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Abstract: Electric load forecasting is indispensable for the effective planning and operation of
power systems. Various decisions related to power systems depend on the future behavior of
loads. In this paper, we propose a new input selection procedure, which combines the group
method of data handling (GMDH) and bootstrap method for support vector regression based hourly
load forecasting. To construct the GMDH network, a learning dataset is divided into training and
test datasets by bootstrapping. After constructing GMDH networks several times, the inputs that
appeared frequently in the input layers of the completed networks were selected as the significant
inputs. Filter methods based on linear correlation and mutual information (MI) were employed
as comparison methods, and the performance of hybrids of the filter methods and the proposed
method were also confirmed. In total, five input selection methods were compared. To verify the
performance of the proposed method, hourly load data from South Korea was used and the results
of one-hour, one-day and one-week-ahead forecasts were investigated. The experimental results
demonstrated that the proposed method has higher prediction accuracy compared with the filter
methods. Among the five methods, a hybrid of an MI-based filter with the proposed method shows
best prediction performance.

Keywords: hourly load forecasting; input selection; group method of data handling; bootstrap
method; support vector regression

1. Introduction

Electric load forecasting (ELF) is essential for the effective and stable planning and operation of
power systems [1]. Forecasting models are constructed based on historical load series and exogenous
variables (e.g., weather, economic, and social factors), and the models are used to predict future
loads for a specified period of time ahead. Various decisions related to power systems depend
on the future behavior of loads, such as unit commitment, spinning reserve reduction, economic
dispatch, automatic generation control, reliability analysis, maintenance scheduling, and energy
commercialization [2,3]. ELF, especially, has major effects on deregulated electricity markets (e.g.,
demand response management [4–6]) and their participants because the prices on the markets are
determined by the predicted future loads. Therefore, accurate and robust ELF can contribute greatly
to decision making related to power systems. However, it is difficult to precisely forecast time-series
loads because they exhibit a high degree of seasonality and nonlinear characteristics.

In recent decades, a wide range of methods has been proposed for ELF. In particular, artificial
intelligence-based methods such as artificial neural networks (ANNs) [7–10] and support vector
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regression (SVR) [11–15] have been applied successfully to ELF due to their excellent learning capacity
and nonlinear mapping ability without requiring any prior domain knowledge. However, ANNs based
on the empirical risk minimization principle often suffer from over-fitting problems. Furthermore,
when derivative-based optimization techniques are used for training ANNs, they are likely to be
trapped in a local minimum. Compared to ANNs, over-fitting problems can be overcome in SVR
because it is based on the structural risk minimization principle [16,17], i.e., the learning error and
generalization capability are considered simultaneously.

The importance of ELF and its difficulty have motivated extensive studies, but the problem of
input selection for ELF models remains an open question. In ELF, a major issue is selecting significant
inputs (SIs) from many initial input candidates (IICs). Three main reasons necessitate input selection
procedures [18,19]. First, properly selected inputs decrease the complexity of the model, and thus
facilitate more efficient learning. Second, the forecasting performance can be improved by removing
redundant inputs that are irrelevant to the outputs and dependent on other inputs. Finally, we can
gain valuable insights into the fundamental features of loads and their prediction mechanism. In the
following, we summarize several previous studies on input selection methods for load forecasting.

Ghofrani et al. [20] proposed a new input selection framework by combining correlation analysis
and the l2-norm for short-term load forecasting (STLF). Koprinska et al. [21] used mutual information
(MI), RReliefF, and a correlation-based method for feature selection of the load forecasting model.
Sheikhan and Mohammadi [22] developed a feature selection method by combining a genetic
algorithm with ant colony optimization for STLF. Tikka and Hollmén [23] proposed sequential
backward input selection for ELF, which is based on a linear model and a cross-validation resampling
procedure. Sorjamaa et al. [24] combined a direct prediction strategy with three input selection criteria,
i.e., k-nearest neighbors approximation method, MI, and nonparametric noise estimation, for ELF.
Da Silva et al. [25] used filter methods based on phase-space embedding and MI and Bayesian wrapper
methods for ANN-based ELF. Hu et al. [19] proposed a hybrid filter-wrapper approach with a partial
MI and firefly algorithm for STLF feature selection.

In general, the methods mentioned above can be categorized as filter (model-free) or wrapper
(model-based) methods [26–29]. In filter methods, after statistical analyses between the potential inputs
and output, the inputs with strong relationships to the output are selected as SIs. In wrapper methods,
the accuracy of learning machines is used as a selection criterion and the best input combinations are
explored by sequential search procedures, such as backward elimination, forward selection, stepwise
selection, and metaheuristics. Filter methods can select SIs without learning machines, but these
methods do not consider the prediction accuracy, and thus they often perform worse than wrapper
methods. Linear correlation (LC) analysis, frequently used in filter methods, with nonlinear predictors
can degrade the forecasting performance because they cannot identify nonlinear relationships between
inputs and output. In wrapper approaches, the best input combinations are determined by the
sequential search procedures, so the computational complexity grows exponentially with the number
of IICs. Furthermore, depending on the structure and parameter identification methods used for
wrappers, biased input selection results may be obtained.

In summary, instead of only considering the one-to-one statistical correlations, input
selection methods for data-driven load forecasting should be able to tackle both the many-to-one
nonlinear relationships between dependent and independent variables and the accuracy of the
forecasting machines.

In this paper, we propose a new input selection procedure based on the group method of data
handling (GMDH) and the bootstrap method for ELF. Although there are several previous studies
where GMDH is employed for ELF [30,31], this paper is the first attempt to use GMDH only for input
selection. Generally, GMDH networks have been widely used for modeling the nonlinear relationships
between variables. Compared with the previous approaches, this paper focuses on the fact that, based
only on a given dataset, the GMDH algorithm can not only determine the network structures but
also select the inputs with significant explanatory powers for predicting the outputs. In the GMDH
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algorithm, the GMDH networks where polynomial neurons are hierarchically connected with each
other are automatically constructed using learning datasets collected from target systems. Among a
number of IICs, the remaining elements in the input layer of the finally constructed GMDH network
are considered as relevant inputs. The learning dataset should be divided into training and test datasets
to construct the GMDH network. In this study, bootstrap method is applied for the data division.
The learning dataset is divided randomly by bootstrap sampling, so the relevant inputs are different
each time. Therefore, in the proposed method, after constructing GMDH networks several times using
bootstrapping, the inputs that appear frequently in the input layers of the completed networks are
finally selected as the SIs.

The main advantages of the proposed input selection method combining the GMDH and bootstrap
method can be briefly summarized as follows. First, based on the GMDH network structures in which
the polynomial neurons are hierarchically connected with each other (see Figure 1), the method can
select significant inputs by taking many-to-one nonlinear relationships between explanatory and target
variables into consideration. Second, since prediction accuracy is used as the input selection criterion
(see Section 2.2), it is expected that the method achieves improved forecasting performance compared
to filter methods based only on the statistical analyses.
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Figure 1. Group method of data handling (GMDH) network. In each layer, polynomial neurons are
described by squares and they constitute a hierarchical and forward network structure. Here, the
number of input variables entering each neuron is limited to 2.

To verify the performance of the proposed method, we use hourly load data from South Korea
with seasonality, weekly and daily periodicity. LC- and MI-based filter methods are employed as
comparison methods. In addition, hybrid approaches that combine the filter methods with the
proposed method are also examined. In total, five input selection methods are investigated. Prediction
models are constructed via ν-SVR, and we compare the one-hour, one-day, and one-week-ahead
forecasting performance of the five input selection methods.

The remainder of this paper is organized as follows. Section 2 explains the procedure for GMDH
network building. In Section 3, the new input selection method based on GMDH and bootstrap
sampling, LC- and MI-based filter methods, and hybrid approaches are described. Section 4 briefly
summarizes ν-SVR. In Section 5, we present the experimental results, and discuss the results in detail
in Section 6. Finally, we give our conclusions in Section 7.
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2. Group Method of Data Handling

Ivakhnenko first proposed the GMDH algorithm in 1968, which is a self-organizing modeling
technique [32–34]. In the GMDH method, as shown in Figure 1, complex and nonlinear modeling
is performed by the GMDH network where polynomial neurons are hierarchically connected in a
forward direction.

A quadratic two-variable polynomial is commonly used as a transfer function for each neuron
and their coefficients can be estimated by the least-squares method. When the number of entering
inputs and/or the order of the polynomials become larger, the number of parameters to be estimated
rapidly increases. To build a GMDH network, only the learning dataset collected from target systems
is needed, and relevant inputs as well as the network structure can be determined automatically.

Let D = {xk; yk}n
k=1 be a learning dataset for GMDH network building, where x = [x1, x2, . . . ,

xM]T is an input vector composed of IICs and M is the number of the IICs. In layer 1, (q = M(M − 1)/2)
neurons that consider all combinations of the initial inputs are generated and only the outputs of M
neurons that satisfy a selection criterion are used as inputs for the next layer. In the same manner, q
neurons are generated from layer 2 based on the M neurons selected in the previous layer. This layer
extension process continues in a forward direction until a stopping criterion is satisfied. After stopping
the extension process, the output layer and neuron are fixed and all of the elements connected with the
output neuron are found sequentially by backward search.

2.1. Parameter Estimation for Polynomial Neurons

In the GMDH network, the output, z, of an arbitrary neuron is calculated as

z = f (xu, xl ;θ) = θ0 + θ1xu + θ2xl + θ3(xu)
2 + θ4(xl)

2 + θ5xuxl , (1)

where xu and xl are two inputs of the neuron and θ = [θ0, . . . , θ5]T is composed of its polynomial
coefficients. The same learning dataset D is employed repeatedly to estimate parameters for each
neuron. After substituting D into (1), the n linear equations are formulated in concise matrix form, i.e.,
Xθ = z. Using the least-squares method, the parameter vector θ can be optimized as

θ̂ = (XTX)
−1

XTz. (2)

In (2), if the determinant of XTX is close to zero, then the estimator θ̂ is rather susceptible to round
off errors and its performance deteriorates. In this study, the polynomial coefficients are estimated
using singular value decomposition, as follows [35,36]:

θ̂
+
= X+z = VS+UTz, (3)

where X+ is the pseudo-inverse of X, the columns of matrices V and U correspond to the eigenvectors
of XTX and XXT, respectively, and the main diagonal components of S+ are composed of the reciprocals
of r singular values.

2.2. Construction of the GMDH Network

To build the GMDH network, layer extension is performed in the forward direction until the
stopping criterion is satisfied. Next, the output layer and neuron are fixed and a search for all of the
elements connected to the output neuron is conducted by backward tracing, i.e., from the output to
input layer. After finishing the search in the backward direction, we can obtain not only the GMDH
network structure, but also relevant inputs in the input layer.
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In the proposed method, checking error criterion (CEC) [37] is employed: (1) to select the neurons
whose outputs will be used as inputs for the next layer; and (2) to determine whether the layer
extension process should be stopped. The number of layers in the GMDH networks is closely related to
the model’s complexity. The deeper the networks, the more complex their structures; in this case, many
unnecessary inputs can be selected together with significant inputs. On the other hand, if the networks
are too shallow, input variables with great explanatory powers can be missed. To calculate the CEC, the
learning dataset D is separated into dataset A, DA =

{
xA

k ; yA
k
}nA

k=1, and dataset B, DB =
{

xB
k ; yB

k
}nB

k=1,
using the bootstrap method [38]. In the bootstrap method, after applying n sampling with replacement
to D, we obtain n data pairs. Each data pair in D has the same probability of being selected during the
sampling process. Among the n sampled data pairs, only unique pairs comprise DA for training and
DB consists of the remaining data pairs, i.e., DB = D\DA for testing. The ratio of DA relative to DB is
approximately 6:4.

Using DA, the parameter vector of a neuron is estimated by (3) and the outputs are calculated

based on DB, ŷB
k = f

(
(xu)

B
k , (xl)

B
k ; (θ̂+

)
A
)

, k = 1, . . . , nB. The CEC of the neuron is computed by

CEC =

√√√√ 1
nB

nB

∑
k=1

(yB
k − ŷB

k )
2. (4)

After calculating the CEC for q neurons in the ith layer, i.e., CEC(i, j), j = 1, . . . , q, they are arranged
in ascending order and only the M neurons with the smallest CEC values are selected. If an early
stopping condition, CEC(i − 1) ≤ CEC(i), i ≥ 2, (where CEC(i) = minj{CEC(i, j)}, j = 1, . . . , q), is satisfied
or the current layer is equal to the predefined maximum layer, then the layer extension is halted. Then,
the output layer p* and output neuron q* are selected as follows:

p∗ = arg min
i
{CEC(i)}, (5)

q∗ = arg min
j
{CEC(p∗, j)}, j = 1, · · · , q. (6)

After selecting the output neuron, all of the elements connected with the neuron are found by
a sequential search in the backward direction. In each layer, neurons without any connections to
the output neuron are removed and the remaining neurons and their connections are preserved.
The GMDH network is finally constructed after finishing the backward search from the output to input
layer. Algorithm 1 describes the procedure for constructing the GMDH network.
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Algorithm 1. Constructing the GMDH network.

Input: learning dataset D
Divide D into DA and DB using bootstrap method
Imax ←maximum layer
BN← {x1, . . . , xM} //where BN denotes the set of ‘best neurons’.
for i from 1 to Imax

Create (q = M(M − 1)/2) neurons in ith layer based on BN
for j from 1 to q

Estimate (θ̂
+
)

A
of jth neuron using DA

Calculate CEC(i, j) for jth neuron using DB
end
CEC(i) = minj{CEC(i, j)}, j = 1, . . . , q
if i ≥ 2 then

if CEC(i − 1) ≤ CEC(i) then
break this loop

end
end
BN←M neurons in ith layers with smallest CEC(i, j), j = 1, . . . , q

end
p* ← argmini{CEC(i)}
q* ← argminj{CEC(p*, j)}
Remove all neurons in p*th layer except for q*th neuron
p← p*

repeat
p← p − 1
Find the neurons in pth layer connected with neurons in (p + 1)th layer
Remove all neurons and their connections in pth layer except for the founded neurons

until p == 0
return GMDH network structure and a set of relevant inputs, X = {x1, · · · , xm}(⊂ {x1, · · · , xM})

From the final constructed GMDH network, we can confirm the inputs in the input layer connected
with the output neuron and they are regarded as relevant inputs.

3. Input Selection Method

In this study, to select the inputs for ELF models, we employed: (1) LC- and MI-based filter
methods, (2) GMDH-based and bootstrapping-based input selection (i.e., the proposed method), and
(3) hybrid methods that combine filter methods with GMDH-based input selection.

3.1. Filter Methods Based on LC and MI

In this subsection, we explain the LC- and MI-based filter methods (i.e., comparison methods).
In the filter methods, we calculated the ranking function (RF) values, RF(xj, y), j = 1, . . . , M, between
all of the potential inputs and output. The inputs with RF values that are greater than or equal to
the threshold value RFth were selected as SIs. More details regarding the LC and MI used as RF
are available elsewhere [28,29,39,40]. Among M IICs {x1, . . . , xM}, m SIs {x1st, x2nd, . . . , xmth} are
determined as

{x1st, x2nd, · · · , xmth} =
{

xj
∣∣RF(xj, y) ≥ RFth, j = 1, · · · , M

}
, (7)

where the condition, RF(x1st, y) > · · · > RF(xmth, y), is satisfied.
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3.2. The Proposed Method: GMDH-Based and Bootstrapping-Based Input Selection

As explained in Section 2, the components of the input layer in the finished GMDH network are
considered as relevant inputs. Since D is divided randomly into DA and DB by bootstrap sampling,
the input selection results will vary in each experiment. Moreover, the relevant inputs obtained by
constructing only a single network may yield biased results. Thus, in the proposed method, input
selection was performed according to the following procedures. Firstly, the GMDH networks were
constructed r times in the same experimental conditions. The set of relevant inputs from the ith
experiment is denoted as Xi, i = 1, . . . , r and their union is X = ∪r

i=1Xi. Then, in the union X, the total
number, Nj, of each IIC, xj, j = 1, . . . , M, is counted. Finally, the inputs for which Nj is greater than
or equal to a predefined threshold, Nth, were selected as SIs. Algorithm 2 describes the GMDH- and
bootstrap-based input selection procedures.

Algorithm 2. GMDH-based and bootstrap-based input selection.

Input: learning dataset D
r← the number of network constructions
Nth ← threshold value
X← {}
for i from 1 to r

Divide D into DA and DB using bootstrap method
Select relevant input set Xi using Algorithm 1
X← X ∪ Xi

end
Count the number of xj, j = 1, . . . , M, Nj, in X
{x1st, x2nd, . . . , xmth} = {xj|Nj ≥ Nth, j = 1, . . . , M}

return {x1st, x2nd, . . . , xmth}

3.3. Hybrid Input Selection Method

The hybrid input selection procedures that combine filter methods and the proposed method
were carried out according to two phases. First, many redundant inputs were eliminated by applying
LC- or MI-based filter methods to IICs. After then, the proposed input selection procedure described
in Algorithm 2 was applied to the remaining inputs.

4. ν-Support Vector Regression

In this section, we briefly summarize ν-SVR [41] as proposed by Schölkopf et al. Let {(xi; yi)}l
i=1

denote a collected learning dataset, where xi ∈ <n is an n-dimensional input vector and yi ∈ <1 is
the target output. The basic idea of SVR is to find a linear regression function after transforming the
original space into a high-dimensional feature space, which is defined as

f (x) = wTφ(x) + b, (8)

where φ(·) is a nonlinear mapping function from the input to feature space, and w and b are parameters
of f that should be estimated from the learning dataset. The constrained optimization problem of
ν-SVR is defined by introducing two positive slack variables ξi and ξ∗i , as follows [42]:

min
w,b,ξ,ξ∗ ,ε

1
2‖w‖

2 + C
(

νε + 1
l

l
∑

i=1

(
ξi + ξ∗i

))

subject to


(
wTφ(xi) + b

)
− yi ≤ ε + ξi,

yi −
(
wTφ(xi) + b

)
≤ ε + ξ∗i ,

ξi, ξ∗i ≥ 0, i = 1, · · · , l, ε ≥ 0.

(9)
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where 1
2‖w‖

2 is a regularization term, the parameter ν ∈ (0, 1] controls the number of support vectors
and training errors, and C is a regularization constant that determines the tradeoff between the model’s
complexity and its accuracy. The training errors of regression function f are penalized by ξi and ξi

*, if
they are larger than ε. The size of ε is traded off against the model’s complexity and slack variables via
a constant ν [41]. As described in (9), SVR avoids under-fitting and over-fitting by minimizing both
the regularization term and training errors.

By introducing Lagrange multipliers αi and αi
*, and applying Karush-Kuhn-Tucker conditions [43],

the constrained optimization problem given by (9) is reformulated as follows:

min
α,α∗

1
2 (α−α∗)TQ(α−α∗) + yT(α−α∗)

subject to


l

∑
i=1

(α− α∗) = 0,
l

∑
i=1

(α− α∗) = 0 ≤ Cν,

0 ≤ αi, α∗i ≤ C/l, i = 1, · · · , l.

(10)

where Q is a kernel matrix and its entry in the ith row and jth column is Qi,j = K(xi, xj) ≡ φ(xi)Tφ(xj).
The kernel function K(xi, xj) defined in the input space is the same as the inner product of xi and xj
in the feature space. The nonlinear mapping and inner products can be calculated in the original
input space using the kernel function. In this paper, among the widely used kernel functions, such as
polynomial, radial basis function (RBF), and sigmoidal kernels, we employed the RBF kernel function
defined as

K(xi, x) = exp
(
−γ‖xi − x‖2

)
, (11)

where γ controls the width of the RBF function. By solving (10), we can obtain the approximated
regression function as follows:

f̂ (x) =
l

∑
i=1

(α∗i − αi)K(xi, x) + b. (12)

The prediction accuracy of ν-SVR depends on the selection of appropriate design parameters, i.e.,
ν, C, and γ. Trial and error, cross-validation, grid search, and global optimization have been applied
widely for determining the parameter values [2]. The aim of this paper is to examine the performance of
the proposed input selection methods, so the procedures for selecting the design parameters will not be
described in detail. In this study, the method presented in [3] is used to determine the design parameters.

5. Experimental Results

To verify the performance of the proposed method, hourly load data from South Korea between 1
January 2012 and 31 December 2014 was used. Figure 2 shows the hourly load curves for South Korea
during one year (i.e., 2013) and Figure 3 shows an example of the weekly profile for the curves during
three weeks from 7 January 2013 until 27 January 2013.

As shown in Figures 2 and 3, the target loads exhibit clear seasonality with weekly and daily
periodicities. The load demand is usually higher in the summer and winter seasons compared with
the spring and autumn seasons. The demand for electricity is higher on weekdays (from Monday to
Friday) compared with weekends and the load demand is slightly higher on Saturday than Sunday.
The minimum load on Monday is lower than that on other working days. In addition, the load demand
on special days (e.g., national holidays and election days) exhibit remarkably unusual behavior. In this
paper, we are not concerned with hourly load forecasting on special days, i.e., we focus only on hourly
load forecasting for ordinary days.

To validate the seasonal forecasting performance, we select three months as validation months,
i.e., April, July and November in 2014, where the objective is to predict their hourly load demands one
hour, one day, and one week ahead. For the one-day and one-week-ahead forecasts that correspond to
multi-step-ahead predictions, we employed the recursive strategy [44] explained in Appendix A.
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Figure 2. Hourly load curves for South Korea from 1 January 2013 to 31 December 2013. Dashed red lines
indicate the main holidays in South Korea, i.e., Lunar New Year’s Day and Korean Thanksgiving Day.
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5.1. Data Preparation

To prepare the learning dataset, we considered historical time-series load data {ϕt, t = 1, . . . ,
N}. For example, to predict the hourly load demand from 1 to 30 April in 2014, the load data from 1
January 2012 to 31 March 2014 is employed to prepare the learning data. After organizing the learning
data matrix described in (13) using N historical data, the max-min normalization process is applied to
each column as presented in (14).

Φ =


ϕd ϕd−1 · · · ϕ1 ϕd+1

ϕd+1 ϕd · · · ϕ2 ϕd+2
...

...
. . .

...
...

ϕN−1 ϕN−2 · · · ϕN−d ϕN

. (13)

Φ′i,j =
Φi,j −min

i

{
Φi,j
}

max
i

{
Φi,j
}
−min

i

{
Φi,j
} . (14)

where Φi,j is the original component in the ith row and jth column of Φ and Φ′i,j is its normalized
value. The learning data matrix is an (N − d) × (d + 1) matrix, where d is the window size, i.e., the
number of IICs. In this paper, to capture the daily and weekly periodicities of the target load, we chose
a one-week window size, i.e., d = 168. The last column in Φ is composed of the desired outputs and the
remaining columns consist of 168 IICs. Each row vector in Φ corresponds to an input-output learning
data pair.

To take account of the seasonality, we reformulated a new matrix Φnew composed of the row
vectors of Φ, where the last column’s components (i.e., desired outputs) only correspond to the load
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values of a validation month and the previous month. For example, to forecast the hourly load during
April in 2014, Φnew is made up of row vectors where the desired outputs correspond to the hourly
load during March and April in 2012 and 2013 and March in 2014.

Finally, the row vectors that contain hourly load values on special days are removed from Φnew.
In other words, if only one component of the row vectors corresponds to the hourly load for special
days, the row vectors are discarded. This is necessary because the hourly load curves for special days
have different shapes from those for normal days. If the prediction models for normal days are trained
by learning data with load values on special days, biased forecasting results could be obtained.

The input selection methods explained in Section 3 were applied to the learning dataset prepared
according to the procedures described above.

5.2. Input Selection Results

In this subsection, we present the results of applying the input selection methods to the prepared
learning dataset. As explained in Section 3, we employed five input selection methods, which are
abbreviated as follows.

(1) ‘LC’: LC-based filter method.
(2) ‘MI’: MI-based filter method.
(3) ‘GMDH’: the proposed method described in Algorithm 2.
(4) ‘LC + GMDH’: hybrid input selection method combining ‘LC’ and ‘GMDH’.
(5) ‘MI + GMDH’: hybrid input selection method combining ‘MI’ and ‘GMDH’. (Note: The acronyms,

LC and MI, denote the RFs, but the abbreviations, ‘LC’ and ‘MI’, refer to the LC- and MI-based
filter methods.)

Figures 4 and 5 show the LC and MI values calculated using the prepared learning dataset for
predicting the loads in April, July and November in 2014.Energies 2018, 11, 2870 10 of 20 
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Figure 4. Linear correlation (LC) values calculated using the prepared learning dataset for predicting
the loads in: (a) April 2014; (b) July 2014; (c) November 2014.
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Figure 5. Normalized mutual information (MI) values calculated using the prepared learning dataset
for predicting the loads in: (a) April 2014; (b) July 2014; (c) November 2014.

In Figure 5, the MI values are normalized in a range of [0, 1]. Figures 4 and 5 demonstrate that
the shapes of LC and MI differ from the validation months because the target loads exhibit distinct
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seasonal behaviors. Daily and weekly periodicities can also be observed in these figures. In the filter
methods based on LC and MI, after rearranging the calculated RF values in descending order, m inputs
with RF values greater than or equal to the predefined RFth are finally selected as SIs. Figures 6 and 7
show the input selection results using ‘LC’ and ‘MI’.

Energies 2018, 11, 2870 10 of 20 

 

 
Figure 4. Linear correlation (LC) values calculated using the prepared learning dataset for predicting 
the loads in: (a) April 2014; (b) July 2014; (c) November 2014. 

 
Figure 5. Normalized mutual information (MI) values calculated using the prepared learning dataset 
for predicting the loads in: (a) April 2014; (b) July 2014; (c) November 2014. 

In Figure 5, the MI values are normalized in a range of [0, 1]. Figures 4 and 5 demonstrate that 
the shapes of LC and MI differ from the validation months because the target loads exhibit distinct 
seasonal behaviors. Daily and weekly periodicities can also be observed in these figures. In the filter 
methods based on LC and MI, after rearranging the calculated RF values in descending order, m 
inputs with RF values greater than or equal to the predefined RFth are finally selected as SIs. Figures 
6 and 7 show the input selection results using ‘LC’ and ‘MI’. 

 
Figure 6. Results of LC-based filter method (‘LC’) for predicting the loads in: (a) April 2014; (b) July 
2014; (c) November 2014. The threshold values and selected inputs are indicated by dashed thick solid 
black lines and dashed red lines, respectively. 

 

0 24 48 72 96 120 144 168
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (hours)

Li
ne

ar
 c

or
re

la
tio

n

0 24 48 72 96 120 144 168
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (hours)

Li
ne

ar
 c

or
re

la
tio

n

0 24 48 72 96 120 144 168
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (hours)

Li
ne

ar
 c

or
re

la
tio

n

(a) (b) (c)

0 24 48 72 96 120 144 168

0

0.2

0.4

0.6

0.8

1

Lag (hours)

M
ut

ua
l i

nf
or

m
at

io
n

0 24 48 72 96 120 144 168

0

0.2

0.4

0.6

0.8

1

Lag (hours)

M
ut

ua
l i

nf
or

m
at

io
n

0 24 48 72 96 120 144 168

0

0.2

0.4

0.6

0.8

1

Lag (hours)

M
ut

ua
l i

nf
or

m
at

io
n

(a) (b) (c)

168 1 167 2 166 24144 2314525 143 3
0

0.2

0.4

0.6

0.8

1

Li
ne

ar
 c

or
re

la
tio

n
168 1 167 2 166 3 165 4 16424 23144

0

0.2

0.4

0.6

0.8

1

Li
ne

ar
 c

or
re

la
tio

n

168 1 167 2 166 3 165 2414423 4 145
0

0.2

0.4

0.6

0.8

1

Li
ne

ar
 c

or
re

la
tio

n

(a) (b) (c)

168 1 24167 2 144 3 2316625 4 48
0

0.2

0.4

0.6

0.8

1

M
ut

ua
l i

nf
or

m
at

io
n

1 168167 2 24 3 166 5 4 144 23 25
0

0.2

0.4

0.6

0.8

1

M
ut

ua
l i

nf
or

m
at

io
n

168 1 16724 2 144 3 16623 4 25 48
0

0.2

0.4

0.6

0.8

1

M
ut

ua
l i

nf
or

m
at

io
n

(a) (b) (c)

Figure 6. Results of LC-based filter method (‘LC’) for predicting the loads in: (a) April 2014; (b) July
2014; (c) November 2014. The threshold values and selected inputs are indicated by dashed thick solid
black lines and dashed red lines, respectively.

Energies 2018, 11, 2870 10 of 20 

 

 
Figure 4. Linear correlation (LC) values calculated using the prepared learning dataset for predicting 
the loads in: (a) April 2014; (b) July 2014; (c) November 2014. 

 
Figure 5. Normalized mutual information (MI) values calculated using the prepared learning dataset 
for predicting the loads in: (a) April 2014; (b) July 2014; (c) November 2014. 

In Figure 5, the MI values are normalized in a range of [0, 1]. Figures 4 and 5 demonstrate that 
the shapes of LC and MI differ from the validation months because the target loads exhibit distinct 
seasonal behaviors. Daily and weekly periodicities can also be observed in these figures. In the filter 
methods based on LC and MI, after rearranging the calculated RF values in descending order, m 
inputs with RF values greater than or equal to the predefined RFth are finally selected as SIs. Figures 
6 and 7 show the input selection results using ‘LC’ and ‘MI’. 

 
Figure 6. Results of LC-based filter method (‘LC’) for predicting the loads in: (a) April 2014; (b) July 
2014; (c) November 2014. The threshold values and selected inputs are indicated by dashed thick solid 
black lines and dashed red lines, respectively. 

 

0 24 48 72 96 120 144 168
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (hours)

Li
ne

ar
 c

or
re

la
tio

n

0 24 48 72 96 120 144 168
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (hours)

Li
ne

ar
 c

or
re

la
tio

n

0 24 48 72 96 120 144 168
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (hours)

Li
ne

ar
 c

or
re

la
tio

n

(a) (b) (c)

0 24 48 72 96 120 144 168

0

0.2

0.4

0.6

0.8

1

Lag (hours)

M
ut

ua
l i

nf
or

m
at

io
n

0 24 48 72 96 120 144 168

0

0.2

0.4

0.6

0.8

1

Lag (hours)

M
ut

ua
l i

nf
or

m
at

io
n

0 24 48 72 96 120 144 168

0

0.2

0.4

0.6

0.8

1

Lag (hours)

M
ut

ua
l i

nf
or

m
at

io
n

(a) (b) (c)

168 1 167 2 166 24144 2314525 143 3
0

0.2

0.4

0.6

0.8

1

Li
ne

ar
 c

or
re

la
tio

n
168 1 167 2 166 3 165 4 16424 23144

0

0.2

0.4

0.6

0.8

1

Li
ne

ar
 c

or
re

la
tio

n

168 1 167 2 166 3 165 2414423 4 145
0

0.2

0.4

0.6

0.8

1

Li
ne

ar
 c

or
re

la
tio

n

(a) (b) (c)

168 1 24167 2 144 3 2316625 4 48
0

0.2

0.4

0.6

0.8

1

M
ut

ua
l i

nf
or

m
at

io
n

1 168167 2 24 3 166 5 4 144 23 25
0

0.2

0.4

0.6

0.8

1

M
ut

ua
l i

nf
or

m
at

io
n

168 1 16724 2 144 3 16623 4 25 48
0

0.2

0.4

0.6

0.8

1

M
ut

ua
l i

nf
or

m
at

io
n

(a) (b) (c)

Figure 7. Results of MI-based filter method (‘MI’) for predicting the loads in: (a) April 2014; (b) July
2014; (c) November 2014.

As shown in Figures 6 and 7, the threshold values for LC and MI are set as 0.8 and 0.6, respectively,
and they are indicated by dashed thick solid black lines. The selected inputs are indicated by dashed
red lines in the figures.

As explained in Section 3.2, in the ‘GMDH’, GMDH networks were constructed independently
r times on the same conditions. In this paper, r is set to 30. In Table 1, and the maximum layer, Imax,
is set to 5 based on several trial-and-errors. Note that Imax corresponds to the maximum acceptable
depth of the GMDH networks. Through several prior experiments, we confirmed that the forecasting
performance may be degraded when Imax is too large (e.g., Imax ≥ 7) or too small (e.g., Imax ≤ 3). If Imax

is set to be excessively large values, and consequently, too many inputs are selected, then it is difficult
to intuitively understand the predictive principles of target data. Table 1 lists the results of applying
Algorithm 1 for 30 times to the prepared learning dataset for predicting the loads in April 2014.

Table 1. Example illustrating the application of Algorithm 1 30 times independently to the prepared
learning dataset for predicting the loads in April 2014. The IICs and output are {ϕt−d+1, d = 1, 2, . . . ,
168} and ϕt+1, respectively.

Experiment, i Set of Relevant Inputs, Xi

1 X1 = {ϕt−d+1|d = 1, 2, 5, 7, 8, 22, 23, 135, 167, 168}
2 X2 = {ϕt−d+1|d = 1, 2, 6, 7, 24, 25, 167, 168}
3 X3 = {ϕt−d+1|d = 1, 2, 4, 7, 21, 24, 48, 49, 167, 168}
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After the relevant input set Xi is joined into the union (X = X1 ∪ · · · ∪ X30), the frequency of each
element in X, Nj (j = 1, . . . , 168), is counted. Next, Nj are arranged in descending order and the m
inputs that satisfy a condition, i.e., Nj ≥ Nth, are finally selected, where Nth is the threshold value of Nj.
In the hybrid methods, after removing many redundant inputs using ‘LC’ or ‘MI’, ‘GMDH’ is applied
to the remaining inputs. In this study, two-thirds of the IICs were filtered by ‘LC’ or ‘MI’. Figures 8–10
show the input selection results using ‘GMDH’, ‘LC + GMDH’ and ‘MI + GMDH’, respectively.
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Figure 8. Results of the proposed method (‘GMDH’) for predicting the loads in: (a) April 2014; (b) July
2014; (c) November 2014. The threshold values, Nth, and selected inputs are indicated by dashed thick
solid black lines and dashed red lines, respectively.
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Figure 9. Results of ‘LC + GMDH’ for predicting the loads in: (a) April 2014; (b) July 2014; (c) November 2014.
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Figure 10. Results of ‘MI + GMDH’ for predicting the loads in: (a) April 2014; (b) July 2014; (c) November 2014.

As shown in Figures 8–10, the threshold value, Nth, is set as 15 and the values are marked by
dashed thick solid black lines in the figures. The inputs for which Nj is greater than or equal to Nth,
i.e., Nj ≥ Nth, are enclosed within dashed red lines. Table 2 summarizes the SIs selected by the five
methods for each validation month (i.e., April, July, and November in 2014). As listed in Table 2, the
loads in the same hour during the past several days (i.e., ϕt−23 and ϕt−167) as well as several recent
loads (i.e., ϕt and ϕt−1) are useful for predicting future loads.
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Table 2. Significant inputs (SIs) selected for each validation month using the five methods: ‘LC’, ‘MI’,
‘GMDH’, ‘LC + GMDH’ and ‘MI + GMDH’. The IICs and output are {ϕt−d+1, d = 1, 2, . . . , 168} and
ϕt+1, respectively.

Validation Month Method Set of Selected SIs No.

April 2014

‘LC’ {ϕt−d+1|d = 1, 2, 166, 167, 168} 5
‘MI’ {ϕt−d+1|d = 1, 2, 167, 168} 4

‘GMDH’ {ϕt−d+1|d = 1, 2, 24, 167, 168} 5
‘LC + GMDH’ {ϕt−d+1|d = 1, 2, 5, 24, 167, 168} 6
‘MI + GMDH’ {ϕt−d+1|d = 1, 2, 23, 24, 25, 167, 168} 7

July 2014

‘LC’ {ϕt−d+1|d = 1, 2, 166, 167, 168} 5
‘MI’ {ϕt−d+1|d = 1, 2, 24, 167, 168} 5

‘GMDH’ {ϕt−d+1|d = 1, 2, 21, 24, 25, 152, 168} 7
‘LC + GMDH’ {ϕt−d+1|d = 1, 2, 24, 25, 48, 49, 168} 7
‘MI + GMDH’ {ϕt−d+1|d = 1, 2, 21, 24, 25, 168} 6

November 2014

‘LC’ {ϕt−d+1|d = 1, 2, 166, 167, 168} 5
‘MI’ {ϕt−d+1|d = 1, 24, 167, 168} 4

‘GMDH’ {ϕt−d+1|d = 1, 4, 24, 25, 167, 168} 6
‘LC + GMDH’ {ϕt−d+1|d = 1, 4, 10, 24, 25, 26, 167, 168} 8
‘MI + GMDH’ {ϕt−d+1|d = 1, 24, 25, 152, 167, 168} 6

In addition to the selected SIs listed in Table 2, we also employed binary-valued vectors used
in [45], i.e., w ∈ {0, 1}7 and h ∈ {0, 1}24, for ELF models to keep track of the daily and weekly
periodicities, where w and h are vectors of zero with a 1 in the position of the day of the week and the
hour of the day for the load under consideration, respectively.

5.3. Forecasting Results

After conducting the input selection procedures, ν-SVR learning was carried out with the SIs and
binary-valued vectors, w and h. For example, when the load demand during April 2014 was predicted
with ‘LC’, the input vector for ν-SVR corresponds to x = [ϕt, ϕt−1, ϕt−165, ϕt−166, ϕt−167, wt+1, ht+1]T.
In this paper, we used LIBSVM [46] to implement ν-SVR. The accuracy of the ELF was measured
using six performance indices, which were also employed in [2,3], i.e., mean absolute percentage error
(MAPE), symmetric mean absolute percentage error (SMAPE), mean absolute error (MAE), normalized
mean squared error (NMSE), relative error percentage (REP) and magnitude of maximum error (MME).
In the following, we only present the results of the performance comparisons using MAPE, which is
defined as

MAPE =
1
N

N

∑
i=1

|Ai − Fi|
Ai

× 100, (15)

where Ai and Fi are the actual and predicted values for the ith validation dataset, respectively, and N is
the number of validation dataset. The performance comparisons using the other indices are presented
in Appendix B. Table 3 and Figure 11 illustrate the MAPE values of each validation month and the
overall values for five input selection methods.

In Table 3, the best entries among ‘LC’, ‘MI’ and ‘GMDH’ are indicated by the superscript plus
sign and the best entries among the five input selection methods are highlighted by the superscript
asterisk. When H = 1, i.e., in the case of one-hour ahead forecasting, MAPE values of every validation
month are similar to each other; but when H = 24 and 168, they are quite different. This can be
attributed to the fact that load variations in July and November are higher than those in April because
of seasonal effects; it can be observed that MAPE values for multi-step ahead forecasting in July and
November are larger than those in April.
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Table 3. Mean absolute percentage error (MAPE) values of each validation month and the overall
values. The last three rows indicate the overall MAPE values for three validation months and the
second column represents the prediction horizons, i.e., H = 1, H = 24, and H = 168, which correspond to
one-hour, one-day and one-week-ahead forecasting, respectively.

Validation Month H ‘LC’ ‘MI’ ‘GMDH’ ‘LC + GMDH’ ‘MI + GMDH’

April 2014
1 0.559 0.545 0.526 + 0.531 0.496 *
24 1.361 1.321 1.252 + 1.265 1.162 *

168 1.675 1.656 1.604 + 1.604 1.559 *

July 2014
1 0.459 0.474 0.457 + 0.478 0.438 *
24 1.759 1.576 1.514 + 1.678 1.434 *

168 2.108 1.900 + 1.925 2.025 1.834 *

November 2014
1 0.582 0.556 0.544 + 0.548 0.534 *
24 2.047 1.666 +,* 1.725 1.728 1.676

168 2.485 2.301 + 2.371 2.393 2.293 *

Overall
1 0.532 0.524 0.508 + 0.519 0.489 *
24 1.723 1.522 1.497 + 1.558 1.424 *

168 2.090 1.952 + 1.966 2.008 1.894 *
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month and the overall values. H = 1, H = 24, and H = 168 correspond to one-hour, one-day and
one-week-ahead forecasting, respectively.

As illustrated in Table 3 and Figure 11, ‘GMDH’ shows the best prediction performance among
‘LC’, ‘MI’, and ‘GMDH’ in terms of the overall MAPE, except for one-week-ahead forecasting. Among
the five methods, ‘MI + GMDH’ shows the best forecasting performance, except for the one-day-ahead
forecast for November 2014. Let us look at how much ‘MI + GMDH’ improves the overall MAPE
compared with the other methods. For one-hour-ahead forecasting, the percentage improvements
with ‘MI + GMDH’ are 8.19%, 6.79%, 3.80%, and 5.72% compared with the four methods, respectively.
For one-day and one-week-ahead forecasting, ‘MI + GMDH’ improves the overall MAPE compared
with the other methods by 17.35%, 6.45%, 4.91%, and 8.64%, and by 9.34%, 2.93%, 3.64%, and 5.65%,
respectively. Figure 12 shows box plots of the overall absolute percentage errors. As shown in Figure 12,
‘MI + GMDH’ exhibits superior performance compared with the other methods. Figure 13 shows
examples of the actual and predicted load curves obtained using ‘MI + GMDH’ and ν-SVR. Due to
space constraints, the load curves for the other validation months and periods are not presented.
In Figure 13, the load values predicted by ‘MI + GMDH’ and ν-SVR are very similar to the actual
values. Figure 14 shows a histogram of illustrating the one-hour-ahead prediction errors by ‘MI +
GMDH’ and ν-SVR for July 2014.
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Figure 12. Overall absolute percentage errors for the three validation months based on comparisons
between the actual and predicted loads: (a) H = 1; (b) H = 24; (c) H = 168.
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Figure 13. Examples of the actual and predicted hourly load curves obtained using ‘MI + GMDH’, and
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Figure 14. Histogram showing the one-hour-ahead prediction errors (=actual loads − predicted loads)
by ‘MI + GMDH’ and ν-SVR for July 2014. The solid red line is estimated by the kernel method.

As shown in Figure 14, the errors are centered symmetrically on zero and there are no severe
outliers. Figure 15 illustrates the results of linear regression analysis between the actual and predicted
load values by ‘MI + GMDH’ and ν-SVR for July 2014.

The results for the other validation months are not presented due to space limitations. In Figure 15,
the X and Y axes correspond to the actual and predicted load values, respectively, the black circles are
scatter plots of the data points, i.e., (X, Y), and the dashed black lines and thick solid blue lines indicate
the straight lines, Y = X, and the best linear regression lines, respectively. The r2 values presented
above the figures represent the relationships between X and Y. A value close to 1 indicates that X and
Y have a strong linear relationship. As illustrated in Figure 15, we can confirm that there are strong
linear relationships between the actual and predicted load values.
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Figure 15. Linear regression analysis between the actual and predicted load values by ‘MI + GMDH’
and ν-SVR for July 2014: (a) H = 1; (b) H = 24; (c) H = 168.

6. Discussion

Based on the experimental results presented in Section 5, we can highlight several key findings.
Let us begin with the comparisons between the filter methods (i.e., ‘LC’ and ‘MI’) and ‘GMDH’.
At one-hour and one-day ahead forecasting, ‘GMDH’ performed better than the filter methods in
terms of the overall MAPE. There are two main reasons for the improved performance of ‘GMDH’: (1)
‘GMDH’ can capture many-to-one nonlinear relationships between inputs and output via hierarchical
network structure, whereas ‘LC’ or ‘MI’ can only capture one-to-one linear or nonlinear relationships;
and (2) unlike filter methods that select SIs based on statistical RF, the prediction accuracy (i.e., CEC) is
employed as an input selection criterion in ‘GMDH’.

Second, we consider the performance comparisons between ‘GMDH’ and the hybrid methods.
In all cases, ‘MI + GMDH’ obtained the best forecasts in terms of the overall MAPE. The load series
has nonlinear characteristics and ν-SVR with a nonlinear kernel (i.e., RBF kernel) was used for
the prediction models, so the hybrid method that combines ‘MI’ with ‘GMDH’ performed better.
The prediction results of ‘LC + GMDH’ were poor compared with ‘GMDH’ alone because LC-based
filtering procedure may remove the inputs with weak linear but strong nonlinear relationships with
the output.

Finally, let us discuss the performance of the five methods in terms of their computational time
requirements. Table 4 lists the computational time required by each input selection method for
April 2014.

Table 4. Computational time required by the five input selection methods for April 2014.

Input Selection Methods Time

‘LC’ 9.863 s
‘MI’ 3402.265 s

‘GMDH’ 1483.911 s
‘LC + GMDH’ 189.622 s
‘MI + GMDH’ 3572.328 s

The learning dataset is composed of 2904 input-output pairs and 168 IICs comprise the input part
for each pair. The computer used to measure the computational time had 8 GB of RAM and a 2.8 GHz
quad-core CPU. The result shows clearly that the computational efficiency of ‘GMDH’ is higher than
that of ‘MI’. The computational time required by ‘LC + GMDH’ is much less than that of ‘GMDH’
alone because the number of inputs handled by ‘GMDH’ is reduced to one-third of the IICs by the
LC-based filtering procedure.
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7. Conclusions

In this study, we proposed a new input selection procedure, which combines GMDH with a
bootstrap method for SVR-based short-term hourly load forecasting. After constructing GMDH
networks many times under the same experimental conditions, the inputs that remain frequently in
the input layers were finally selected as SIs. The networks were constructed several times because
each relevant input is different due to the random division of the learning dataset. Indeed, only
constructing a single network could yield biased input selection results. In experimental assessments,
we employed LC- and MI-based filter methods for comparison, and also verified the performance of
two hybrid methods. In total, five input selection methods were examined in this study. To illustrate
the performance of the proposed method, an hourly load dataset from South Korea was used and the
one-hour, one-day and one-week-ahead forecasting performances were compared.

The experimental results showed that the proposed method can select SIs in an effective manner.
The forecasting performance of the proposed method (i.e., ‘GMDH’) was better than that of the LC- and
MI-based filter methods. To be specific, in one-hour, one-day, and one-week ahead forecasts, ‘GMDH’
improves the overall MAPE values by 0.024, 0.226, and 0.124, respectively, over ‘LC’. Although the
overall MAPE with H = 168 worsens by 0.014, when H = 1 and 24, ‘GMDH’ improves the overall
MAPE values by 0.016 and 0.025, respectively, compared with ‘MI’. In addition, the computational
efficiency of the proposed method was higher than that of the MI-based filter method. Among the
five methods, ‘MI + GMDH’ achieved the best prediction accuracy. When H = 1, 24, and 168, ‘MI +
GMDH’ outperforms ‘GMDH’, with 0.019, 0.073, and 0.072, respectively, improvements in overall
MAPE values.

Let us summarize the main reasons for the improved performance of the proposed method. First,
the proposed method can perform input selection by capturing many-to-one nonlinear relationships
between potential inputs and output via the hierarchical structure of the GMDH network. Second,
compared with the filter methods, the prediction accuracy (i.e., CEC) is employed as a selection
criterion, which improves the prediction performance. Finally, SIs are selected by constructing GMDH
networks many times, thereby facilitating more robust input selections.

In future research, the proposed method will be applied to hourly load forecasting on special
days and daily peak load forecasting. Moreover, the proposed method can be used in various
real-world applications such as financial time-series analysis, process monitoring, and nonlinear
function approximations.
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Appendix A. Recursive Strategy for Multi-Step-Ahead Prediction

In H-step-ahead forecasting, the objective is to predict H future time-series data, {ϕt, t = N + 1,
. . . , N + H}, using N historical data, {ϕt, t = 1, . . . , N}, where H ≥ 1 is called the prediction horizon,
i.e., the values of H for one-hour, one-day, and one-week-ahead hourly load forecasting correspond to
1, 24, and 168, respectively.

In the recursive strategy [44], after constructing one-step-ahead prediction models, multi-step
predictions are performed by feeding back the predicted values recursively as inputs. The following
describes a one-step-ahead time-series predictor:

ϕt+1 = f (ϕt, · · · , ϕt−d+1) + w, (A1)
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where only the selected inputs are used for the predictor f, w is the zero-mean error term, and d is
the window size, i.e., the number of IICs. After building the predictor using the historical dataset,
H-step-ahead predictions are carried out as follows:

ϕ̂N+h =


f̂ (ϕN , · · · , ϕN−d+1) if h = 1
f̂ (ϕ̂N+h−1, · · · , ϕ̂N+1, ϕN , · · · , ϕN−d+h) if h ∈ {2, · · · , d}
f̂ (ϕ̂N+h−1, · · · , ϕ̂N−d+h) if h ∈ {d + 1, · · · , H}

(A2)

Appendix B. Performance Evaluation Using Five Indices Excluding MAPE

Excluding MAPE, the performance indices used in this study, i.e., SMAPE, MAE, NMSE, REP,
and MME, are defined as follows:

SMAPE =
1
N

N

∑
i=1

|Ai − Fi|
(|Ai|+ |Fi|)/2

, (A3)

MAE =
1
N

N

∑
i=1
|Ai − Fi|, (A4)

NMSE =
1

∆2N

N

∑
i=1

(Ai − Fi)
2, where ∆2 =

1
N − 1

N

∑
i=1

(
Ai − A

)2, (A5)

REP =

√√√√∑N
i=1(Ai − Fi)

2

∑N
i=1 A2

i
× 100, (A6)

MME = max
i

(|Ai − Fi|), i = 1, · · · , N, (A7)

where Ai and Fi are the actual and predicted values of the ith validation dataset, respectively, A is the
mean of the actual values, and N is the number of validation datasets. Table A1 lists the results of
performance comparisons of the five input selection methods using the five indices.

Table A1. Performance comparisons of the five input selection methods using the five indices.

Indices H ‘LC’ ‘MI’ ‘GMDH’ ‘LC + GMDH’ ‘MI + GMDH’

SMAPE
1 0.0053 0.0052 0.0051 + 0.0052 0.0049 *
24 0.0173 0.0152 0.0150 + 0.0156 0.0142 *

168 0.0209 0.0195 + 0.0197 0.0201 0.0190 *

MAE
1 314.60 310.02 300.51 + 306.45 289.27 *
24 1046.18 918.81 903.30 + 943.22 860.06 *

168 1245.11 1162.16 + 1171.44 1199.36 1128.97 *

NMSE
1 0.0050 0.0048 0.0045 + 0.0046 0.0041 *
24 0.0508 0.0401 0.0390 + 0.0409 0.0358 *

168 0.0655 0.0600 + 0.0609 0.0629 0.0580 *

REP
1 0.706 0.697 0.678 + 0.690 0.651 *
24 2.335 2.081 2.048 + 2.119 1.961 *

168 2.635 2.511 + 2.518 2.579 2.456 *

MME
1 1710.36 1561.01 1489.93 + 1548.48 1420.95 *
24 4549.24 4162.12 + 4217.88 4152.85 4061.22 *

168 4610.24 4484.98 4389.05 + 4502.89 4354.41 *

Due to space limitations, only the overall indices of the three validation months (i.e., April, July,
and November in 2014) are presented in Table A1. In Table A1, the best entries among ‘LC’, ‘MI’
and ‘GMDH’ are highlighted by the superscript plus sign, and the best entries among the five input
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selection methods are accentuated by the superscript asterisk. As listed in Table A1, among the ‘LC’,
‘MI’ and ‘GMDH’, the proposed method improves the four indices except for MME in one-hour
and one-day-ahead forecasting, and improves MME in one-hour and one-week-ahead forecasting
compared with the filter methods. Among the five methods, the ‘MI + GMDH’ method obtains the
best predictions with respect to all the indices for one-hour, one-day and one-week-ahead forecasting.
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