter, spring, summer, and autumn). These curve-fitting techniques are the
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fourth-ordered polynomial equation, exponential, fitted-power, and regression models. The seasonwise
equations used for these models are shown in Tables A1–A4.

Table A1. Fourth-order polynomial equations.

Seasons Power Curve Fitting Equations

Winter y = −0.1027 + 0.2359 · x− 0.01907 · x2

+ 0.5247 · x3 − 0.0024 · x4

Spring y = +3.8504− 3.8539 · x + 0.9158 · x2

− 0.0585 · x3 + 0.0011 · x4

Summer y = +2.4992− 2.3994 · x + 0.5681 · x2

− 0.0305 · x3 + 0.0004 · x4

Autumn y = −0.0462 + 0.2038 · x− 0.1927 · x2

+ 0.0537 · x3 − 0.0025 · x4

Table A2. Exponential model equations.

Seasons Power Curve Fitting Equations

Winter y = e(−1.0995+0.3544·x)

Spring y = e(0.1369+0.0932·x)

Summer y = e(0.3780+0.1525·x)

Autumn y = e(−0.7418+0.2908·x)

Table A3. Fitted-power model equations.

Seasons Power Curve Fitting Equations

Winter y = x(0.7992+/−0.0051)

Spring y = x(0.2342+/−0.0019)

Summer y = x(0.8713+/−0.0044)

Autumn y = x(0.8138+/−0.0065)

Table A4. Regression model equations.

Seasons Power Curve Fitting Equations

Winter y = −4.7922 + 1.3561 · x

Spring y = −4.3794 + 1.0761 · x

Summer y = −3.6410 + 1.1980 · x

Autumn y = −3.8480 + 1.2370 · x

Appendix B. Performance of State-of-the-Art Methods

The comparison of various state-of-the-art methods for wind-power prediction is shown in
Tables A5 and A6. It compares the performance of the ARIMA, PM, NARX, SVM, MLP, ELM, and PSF
methods for direct and indirect prediction approaches for different prediction horizons.
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Table A5. Comparison of wind-power prediction results with (a) direct prediction approach and indirect prediction approach with curve-fitting techniques:
(b) fourth-order polynomial model.

(a) Direct Approach

Errors Time
(min)

ARIMA PM NARX SVM MLP ELM PSF

Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut
RMSE 5 0.016 0.114 0.106 0.028 0.018 0.167 0.112 0.151 0.022 0.049 0.094 0.015 0.087 0.129 0.27 0.044 0.0177 0.061 0.113 0.011 0.016 0.148 0.106 0.12 0.006 0.032 0.129 0.065

15 0.012 0.272 0.255 0.11 0.043 0.451 0.66 0.423 0.037 0.076 0.297 0.061 0.185 0.287 0.236 0.039 0.031 0.127 0.281 0.061 0.024 0.319 0.287 0.223 0.061 0.158 0.477 0.098
30 0.079 0.335 0.385 0.437 0.148 0.618 0.873 1.094 0.041 0.163 0.484 0.0558 0.227 0.388 0.32 0.318 0.041 0.118 0.462 0.353 0.041 0.386 0.462 0.342 0.087 0.251 0.753 0.417
60 0.219 0.261 0.461 0.648 0.23 1.033 1.585 1.632 0.11 0.786 0.667 0.477 0.324 0.867 0.415 0.39 0.103 0.474 0.635 0.516 0.102 0.304 0.606 0.511 0.128 0.224 0.946 0.591

MAE 5 0.016 0.114 0.106 0.028 0.018 0.167 0.112 0.151 0.022 0.049 0.094 0.015 0.087 0.129 0.27 0.044 0.017 0.061 0.113 0.011 0.016 0.148 0.106 0.12 0.006 0.032 0.129 0.065
15 0.012 0.25 0.198 0.091 0.043 0.451 0.66 0.423 0.035 0.074 0.233 0.054 0.185 0.283 0.213 0.032 0.029 0.119 0.221 0.047 0.023 0.298 0.226 0.196 0.048 0.132 0.372 0.085
30 0.054 0.318 0.34 0.338 0.148 0.618 0.873 1.094 0.038 0.122 0.425 0.045 0.225 0.38 0.299 0.281 0.037 0.107 0.405 0.259 0.035 0.369 0.406 0.293 0.077 0.225 0.662 0.322
60 0.173 0.225 0.415 0.566 0.23 1.033 1.585 1.632 0.091 0.582 0.611 0.288 0.319 0.851 0.381 0.352 0.087 0.358 0.58 0.441 0.086 0.26 0.556 0.457 0.118 0.201 0.838 0.516

MAPE 5 0.289 6.511 12.014 0.868 0.325 9.216 12.698 4.76 0.406 2.909 10.502 0.478 1.76 1.531 17.47 11.798 0.321 3.578 12.868 0.36 0.291 8.303 11.961 3.82 0.18 1.983 2.905 1.941
15 0.218 14.411 22.786 2.697 0.774 27.283 26.33 12.808 0.64 4.832 25.12 1.53 2.757 6.103 29.053 18.584 0.529 7.558 24.495 1.36 0.421 16.642 24.768 5.407 0.881 8.283 31.672 2.512
30 0.962 18.341 39.267 9.79 2.666 39.778 49.21 36.15 0.697 10.122 43.45 1.319 3.129 14.3 39.689 17.444 0.675 7.261 42.612 7.281 0.64 20.661 42.685 8.04 1.428 13.706 51.537 9.255

(b) Indirect Approach (Forth order polynomial)
Errors Time ARIMA PM NARX SVM MLP ELM PSF

(min) Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut
RMSE 5 0.026 0.12 0.208 0.175 0.063 0.191 0.254 0.202 0.041 0.058 0.125 0.027 0.231 0.155 0.404 0.136 0.033 0.085 0.262 0.036 0.037 0.212 0.26 0.138 0.019 0.055 0.21 0.104

15 0.059 0.21 0.218 0.148 0.159 0.538 0.694 0.526 0.076 0.086 0.347 0.18 0.247 0.341 0.498 0.168 0.059 0.136 0.326 0.095 0.059 0.849 0.225 0.297 0.08 0.223 0.686 0.191
30 0.152 0.28 0.165 0.259 0.231 0.717 0.951 1.235 0.124 0.252 0.609 0.273 0.31 0.75 0.561 0.779 0.073 0.279 0.607 0.404 0.104 1.48 0.295 0.397 0.121 0.329 0.925 0.643
60 0.302 0.221 0.195 0.402 0.339 1.341 1.725 1.824 0.197 0.891 0.757 0.765 0.538 1.47 0.824 1.04 0.217 0.703 0.828 0.684 0.193 2.35 0.363 0.611 0.174 0.421 1.317 0.813

MAE 5 0.026 0.12 0.208 0.175 0.063 0.191 0.254 0.202 0.041 0.058 0.125 0.027 0.231 0.155 0.404 0.136 0.033 0.077 0.262 0.036 0.037 0.212 0.26 0.138 0.019 0.055 0.209 0.104
15 0.023 0.17 0.2 0.143 0.159 0.538 0.694 0.526 0.072 0.078 0.313 0.176 0.244 0.34 0.497 0.167 0.054 0.127 0.308 0.093 0.051 0.738 0.205 0.291 0.069 0.234 0.664 0.187
30 0.157 0.25 0.131 0.218 0.231 0.717 0.951 1.235 0.119 0.198 0.467 0.271 0.297 0.654 0.535 0.765 0.069 0.254 0.688 0.381 0.096 1.32 0.278 0.306 0.119 0.308 0.922 0.624
60 0.297 0.18 0.159 0.353 0.339 1.341 1.725 1.824 0.186 0.734 0.675 0.603 0.529 1.44 0.8 1.01 0.199 0.671 0.793 0.625 0.187 2.13 0.328 0.531 0.167 0.422 1.309 0.809

MAPE 5 0.47 7.28 25.303 5.034 0.73 11.54 17.37 5.74 0.712 2.69 13.76 0.663 2.371 2.03 22.82 10.14 0.571 8.03 15.87 0.57 0.503 11.43 35.48 4.001 0.27 2.665 36.11 1.32
15 0.73 10.34 31.64 4.016 1.61 28.8 38.4 16.14 0.855 5.31 37.92 2.685 3.589 9.12 36.82 18.87 0.773 10.12 28.68 2.35 0.711 31.05 28.19 6.62 0.987 9.95 33.02 4.12
30 1.02 15.108 22.49 5.926 2.9 42.4 58.05 34.92 0.903 20.28 52.8 3.786 4.84 22.24 44.74 29.5 0.912 12.24 48.92 8.81 0.931 44.71 38.03 8.706 1.93 21.8 64.14 15.68
60 5.59 11.09 43.51 9.361 6.08 68.14 61.85 45.66 1.87 33.35 68.55 12.097 6.287 33.91 53.73 31.12 2.35 43.91 58.83 16.44 2.02 54.41 44.64 15.09 3.04 25.01 79.73 28.07
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Table A6. Comparison of wind-power prediction results with (a) exponential model; (b) fitted-power model; and (c) regression model.

(a) Indirect Approach (Exponential models)
Errors Time ARIMA PM NARX SVM MLP ELM PSF

(min) Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut
RMSE 5 0.036 0.125 0.119 0.135 0.026 0.262 0.12 0.122 0.026 0.224 0.12 0.116 0.067 0.119 0.17 0.037 0.028 0.245 0.12 0.125 0.029 0.184 0.12 0.155 0.01 0.48 0.1 0.141

15 0.056 0.242 0.428 0.227 0.059 0.395 0.43 0.177 0.043 0.394 0.43 0.148 0.193 0.213 0.48 0.041 0.045 0.394 0.43 0.197 0.047 0.496 0.43 0.282 0.096 0.64 0.41 0.263
30 0.073 0.35 0.597 0.553 0.153 0.44 0.59 0.34 0.05 0.448 0.6 0.33 0.24 0.339 0.65 0.072 0.063 0.445 0.6 0.499 0.068 0.623 0.6 0.644 0.112 0.71 0.58 0.308
60 0.174 0.441 0.688 0.779 0.237 1.356 0.68 0.46 0.187 0.348 0.69 0.348 0.39 0.788 0.74 0.12 0.091 0.348 0.69 0.706 0.128 0.6 0.69 0.896 0.287 0.615 0.68 0.504

MAE 5 0.036 0.125 0.119 0.135 0.026 0.262 0.12 0.122 0.026 0.244 0.12 0.116 0.067 0.119 0.17 0.037 0.028 0.245 0.12 0.125 0.029 0.284 0.12 0.155 0.009 0.48 0.1 0.141
15 0.056 0.241 0.364 0.215 0.057 0.384 0.36 0.172 0.041 0.38 0.36 0.145 0.172 0.204 0.42 0.04 0.043 0.38 0.36 0.188 0.044 0.474 0.36 0.264 0.091 0.631 0.406 0.26
30 0.07 0.348 0.546 0.472 0.152 0.432 0.54 0.308 0.049 0.436 0.55 0.289 0.224 0.328 0.16 0.071 0.061 0.434 0.54 0.423 0.061 0.601 0.54 0.556 0.109 0.703 0.53 0.304
60 0.168 0.376 0.645 0.707 0.229 1.325 0.64 0.3431 0.133 0.301 0.65 0.307 0.353 0.755 0.7 0.099 0.087 0.3 0.65 0.639 0.116 0.586 0.65 0.819 0.285 0.592 0.64 0.497

MAPE 5 0.54 6.61 10.73 4.27 0.24 13.75 10.8 3.82 0.41 12.92 10.8 3.62 1.197 7.822 15.31 13.112 0.68 12.99 10.79 3.92 0.34 14.73 10.79 4.91 0.249 22.86 9.42 4.6
15 0.61 16.62 32.76 6.63 0.87 20.52 32.9 5.23 0.76 20.31 32.89 4.39 2.295 6.85 36.21 19.03 0.91 20.33 32.86 5.76 0.66 23.96 32.86 8.3 0.98 29.69 31.87 4.49
30 1.62 20.55 49.18 14.31 2.701 23.39 49.1 8.76 0.92 23.54 49.62 8.16 3.194 18.51 51.76 20.02 1.62 23.46 49.3 12.59 0.98 29.53 49.3 17.4 1.795 33.12 48.6 15.92
60 4.36 24.71 58.29 21.28 4.725 37.6 58.17 11.8 1.79 16.41 58.62 8.11 3.689 20.49 60.29 32.62 2.7 16.34 58.48 18.77 1.75 27.69 58.48 25.65 3.96 27.85 58 18.46

(b) Indirect Approach (Fitted power model)
Errors Time ARIMA PM NARX SVM MLP ELM PSF

(min) Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut
RMSE 5 0.062 0.156 0.188 0.15 0.064 0.155 0.19 0.145 0.062 0.162 0.19 0.143 0.057 0.134 0.26 0.041 0.043 0.181 0.18 0.146 0.023 0.147 0.18 0.156 0.011 0.084 0.158 0.13

15 0.071 0.177 0.487 0.282 0.071 0.105 0.491 0.267 0.069 0.113 0.492 0.258 0.166 0.22 0.55 0.054 0.076 0.113 0.491 0.273 0.047 0.128 0.491 0.3 0.037 0.131 0.465 0.26
30 0.14 0.234 0.659 0.62 0.148 0.115 0.652 0.575 0.139 0.12 0.66 0.571 0.234 0.371 0.73 0.083 0.148 0.119 0.665 0.619 0.145 0.168 0.66 0.664 0.094 0.178 0.641 0.381
60 0.19 0.273 0.75 0.88 0.208 0.17 0.804 0.752 0.163 0.195 0.768 0.74 0.381 0.615 0.82 0.21 0.185 0.29 0.761 0.86 0.194 0.152 0.75 0.919 0.184 0.169 0.742 0.67

MAE 5 0.056 0.155 0.188 0.15 0.064 0.155 0.19 0.145 0.062 0.162 0.19 0.143 0.057 0.134 0.26 0.041 0.043 0.181 0.18 0.146 0.023 0.147 0.18 0.156 0.011 0.084 0.158 0.12
15 0.07 0.165 0.432 0.264 0.07 0.101 0.436 0.251 0.069 0.091 0.436 0.243 0.166 0.198 0.5 0.052 0.073 0.09 0.43 0.256 0.047 0.114 0.43 0.28 0.036 0.12 0.406 0.25
30 0.12 0.215 0.613 0.54 0.147 0.091 0.608 0.501 0.136 0.104 0.621 0.496 0.233 0.331 0.68 0.079 0.146 0.103 0.61 0.535 0.144 0.155 0.61 0.576 0.091 0.165 0.592 0.374
60 0.18 0.271 0.711 0.807 0.205 0.136 0.702 0.788 0.15 0.154 0.729 0.678 0.37 0.559 0.78 0.14 0.177 0.251 0.72 0.786 0.138 0.134 0.72 0.842 0.176 0.143 0.7 0.61

MAPE 5 1.1 8.52 15.85 4.74 1.13 10.43 16.04 4.6 0.103 10.93 16.05 4.53 1.188 2.642 20.99 8.6 0.415 4.89 16.03 4.63 0.224 9.87 16.03 4.95 0.97 5.43 3.75 5.08
15 2.27 16.63 36.66 8.3 2.26 5.942 36.86 7.84 1.22 6.18 36.84 7.57 2.04 5.25 40.49 9.72 0.93 6.14 36.81 8.017 0.535 7.56 36.81 8.84 1.44 7.71 35.16 5.68
30 3.77 18.14 52.09 17.16 2.79 6.804 52.01 15.33 2.56 7.09 52.36 15.14 3.512 10.15 55 11.03 1.077 7.01 52.28 16.6 0.817 10.16 52.28 18.17 2.17 10.61 51.12 6.94
60 6.59 19.85 60.62 25.14 2.99 9.267 60.44 22 3.844 10.68 61.12 20.17 4.203 20.51 62.96 12.89 1.74 10.39 60.93 24.31 1.623 8.65 60.89 26.56 2.33 19.57 60.16 9.03

(c) Indirect Approach (Regression model)
Errors Time ARIMA PM NARX SVM MLP ELM PSF

(min) Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut Win Spr Sum Aut
RMSE 5 0.037 0.145 0.186 0.12 0.034 0.126 0.32 0.156 0.037 0.237 0.932 0.148 0.066 0.071 0.024 0.575 0.036 0.228 0.119 0.096 0.035 0.105 0.121 0.1007 0.068 0.166 0.282 0.181

15 0.032 0.133 0.239 0.25 0.033 0.153 0.63 0.184 0.037 0.181 1.221 0.247 0.071 0.161 0.168 0.589 0.029 0.177 0.289 0.112 0.028 0.495 0.284 0.223 0.137 0.281 0.294 0.195
30 0.071 0.165 0.317 0.47 0.063 0.259 0.98 0.298 0.104 0.226 1.492 0.396 0.159 0.361 0.191 0.692 0.074 0.242 0.379 0.402 0.067 0.68 0.36 0.588 0.163 0.349 0.46 0.253
60 0.14 0.16 0.487 0.68 0.078 0.321 0.804 0.564 0.26 0.665 1.87 0.487 0.204 0.49 0.469 0.903 0.174 0.396 0.748 0.592 0.138 0.731 0.474 0.683 0.266 0.257 0.809 0.487

MAE 5 0.037 0.145 0.186 0.17 0.034 0.126 0.32 0.156 0.037 0.237 0.932 0.148 0.066 0.071 0.024 0.575 0.036 0.228 0.119 0.096 0.035 0.105 0.121 0.1007 0.068 0.166 0.282 0.181
15 0.031 0.12 0.227 0.23 0.033 0.15 0.68 0.179 0.037 0.175 1.196 0.241 0.071 0.159 0.166 0.586 0.028 0.172 0.278 0.102 0.026 0.489 0.26 0.203 0.136 0.278 0.284 0.193
30 0.059 0.154 0.307 0.38 0.056 0.239 0.94 0.271 0.084 0.21 1.458 0.393 0.154 0.36 0.189 0.689 0.059 0.226 0.356 0.319 0.053 0.64 0.34 0.491 0.163 0.345 0.409 0.25

MAPE 5 0.673 9.73 16.57 3.3 0.614 8.31 18.29 3.73 0.676 16.84 48.39 3.47 1.217 18.05 13.48 11.93 0.647 16.09 18.04 3.86 0.628 8.19 18.11 3.93 0.954 11.48 30.67 4.06
15 0.57 7.95 28.28 4.13 0.592 11.52 31.6 5.4 0.661 13.16 61.41 4.4 1.302 16.3 18.4 18.81 0.508 12.95 26.78 5.045 0.476 19.22 20.87 6.24 1.264 16.14 39.37 4.98
30 1.065 10.13 36.96 11.21 1.015 21.97 42.84 7.87 1.493 17.92 71.62 7.143 2.99 18.32 30.28 21.34 1.063 19.98 40.52 9.149 0.965 22.55 26.47 15.08 2.3 18.67 45.17 6.79
60 2.166 9.18 50.31 17.69 1.325 25.77 61.4 7.92 3.731 20.33 78.91 10.44 4.657 17.48 42.52 26.06 2.569 26.2 56.55 14.72 2.111 31.09 35.84 23.12 2.75 14.82 60.21 8.04
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