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Abstract: With the emergence of the smart grid, both consumers and electricity providing companies
can benefit from real-time interaction and pricing methods. In this work, a smart power system
is considered, where consumers share a common energy source. Each consumer is equipped with
a home energy management controller (HEMC) as scheduler and a smart meter. The HEMC
keeps updating the utility with the load profile of the home. The smart meter is connected
to a power grid having an advanced metering infrastructure which is responsible for two-way
communication. Genetic teaching-learning based optimization, flower pollination teaching learning
based optimization, flower pollination BAT and flower pollination genetic algorithm based energy
consumption scheduling algorithms are proposed. These algorithms schedule the loads in order to
shave the peak formation without compromising user comfort. The proposed algorithms achieve
optimal energy consumption profile for the home appliances equipped with sensors to maximize the
consumer benefits in a fair and efficient manner by exchanging control messages. Control messages
contain energy consumption of consumer and real-time pricing information. Simulation results show
that proposed algorithms reduce the peak-to-average ratio by 34.56% and help the users to reduce
their energy expenses by 42.41% without compromising the comfort. The daily discomfort is reduced
by 28.18%.

Keywords: demand side management; load scheduling; home energy management system;
optimization techniques

1. Introduction

To make an advanced and automated energy management and distribution system, the smart
grid incorporates new, smart and intelligent technologies. Smart controllers and relays along with
intelligent software tools are used for data management. The best feature of the smart grid is the
two-way communication between power companies and consumers. This two-way communication
of information enables the utility companies and consumers to control their load, reduce bill and
peak-to-average ratio (PAR). The gain of user comfort (UC), implementation of user preferences
and integration of renewable energy (RE) is another advantage. The addition of these new and
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intelligent technologies in the next generation power grid is going to be incorporated across the
entire power system. The smart grid incorporates new technologies from generation, transmission
and distribution of power consumption at the consumer’s side. These technologies are used for the
purpose of enhancing the safety, reliability and efficiency of the power system.

Residential and commercial buildings consume 50% of the global power [1]. The active
collaboration and energy sharing by buildings and homes are not included in the present electricity
system. All the energy management efforts carried out are less effective and their efficiency is affected
by this. The smart grid enables the next generation energy efficiency and sustainability. In this kind
of architecture as discussed above, the aggregation of houses acts as an intelligent collaboration of
networked system, whereas, in the conventional system, they act as passive and isolated units [2].

With the help and cooperation of smart grid technologies, investment in a traditional grid can be
changed or reduced by implementing demand side management (DSM) rules. The participants of the
DSM or demand response (DR) programs try to reduce their energy utilization at certain instances
showing a little flexibility. By offering flexibility, consumers achieve benefits [3].

Since 1982, the increase in peak electricity demand and electricity usage has increased from
the growth in electric appliances and increasing demand of power by industry. The increase is
almost 25% by each year according to the USA department of energy [4]. Moreover, considering
the residential sector in the USA, the electricity sales are expected to increase 24% from 2011 to 2040 [5].
Peak energy demand is expected to be far more than the available transmission, generation and
distribution capability of the existing grid. This dilemma can be solved by enhancing the existing
transmission capability, decreasing peak load, increasing distributed generation and exploring new
methods of energy generation such as renewable energy sources (RESs). Researchers are trying to
expand traditional grid infrastructure to meet new challenges; however, it is a very expensive job [4].

There are also monitory benefits added to the physical system consideration. The peak power
stations can be eliminated by reducing the load during peak hours. This ensures decrease in cost of
electricity for consumers. As an example, during the California energy crisis of 2000–2001, a 5% peak
demand reduction decreased the highest wholesale prices by 50% as stated in [6]. The authors attempt
to decrease peak load demand by intelligent and smart coordination amongst customer’s appliances
scheduling. The peak demand is avoided by scheduling the appliances in low peak hours and thus
benefiting both the consumers and utility companies [7].

There is an emerging trend toward scheduling the load of residential homes, reducing electricity
cost and balancing the energy consumption across 24 h of a day. The use of microgrid (MG) comprising
of RESs are in spotlight. Normally, photovoltaic (PV) source, wind turbines and micro combined heat
and power generators are used. The current power generation system is in a transition state to become
a large scale distributed power generation system. This transition state to smart grid will be completed
with the addition of distributed RESs [8,9].

A smart grid also supports changing electricity prices and this change is according to the dynamic
status of electric power demand and generation system. The smart grid is now a promising method
for the RE generation, resources management, use in the context of increasing energy demand and
increasing prices [10].

The recent smart appliances and smart grid technologies enable residential and commercial sector
to use power efficiently using smart grid features. Such electrical appliances have the capability
to make their operation according to the changing electricity prices. Peak load management can
reduce the cost of electricity consumption. The reliability of electric grid can be improved by using
smart appliances and their load management characteristics knowing every minute details of each
appliance [11]. An abstract view of power flow for supply and demand side is presented in Figure 1.
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Figure 1. Abstract view diagram of power flow for supply and demand side.
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The researchers are trying to add intelligence for energy management in order to improve the
efficiency, comfort, convenience in services and home-based health-care support [12,13]. There are
many articles, in which especially smart homes energy management systems considering energy
efficiency and load management are discussed [14–17]. Most of the literature considers reduction
of cost via load management by following variations in electricity prices. This paper proposes a
novel approach for appliances scheduling in residential buildings which gives a detailed smart home
energy management system solution. This approach minimizes the overall daily electricity cost of
home appliances.

In this work, residential load is scheduled using DSM for smart homes. Considering smart power
system for consumers, where a common energy source is used, each consumer uses smart meter
and energy consumption scheduling unit (ECSU). The electric grid and smart meter is connected via
advanced metering infrastructure (AMI). The AMI communicates between the electric grid and smart
meter. Four algorithms are proposed, i.e., genetic teaching learning based optimization (GTLBO),
flower pollination teaching learning based optimization (FTLBO), flower pollination BAT (FBAT)
and flower pollination genetic algorithm (FGA). These proposed algorithms are used to schedule the
load for reducing electricity cost, user discomfort and PAR. Simulation results show that proposed
techniques perform better as compared to the existing techniques. However, there is trade-off between
cost and user discomfort. The discomfort decreases with the increasing cost and increases with
decreasing cost. The list of the acronyms are listed in Table 1.

Table 1. Acronyms.

Symbol Description Symbol Description

A Set of appliances Epe
T

Total energy consumption of power elastic
appliances

At
e Set of time elastic appliances Ea

c (t) Energy consumption of interruptible appliances

Ap
e Set of power elastic appliances Pa

r Power rating of interruptible appliances

Si
t Current position of an appliance i Ea

T
Total energy consumption of interruptible
appliances

Si
t+1 Position of appliance at the next time slot Eb

c (t)
Energy consumption of non-interruptible
appliances per time slot

To
s ON time Pb

r Power rating of non-interruptible appliances

β Operation end time Eb
T Total energy consumption by β appliances

α Operation start time Cpe
T Total cost of power elastic appliances

rn
t Number of remaining time slots ρ Power rating

wn
t Number of waiting time slots Cte

T Total cost of time elastic appliances

Xt ON/OFF status wi Waiting time of appliance i

pi
max Maximum power of appliance i ti Time of appliance i

pi
min Minimum power of appliance i αi Start appliance i of set α

ρ(Lt) Combined electricity price at time slot t βi End time slot of Appliance i

Rt Real-time price CT Total cost of all appliances

bt Electricity price when IBR threshold exceeded ET Total energy consumption of all appliances

Lt Total load MDi Mean difference

Lth Threshold of load Meannew Outcome of the best learner

Ej
c(t)

Energy consumption of power elastic appliances
per time slot ri Random number between 0 and 1

Pj
r Power rating of power elastic appliances Tf actor Teaching factor

Ete
T

Total energy consumption of time elastic
appliances

The rest of the paper is organized as follows: related work is discussed in Section 2. Discussion
about the proposed system model is provided in Section 3. Section 4 explains the problem formulation
using a mathematical technique called knapsack. In Section 5, optimization techniques are explained,
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In Section 6, simulation results and discussion have been provided. In Section 7, conclusions, future
work and references are presented.

2. Related Work

A lot of research has been done on residential load scheduling, DSM for smart homes and home
energy management (HEM). These are major trends in smart grid research domains.

In [18], authors discussed HEM controller for the residential load. Moreover, they used four
algorithms for the bill and PAR reduction, i.e., the genetic algorithm (GA), binary particle swarm
optimization (BPSO), wind driven optimization (WDO), bacterial foraging optimization algorithm
(BFOA) and genetic BPSO (GBPSO). The authors achieved 34% PAR and 36% cost reduction. The cost
for single, ten and fifty homes are calculated using the above techniques. However, the authors did
not consider the UC and user preferences.

A mixed integer programming optimization (MIPO) algorithm is proposed in [19] for scheduling
appliance’s operations. The same proposed algorithm minimizes the peak load and cost using the
branch and bound (BAB) algorithm for problem formulation and solution. The use of PV as MG and
exporting electricity to grid back are done by this work. However, PAR is not minimized.

In [20], an optimized energy management system (OEMS) is proposed including RES integration
and energy storage system (ESS). The authors also discussed the residential sector. The multiple
knapsack problem (MKP) for problem formulation is used to solve the problem of electricity cost and
PAR reduction. The authors used BPSO, GA, WDO, BFOA and hybrid of GA and PSO named GA-PSO
(HGPO) algorithms to implement the proposed problem. By the integration of RES and ESS, the authors
achieved 19.94% and 21.55% cost and PAR reduction, respectively. Moreover, they achieved 25.12%
and 24.88%, bill and PAR reduction, respectively, by implementing the HGPO algorithm. This research
did not discuss the average waiting time (AWT) for maximizing UC as done by our work.

The authors proposed a generic DSM (G-DSM) model for residential users [21]. The authors
reduced PAR, electricity cost and appliances waiting time. The authors used GA for appliances
scheduling and consider 20 users. Moreover, they obtained 39.39% and 45.85% cost reduction for
single and 20 users, respectively. The PAR reduction for a single user and 20 users are 17.17% and
45.24%, respectively. The cost reduction on daily basis is 25.62%. Moreover, the authors also discussed
the relationship between cost and waiting time of appliances. The UC is compromised; however,
their work reduced cost and PAR for single and multiple users.

In [22], the authors proposed an energy optimization technique. The authors scheduled household
appliances for finding the electricity price, weather conditions and dynamic behaviors of users.
They considered cost and UC optimization and solved their objective function via MKP. The authors
obtained energy savings by 11.77% and 5.91%, with and without people occupancy, respectively.
The authors minimized cost; however, user discomfort is increased.

The authors in [23] proposed an HEMS for cost reduction and load balancing. The performance
of HEMS is evaluated by this work using grey wolf optimization (GWO) and BFOA. Reduction in cost
and PAR is obtained by dividing the appliances into two classes based on energy consumption pattern
as well as peak and off-peak hours that are considered for energy management.

This work obtained 10% cost reduction by GWO as compared to BFOA using critical peak pricing
(CPP) scheme. In this work, the cost and PAR are reduced; however, UC is compromised.

In [24], the authors proposed an HEM architecture and integrated multiple classes of appliances
for scheduling the smart home load. They validated the six layers of their model by simulations.
The knapsack optimization technique is used for appliances scheduling. Moreover, four cases of
appliances for cost reduction are considered. Fault identification and electricity theft control are also
considered for efficient use of electricity consumption. In addition, the authors also calculated carbon
footprints for user awareness. Simulation results show that peak load reduction of 22.9% for the
unscheduled load with person presence controller (PPC), 23.15% for the scheduled load with PPC and
25.56% for the scheduled load with UC index. Similarly, total cost reduction of 23.11%, 24% and 25.7%
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is obtained, respectively. The authors reduced cost and carbon emissions as already discussed above;
however, they did not consider minimizing AWT.

In [25], the authors proposed a realistic scheduling mechanism (RSM) for reducing electricity cost
and enhancing appliances utility. The authors divided a 24 h time horizon into four logical time slots;
each of them six hours. BPSO is used for appliances utility, cost reduction, and UC. To create a balance
between appliance utility and cost-effectiveness, RSM with a power bank is proposed that gives a UC
gain of 0.185 with respect to unscheduled load and 0.149 with respect to BPSO on a scale of 0 to 1.
The authors reduced cost and optimized UC; however, PAR is compromised. The RSM model is not
good in terms of monitory benefits and expensive to install.

The authors proposed different DSM programs for energy management in [26]. The authors
considered the TLBO, GA, the enhanced differential evolution (EDE) algorithm and the proposed
enhanced differential teaching-learning algorithm (EDTLA) to manage energy consumption and
UC. The proposed model considered the human preferences and energy consumption pattern.
The authors considered the power consumption pattern for shiftable appliances to get monitory
benefits. The authors considered cost reduction, UC, reduction of carbon emission and RES integration
in this work. The authors also considered PAR reduction and the trade-off between cost and UC.
Without integration of RESs, the electricity cost and PAR are reduced up to 36% and 43%, respectively.
With integration of RESs, electricity cost, PAR and carbon emissions are reduced up to 67%, 29% and
55%, respectively. The authors considered reduction of cost and carbon emissions; however, AWT is
not sufficiently reduced.

In [27], the authors proposed a hybrid energy generation system (HEGS) and discussed the
appliances’ scheduling problem. The proposed model consists of PV, wind turbine, combined heat
and power (CHP) energy storage and electric vehicle (EV). The authors reduce cost, which consists
of minimum total operational cost, cost of gas consumption, power purchased from the electric grid,
storage system cost and charging–discharging costs of EV. The authors proposed an efficient algorithm,
i.e., multi-team PSO (MTPSO) which uses different information to update velocity. MTPSO is more
stable as compared to PSO. The proposed algorithm reduces cost efficiently; however, there is a
trade-off between cost reduction and UC.

The authors proposed a distributed EMS (DEMS) called an incentive-driven distributed energy
sharing system (iDES). The authors considered the reduction of communication overhead of appliances
and ensured effective load sharing among different homes appliances in [28]. The authors used a
new pricing scheme for different incentives. The load sharing price means the cost of renewable and
storage system, changes in power supply for demand and the remaining energy level of the battery
storage system. The authors efficiently shared energy and reduced carbon footprints; however, the UC
is not considered.

The authors proposed the idea of peer-to-peer power sharing in [29]. Moreover, the authors
discussed two cases, i.e., in the first case, those who can afford renewable and non-renewable power
generation resources are included. Such power sources includes: PV panel, diesel generator, a wind
turbine—in the second case, those who cannot afford such sources of RE generation. The authors
proposed a concept of a marketplace for the power generation and self-sufficiency in the power
market. A small-scale power generation system is introduced using an energy management unit
(EMU). The authors presented the concept of energy sharing due to which cost is reduced; however,
the PAR is increased.

In [30], the authors proposed an HEM model. To solve the optimization problem, the Time-of-Use
(ToU) pricing scheme with RESs and without RESs is considered. The authors used evolutionary
algorithms: BPSO, GA and cuckoo search algorithm (CSA) for DSM model and for scheduling the
appliances. The authors used a ToU pricing scheme and consider traditional homes and smart
homes with RESs. The cost saving achieved by CSA is 6.93% and 43.10% with and without RESs in
comparison to GA and BPSO, respectively. The authors reduced cost using HEMS; however, they did
not consider UC.
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The authors proposed HEMC by using heuristic algorithms such as BPSO, GA and ant colony
optimization (ACO) in [31]. A generic architecture is proposed for a DSM model and formulated the
problem using MKP. They used a combined model of ToU and incline block rates (IBR) as a pricing
scheme. The authors introduced a GA based energy management controller (EMC), which is more
efficient than BPSO and ACO in terms of cost saving, PAR reduction and UC maximization. The cost
and PAR are reduced in this work; however, AWT is not considered.

The authors proposed a multi-agent power distribution hub (PDH) in [32] for energy management.
The proposed hub optimize energy consumption and management of ESS. The power is shared
among neighbors with no profit and loss, and considered on-peak, off-peak and mid-peak prices.
Three scenarios are considered for proposed model, i.e., without BESS, with BESS and with sharing
the power of BESS. Power savings of 21% and 6% are achieved for baseline load and without sharing
BESS consumption from the utility, respectively. Compared with baseline cost, 36% of electricity cost
is reduced and 9% is used for sharing of BESS. The authors reduced cost using ESS and multi-agent;
however, in this model, appliances are not scheduled and UC is reduced. Energy is provided for the
appliances when needed.

The authors in [33] discussed an opportunistic scheduling algorithm. The authors used real time
pricing (RTP) scheme and optimal stopping rule (OSR). Priority is assigned to consumers based on
energy consumption pattern. First come first serve (FCFS) algorithm is used to reduce cost and waiting
time for appliances. Priority enabled early deadline first (PEEDF) is also used to maximize the UC.
FCFS saved 65.95% cost while MFCFS saved 42.58% cost, which is 23.34% less than FCFS. Moreover,
PEEDF saved costs of up to 48.28% which is 5.7% more than FCFS. The authors also used RE during
peak hours and sell it back to the grid, when the energy is in a surplus. The authors used the above
algorithm to reduce cost; however, UC is compromised.

In [34], the authors discussed real-time information based energy management to reduce
cost and PAR while keeping the UC. Appliances are classified into different categories based on
their energy consumption profiles. The authors considered customer preferences, cost saving and
UC. Air conditioner and refrigerator are modeled using intelligent programming communication
thermostat (IPCT). GA is used to add intelligence to conventional programming communication
thermostat (CPCT). Electricity cost, PAR reduction and maximization of UC are considered. Proposed
algorithms effectively managed the energy utilization by scheduling home appliances. The proposed
model reduces the energy cost and PAR up to 22.63% and 22.77%, respectively. The authors reduced
cost and PAR using GA; however, AWT is not reduced, which is causing user discomfort.

The authors used cooperative PSO (CPSO) to optimize scheduling and operation of appliances
in [35]. The authors considered two types of appliances; time-shiftable and power shiftable.
They achieved electricity cost reduction, UC and balanced the total load on the main grid. This work
reduces cost efficiently; however, PAR is increased.

The authors proposed a smart energy hub (SEH) and modern energy management technique
considering electricity and natural gas consumption. SEH is formulated as a non-cooperative game
(NCG) [36] and proved the nash equilibrium (NE). Cost and PAR are reduced by the proposed SEH.
The authors used NCG to reduce cost and PAR; however, UC is compromised.

In [37], the authors proposed a mathematical optimization model to control residential energy
load and customer preferences. The customer comfort is modeled considering appliance classes,
customer preferences and weather conditions. For UC and electricity cost, WDO is used, while, for the
electricity bill and PAR reduction, min-max regret-based knapsack problem is considered. Simulation
results show that the optimized results of electricity cost, PAR and UC are achieved. The authors
controlled residential load and minimized cost and PAR using WDO; however, they ignore UC.

3. Problem Statement and Problem Formulation

In this section, the problem is formulated using MKP. Moreover, the mapping between proposed
scheduling problem and an overview of the MKP are discussed.
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3.1. Problem Statement

Load scheduling is a challenging task in the smart grid due to randomness in the energy
consumption behavior of consumers. In literature, the HEM controller is utilized in order to reduce
cost [38]. However, while reducing cost, the peaks in demand may emerge. Genetic-based controller
for load scheduling is proposed in [38], in order to reduce cost and PAR. However, the comfort of
the consumer is compromised while achieving these objectives. Mostly in literature [38], consumer
comfort is neglected while handling the load scheduling. In this paper, load scheduling of residential
sector is focused, to reduce cost and PAR, which is beneficial for both utility and consumer without
compromising the comfort of consumers. The consumers depend on power consumption based on the
day-ahead pricing scheme. The energy prices are set in advance (e.g., day-ahead). Consumers define
the length of the operation time interval for each appliance. The ECSU based on GTLBO, FTLBO,
FBAT and FGA algorithms schedule the household load within the scheduling time horizon, keeping
constraints and pricing model in focus. The aim of the load scheduling is to optimally schedule
operational time of all the household load in order to reduce the electricity cost and PAR without
compromising the comfort of the consumer.

3.2. Proposed Model Specifications

Proposed model specifications include:

1. Power elastic loads have some flexibility in operation within predefined time slots. These appliances
operate between the minimum and maximum power within the scheduling time horizon.
For example, air conditioner and refrigerator can regulate their power consumption from the
minimum to the maximum power.

2. Time elastic load have flexibility in their operating time. They can either be interruptible or
non-interruptible. The interruptible appliances can be delayed and interrupted if required such
as a washing machine and a clothes dryer. On the other hand, non-interruptible appliances can
only be delayed before it starts the operation such as an electric kettle and a toaster.

3.3. Mapping of Load Scheduling to MKP

In this section, scheduling problem is mapped to MKP. MKP in engineering and computer
science is a combinatorial problem, i.e., finding an optimal item from the set of items. It is a standard
mathematical technique in which many optimization problems are mapped. MKP is a generalized
form of a single knapsack with multiple instances of the items. It has m knapsacks and a set of n
objects. Each object in this set has two attributes: the value of the object and weight. Every knapsack
has a capacity constraint that represents the maximum weight that it can support. The objective of the
multiple knapsacks is to find the subset of the objects that can be packed within the knapsacks such
that the value of the objects within the knapsack is maximized. The mapping of scheduling problem to
a multiple knapsacks is as follows:

• The time intervals t correspond to m knapsack.
• The number of appliances correspond to n objects that must be packed within the knapsack.
• The energy consumption of appliances correspond to the weight of each object.
• The cost of energy consumed corresponds to the value of the object in specific time-slots.
• The maximum energy that can be drawn from the grid at any time correspond to the capacity of

the knapsacks.

For the consumer, it ensures that the electricity cost can be controlled, and, for the utility, this limit
ensures that the grid is not overstressed. In the proposed system model, this limit is considered for a
single household.
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3.4. Mathematical Modeling of Objective Function and Constraints

The description of mathematical modeling regarding energy consumption, cost, PAR and UC are
given in the subsections below.

3.4.1. Energy Consumption Model

The energy consumption is the energy consumed by the home appliances during a scheduling
time horizon. As discussed earlier, there are two types of appliances: power elastic appliances Ap

e and
time elastic appliances At

e. The energy consumed at each time slot and during the day is given by the
following Equations (1)–(7):

Ej
c(t) = Pj

r × Xt, (1)

Epe
T =

24

∑
t=1

N

∑
j=1

Ej
c(t), (2)

Ea
c (t) = Pa

r × Xt, (3)

Ea
T =

24

∑
t=1

N

∑
a=1

Ea
c (t), (4)

Eb
c (t) = Pb

r × Xt, (5)

Eb
T =

24

∑
t=1

N

∑
b=1

Eb
c (t), (6)

Ete
T = Ea

T + Eb
T . (7)

The aggregated daily energy consumption of all appliances is calculated using the Equation (8):

ET = Epe
T + Ete

T . (8)

3.4.2. Energy Cost Model

For electricity cost calculation, utility offered various pricing schemes such as ToU, RTP, critical
peak rebates (CPR) and CPP to benefit both utility and consumers [38]. However, 60% of benefits
for 2009 come from altered pricing schemes, as predicted by federal regulatory energy commission
(FREC) [39]. The energy consumed by the consumers is charged by the utility with respect to these
pricing schemes. In this paper, combined RTP and IBR are used for electricity cost calculation because,
in case of only RTP, there is a possibility that peaks will arise in demand during off-peak hours.
The peaks will arise during off-peaks hours because all the load burden will be in off-peak hours
having price variations every hour. The cost paid by the consumers to the utility for the energy
consumption can be calculated using the Equations (9) and (10):

Cpe
T =

24

∑
t=1

(
N

∑
j=1

Ej
c(t)× Xt × ρ(t)

)
, (9)

Cte
T =

24

∑
t=1

(
(

N

∑
a=1

Ea
c (t) +

N

∑
b=1

Eb
c (t))× Xt × ρ(t))

)
. (10)
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The total cost, i.e., CT of the consumer energy consumption can be calculated using Equation (11):

CT = Cpe
T + Cte

T . (11)

3.4.3. PAR

The utility gives incentives to the consumers to shift some load from on-peak to off-peak hours in
order to reduce the peaks in demand that results in PAR reduction. PAR is the ratio of peak demand to
average demand of the consumers during the scheduling time horizon. It is beneficial for both utility
and consumers because it balances the demand curve and tries to manage the gap between demand
and supply. The PAR is calculated by the following formula as in Equation (12):

PAR = 24×

max
(

Ej
c(t), Ea

c (t), Eb
c (t)

)
ET

 . (12)

3.4.4. Waiting Time

The waiting time is the time for which the appliances must wait before starting operation.
The waiting time defines the comfort or discomfort of the consumers. For example, if the appliance
starts operation at a later time, it has a longer waiting time. There is a trade-off between the waiting
time and cost. When the consumers wait more during peak load, they pay less and those consumers
that do not tolerate wait, in fact, pay more. The formula of waiting time emerges as in Equation (13):

wi =
ti − αi

βi − To
s,i − αi

. (13)

For the consumers, the waiting time is expected to be as small as possible. In this paper, the waiting
time along with the electricity cost are minimized.

3.5. Optimization Problem Formulation

From the optimization point of view, it is desirable for the consumer to utilize the available
capacity provided by the utility. The consumer utilizes the available energy in such a way that the
sum of the utility functions is maximized and the cost is minimized. The overall objective function of
residential consumer load scheduling is to minimize the electricity cost and PAR without compromising
the comfort of the consumer. Objective function is formulated as an optimization problem using the
Equations (14a)–(14c):

min (CT , wi, PAR) , (14)

subjected to;
ET ≤ Capacity, (14a)

Esch
T = Eunsch

T , (14b)

To,sch
s = To,unsch

s . (14c)

The constraint in Equation (14a) defines the capacity, which ensures that the electricity grid is not
overstressed as well as provides control of the total energy usage of a home. The energy consumption
of unscheduled load is equal to the scheduled load as indicated in Equation (14b). Equation (14b)
ensures the proper scheduling of the household load. Constraint defined in Equation (14c) is the
completion constraint. The constraint (14c) ensures that the operation of the appliances is completed
within the specified time-slots. Constraint in Equation (14c) also provides support for fair comparison
of the scheduled load with the unscheduled load.
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4. Proposed System Model

The proposed system considers one electrical power system that is comprised of both supply
and demand side with several consumers as shown in Figure 1. Each consumer is equipped with
ECSU, smart meter, remote control, in-home display (IHD) and control. The ECSU is the key factor in
HEM to control the consumer energy consumption and to coordinate each consumer with the utility
company. The ECSU is connected to the utility company through the network interface such as local
area network as shown in Figure 2. The ECSU receives control parameters setting from users through
the user interface and pricing information from the utility to schedule the household appliance’s
consumption behaviour.

Figure 2. System architecture for ECSU including smart meter, remote control and IHD and control.

Each user inputs control parameters such as starting time, ending time and length of operation
time, etc., through the user interface to the scheduling unit. The scheduling unit receives price
information from utility, and forwards control parameters and price information to managing units.
Using historical data and data received from scheduling unit; the managing unit schedules appliances
consumption behavior using optimization techniques. Finally, ECSU exchanges the schedule with the
utility to optimally control the consumer’s consumption behavior as shown in Figure 3.

The scheduling time horizon is divided into T time slots, where T = {1, 2, 3, ......., T}. The utility
generates day-ahead RTP signal. This division and day-ahead RTP is based on the behavior of
consumers and their demand patterns, such as on-peak time slots, off-peak time slots, and mid-peak
time slots.

The load demand is classified into two types: elastic load and inelastic load. Moreover,
the elastic loads is further classified into two categories: time elastic appliances and power elastic
appliances. Each time elastic appliance can either be interruptible or non-interruptible. The operation
of interruptible appliances can be delayed, interrupted and adjusted or shifted to the time slots
other than on-peak time slots, while, for non-interruptible appliances, it is only possible to delay its
operation, when needed. On the other hand, there is the inelastic load, having an inflexible price
nature. The detailed description of appliances is as follows.
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Let the set of appliances are denoted by: A = {At
e, Ap

e }, such that, At
e = {An

te, Ain
te }. At

e is the set
of time elastic appliances and Ap

e is the set of power elastic appliances. For each appliance i, the current
position, Si

t = (rn
t , wn

t ) and the position at the next time slot, Si
t+1 is defined. In the time elastic

appliances, the operation of interruptible appliances can be adjusted and interrupted, if necessary.
The initial position and the position at next time slot for interruptible appliances can be modeled as
shown below in Equations (15) and (16):

Si
t = {To

s , β− α + To
s + 1}, (15)

Si
t+1 =

{
rn

t , wn
t − 1 if Xt = 0, wn

t ≥ 1,
rn

t − 1, wn
t if Xt = 1, rn

t ≥ 1.
(16)

In time elastic appliances, the non-interruptible appliances can only be delayed on the user
requirement, as discussed above. The initial position and position at next time slot for non-interruptible
appliances are modeled as in Equations (17) and (18):

Si
t = {To

s , β− α + To
s + 1}, (17)

Si
t+1 =

{
rn

t , wn
t − 1 if Xt = 0, wn

t ≥ 1,
rn

t − 1, wn
t if Xt = 1, rn

t ≥ 1.
(18)

The power elastic appliances have elasticity in their power rating, and tolerate flexibility in
their operation time. The position of power elastic appliances at the next time slot is modeled as in
Equation (19):

Si
t+1 =

{
pi

max if Xt = 1, 8 a.m. ≤ t < 9 p.m.,
pi

min if Xt = 1, 10 p.m. ≤ t < 7 a.m.
(19)

The inelastic appliances start operation immediately and need to be power-on at all times during
the day. The initial position and the position at next time slots are given as in Equations (20) and (21):

Si
t = (To

s, 0), (20)

Si
t+1 =

{
rn

t , 0 if Xt = 1, rn
t ≥ 1,

0, 0 otherwise.
(21)

Among the various pricing schemes discussed below, the RTP scheme is chosen because it has
more flexibility for appliances scheduling as compared to the ToU tariff, CPP and CPR. To avoid the
building of peaks during off-peak hours, the combined RTP and inclined block rate (IBR) pricing
scheme are considered. We assume that the utility has no control over the consumer’s consumption
and it may only influence the load by providing price flexibility. Load synchronization and building
of peaks during off-peak hours can be avoided by adopting combined RTP with IBRs, where the
marginal price has a direct relationship with the load. This combined pricing scheme encourages the
consumer to shift the load from on-peak to off-peak hours in order to reduce cost and PAR. Using this
combined pricing scheme, electricity price depends on time and also on total load. Let ρ(Lt) indicate
the electricity price at time slot t, as a function of consumer’s consumption at that time slot as shown
using Equation (22):

ρ(Lt) =

{
Rt if 0 <Lt ≤ Lth,
bt if Lt ≥ Lth,

(22)
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where Rt is the electricity price, when the total consumption is less than the threshold of IBRs at time
slot t, and bt is the electricity price at time slot t, when the total consumption exceeds the threshold
of IBRs.

Appliances Historical Data

Optimization 

Techniques

Scheduling 

Unit

Managing Unit

System Setting 

Parameters
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Elastic Appliances

Inelastic Appliances

Network

Interface
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Figure 3. Functional model: ECSU exchanges the schedule with the utility to optimally control the
consumer’s consumption behavior.

5. Optimization Techniques

Many mathematical and heuristics techniques have been used for appliances scheduling. The main
objectives of using these techniques for optimization are the reduction of electricity bill, PAR and
energy balancing for demand and supply. In addition, optimizing grid stability, UC and to bring
power quality are some other objectives. One of the key features of heuristics techniques is the
low execution and computation time. These techniques provide a feasible solution to the problem.
The details of these techniques used in this work are provided below. Algorithms are described in
Algorithm 1–Algorithm 4.

5.1. Existing Optimization Techniques

This section provides a brief discussion of GA, TLBO, BAT and a flower pollination algorithm (FPA).

5.1.1. GA

GA is an adaptive heuristic search algorithm that is based on the evolutionary ideas of genetics and
natural selection. GA is used to solve optimization problems and represents an intelligent exploitation
of a random search. It tends to transfer random search towards a better performance region within the
search space. GA performs a search in a multi-model state-space, large state-space or n-dimensional
surface and offers significant benefits over many other typical optimization techniques. GA parameters
for optimal results are given below in Table 2. To solve a problem over consecutive generations,
GA simulates the survival of the fittest among individuals [40].

Each individual has a set of characteristics called chromosome or genotype bearing genes, which
can be altered or mutated to produce individuals with best characteristics than the parents. Generally,
GA candidate solutions are represented as a binary string of 0’s and 1’s; however, other encodings
are also possible [41]. The gene pattern of chromosome represents the ON/OFF state of appliances
and the length of chromosome represents the number of appliances. Once the population is created,
i.e., the ON/OFF states of appliances are initialized in a particular time slot. The fitness of each
candidate solution is calculated according to the objective function defined for the optimization
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problem. After evaluating the fitness of each candidate solution, crossover and mutation process is
applied to produce offsprings known as a new population which is better than the parents.

Table 2. GA parameters.

Parameters Value

Number of iterations 500
Population size 200

Pm 0.1
Pc 0.9
n 11

5.1.2. TLBO

This algorithm was originally proposed by [42]. TLBO is computationally very efficient because
its parameters do not require any tuning. TLBO consists of a teacher and a student. The teacher is
considered the most knowledgeable person. The teacher shares its knowledge with the students to
improve their output or performance. The quality of the student knowledge or performance can be
found by evaluating their grades. Moreover, the students also improve their knowledge by discussion,
which ultimately improves their performance [43]. TLBO is a population-based algorithm inspired by
the teaching and learning environment of the classroom. TLBO consists of two phases: teacher phase
and student phase. In the first phase, a teacher is chosen as the best solution for the population and
the remaining population is considered as students. To raise the level of the students, the teacher gave
his knowledge to the students for changing the average value of the students knowledge. The mean
difference between the teacher and the student’s knowledge in a specific subject can be given by the
following Equations (23)–(25):

MDi = ri(Meannew − Tf actor ×Meani), (23)

Tf actor = round[1 + rand(0, 1)
{

2− 1
}
], (24)

Xnew,i = Xold,i + MDi, (25)

where MDi presents the mean difference of knowledge between the teacher and students, Meannew

presents the outcome of the best learner in particular subject. ri indicates the random number between
0 and 1. Tf actor presents a teaching factor and its value can be 1 or 2 and is a heuristic step decided
randomly with equal probability. The updated value of Xnew,i is chosen in the population if it is better
than the Xold,i.

In the student phase, the students interact with each other and the student with less knowledge
learns from the student with more knowledge. Two students, i.e., s1 and s2 are randomly selected
from the initial population such that Xtotal−s1,i 6= Xtotal−s1,i. However, the optimization problem can
be given as below using Equations (26) and (27):

X f new,s1,i = Xnew,s1,i + ri(Xnew,s1,i + Xnew,s2,i),

i f Xnew,total−s1,i ≤ Xnew,total−s1,i, (26)
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X f new,s1,i = Xnew,s1,i + ri(Xnew,s2,i + Xnew,s1,i),

i f Xnew,total−s2,i ≤ Xnew,total−s2,i. (27)

The solution X f new,s1,i is selected, if its results are better than the existing one; otherwise,
it is discarded. These selected values are given as input to the teacher phase in the next iteration.
This process repeats until the termination criteria are reached.

5.1.3. BAT

The BAT is a meta-heuristic algorithm used for global optimization. It was developed by Xin-She
Yang in 2010 and inspired by the echolocation behavior of microbats. The varying pulse rates of
emission and loudness of the bat algorithm helps in finding the particular location via sound waves.
The idea of the echolocation of microbats can be explained as follows: each virtual bat flies randomly
with a velocity vi at position (solution) xi. The frequency and loudness of the bat vary continuously.
It changes frequency, pulse emission rate and loudness, as it searches and finds its prey via local
random walk. Selection of the best prey continues until certain stopping conditions are met. To control
the dynamic behavior of a swarm of bats, essentially a frequency-tuning technique is used. In the
BAT algorithm, tuning algorithm-dependent parameters are very essential for controlling the balance
between exploration and exploitation [44].

5.1.4. FPA

Flower pollination is an interesting process in the natural world. FPA is inspired by the pollination
process of flowers in flowering plants. The aim of the flower pollination is the existence of the fittest
and the optimal reproduction of plants. This is actually an optimization process of the flowering
plants. There are two types of pollination: biotic and abiotic. Biotic pollination takes place in 90% of
the flowering plants. Insects and animals act as pollinators which transfer pollen grain in flowering
plants. Pollinators are also called pollen vectors, which are very diverse in nature. An estimated
200,000 of pollinators exist such as animals, birds, bats and insects. Cross and biotic pollination is
a global pollination process. Due to random flights, the pollinators carry pollens to various places.
Local pollination is considered as abiotic and self-pollination process. A switch probability p ∈ [0, 1]
controls the global and local pollination process. Due to the wind and physical proximity, local
pollination has p, as a fraction of the overall pollination process.

5.2. Proposed Optimization Techniques

A brief overview of the proposed techniques: GTLBO, FBAT, FTLBO and FGA are provided in
this section. In this work, basically four heuristic algorithms are used, i.e., GA, TLBO, FPA and BAT.
Based on these algorithms, four hybrid algorithms, i.e., GTLBO, FTLBO, FBAT and FGA are proposed.

5.2.1. GTLBO

GTLBO is a hybrid technique that is made by combining the parameters of GA and TLBO. TLBO
performs better in searching of an optimal solution as well as in exploitation mode, i.e., finding the best
solution in local search space; however, TLBO performs very poorly in exploration mode. It is designed
for a fast and local search, while, in a global search, the searching time is too long. Thus, there must be a
balance between exploration and exploitation to find the best solution. GA performs best in exploration
mode (global search) in addition to having a good convergence rate. GA has the efficiency to search in
large spaces without trapping in local optima. In designing the algorithm, exploration and exploitation
modes are two important aspects that are taken into consideration. To overcome the imbalance between
exploration and exploitation mode of TLBO, a hybrid technique is proposed by applying the crossover
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and mutation operator of GA to TLBO. Hybrid techniques, initially, works as TLBO. After updating the
population in learner mode, crossover and mutation are applied. Then, new vectors are added to the
population to calculate fitness. The process continues until termination is reached.

The hybrid technique takes the advantage of both exploration and exploitation mode of TLBO
and GA. The proposed technique is able to maintain a balance between local and global search by
applying crossover and mutation operator of GA to TLBO as well as having a better convergence rate.

Algorithm 1 GTLBO

1: Initialize number of students, number of subjects, i.e., variables, d, termination criteria
2: Calculate the mean of each variable or subjects
3: Find the best solution and best variable value
4: while Stopping condition not met do
5: for each learner X, of the class do
6: Teaching phase = round (1 + rand(0, I))
7: for j = 1 : d do
8: NewXij = Xij + rand(0, 1) ∗ (teacher(j)-
9: teaching phase ∗mean(j)

10: end for
11: Accept newXi if f (newXi) is better than f (Xi)
12: end for
13: for each learner Xi of the class do
14: Randomly select one learner Xk, such that i 6= k
15: if then f (Xi) better f (Xk)
16: for j = 1 : d do
17: newXij = Xij + rand(0, 1) ∗ (Xij − Xkj)
18: end for
19: else
20: for j = 1 : d do
21: newXij = Xij + rand(0, 1) ∗ (Xkj − Xij)
22: end for
23: end if
24: Perform GA crossover operation on newXij
25: Perform mutation operation on the new population;
26: Use an objective function to take a new population as
27: input after crossover and mutation;
28: if off-spring is better than previous population then
29: Accept new population
30: else
31: Move to the next iteration and repeat the
32: process;
33: Until termination criteria reached or first
34: learner phase end;
35: end if
36: From learning phase one accept results and run
37: second learning phase;
38: Perform crossover and mutation operation and run
39: objective function;
40: Repeat the process for each learning phase;
41: Accept newXi if f (newXi) is better than f (Xi)
42: end for
43: Update the teacher and the mean
44: end while

5.2.2. FBAT

FBAT is a hybrid algorithm made of FPA and BAT. Initially, the population is randomly generated
for finding initial best solution using objective function. After evaluating the population; the BAT
velocity, frequency and position steps are replaced by the main steps of FPA, i.e., local pollination is
started and random flowers are found in the neighborhood. Then new solutions are evaluated by
checking their fitnesses, if fitness improves, i.e., better solutions are found, then update the existing
solutions and update the current global best solution. In the same manner, update the search space
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accordingly. The hybrid technique, i.e., FBAT performance is better than FPA and BAT in terms of cost,
PAR and discomfort reduction as shown in Table 3, and simulation section. The daily cost reduced by
FPA, BAT and FBAT are 3.87%, 12.32% and 25.23%, respectively. Hence, the daily cost reduction by
FBAT is more than FPA and BAT algorithms. In addition, the daily discomfort and PAR reduction by
FPA and BAT are 30.91%, 5.55% and 48.36%, 2.46%, respectively, while 22.18%, and 27.16% by FBAT.
As Table 3, shows that PAR and daily cost is reduced by FBAT as compared to FPA and BAT; however,
the daily discomfort is reduced less by FBAT as compared to FPA and BAT due to trade-off between
cost and daily discomfort.

Algorithm 2 FBAT

1: Population size, number of appliances d, frequency q, velocity v, no of iteration, probability switch,
maximum and minimum frequency;

2: Initialize the population/solutions;
3: Generate population;
4: Find the initial best solution;
5: Initialize the best solution
6: Declare coefficients of objective function
7: Evaluate the population
8: FPA parameters replaces the BAT frequency, velocity and position calculation method;
9: for j = 1 : Niteration do

10: for i = 1 : n do
11: Local pollination will start
12: if rand > p1, then
13: L = Levy (d);
14: dS = L.*(Sol(i,:)-gbest);
15: Snew (i,:) = Sol (i,:) + dS;
16: else
17: Epsilon = rand;
18: Find random flowers in the neighbourhood
19: JK = randperm (n);
20: Snew (i,:) = Snew (i,:) + epsilon * (Snew
21: (JK(1),:) - Snew (JK(2),:));
22: Check if the simple limits/bounds are OK
23: Sol1 (i,:) = simplebounds (Sol1 (i,:) , Lb, Ub);
24: Improvise a new harmony vector
25: end if
26: Evaluate new solutions by checking their fitnesses
27: Fnew = Fun (Snew (i,:));
28: If fitness improves (better solutions found), update
29: the population
30: if Fnew <= F(i), then
31: Sol (i,:) = Snew (i,:);
32: F1 (i) = Fnew;
33: end if
34: Update the current global best
35: if Fnew <= f min, then
36: gbest = Snew (i,:);
37: fmin = Fnew;
38: end if
39: best;
40: f min;
41: end for
42: end for
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Algorithm 3 FTLBO

1: Initialize number of students, number of subjects, i.e., variables, d, termination criteria, population
size, probability switch;

2: Calculate the mean of each variable or subjects;
3: Find the best solution and best variable value;
4: while Stopping condition not met do
5: Teaching phase, generate new population and accept
6: new if better than previous;
7: for each learner Xi of the class do
8: Randomly select one learner Xk, such that i 6= k;
9: FPA parameters replaces the TLBO teaching and

10: learning phases;
11: for j = 1 : Niteration do
12: for i = 1 : n do
13: Local pollination will start;
14: if rand > p1 then,
15: L = Levy (d);
16: dS = L.* (Sol (i,:) - gbest);
17: Snew (i,:) = Sol (i,:) + dS;
18: else
19: Epsilon = rand;
20: Find random flowers in the neighbour
21: hood;
22: JK = randperm (n);
23: Snew (i,:) = Snew (i,:) + epsilon *
24: (Snew (JK(1) ,:) - Snew (JK(2),:));
25: Check if the simple limits/bounds are
26: OK;
27: Sol1 (i,:) = simplebounds (Sol1 (i,:),
28: Lb, Ub);
29: Improvise a new harmony vector;
30: end if
31: Evaluate new solutions by checking their
32: fitnesses;
33: Fnew = Fun (Snew (i,:));
34: If fitness improves (better solutions found),
35: update the new population;
36: if Fnew <= F(i)) then,
37: Sol (i,:) = Snew (i,:);
38: F1(i) = Fnew;
39: end if
40: Update the current global best;
41: if Fnew <= f min then,
42: gbest = Snew (i,:);
43: fmin = Fnew;
44: end if
45: best;
46: f min;
47: end for
48: end for
49: end for
50: Update the teacher and the mean value;
51: end while
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Algorithm 4 FGA

1: Initialize population, population size, number of iteration, crossover and mutation rate, number of
appliances, probability switch;

2: Generate an initial random population;
3: while Stopping condition not met do
4: Iteration ≤Maximum iteration;
5: Iteration = iteration + 1;
6: Define objective function;
7: Calculate the fitness of each individual via objective
8: function;
9: Select the individuals which are fittest among the

10: population generated;
11: FPA parameters replaces the TLBO teaching and
12: learning phases;
13: for j = 1 : Niteration do
14: for i = 1 : n do
15: Local pollination will start;
16: if rand > p1 then,
17: L = Levy (d);
18: dS = L.* (Sol (i,:) - gbest);
19: Snew (i,:) = Sol (i,:) + dS;
20: else
21: Epsilon = rand;
22: Find random flowers in the neighbour
23: hood;
24: JK = randperm (n);
25: Snew (i,:) = Snew (i,:) + epsilon *
26: (Snew (JK(1) ,:) - Snew (JK(2),:));
27: Check if the simple limits/bounds are
28: OK;
29: Sol (i,:) = simplebounds (Sol (i,:),
30: Lb, Ub);
31: Improvise a new harmony vector;
32: end if
33: Evaluate new solutions by checking their
34: fitnesses;
35: Fnew = Fun (Snew (i,:));
36: If fitness improves (better solutions found),
37: update the new population;
38: if Fnew <= F(i)) then,
39: Sol (i,:) = Snew (i,:);
40: F1(i) = Fnew;
41: end if
42: Update the current global best;
43: if Fnew <= f min then,
44: gbest = Snew (i,:);
45: f min = Fnew;
46: end if
47: best;
48: f min;
49: end for
50: end for
51: Desired population, which are selected after FPA
52: pollination process;
53: end while

Table 3. Comparison of heuristic techniques (reduced).

Heuristic Technique Daily Cost (%) Daily Discomfort (%) Peak Power Consumption (%) PAR (%)

GA 37.95 7.56 9.87 9.87
TLBO 26.74 3.33 12.96e 12.96
FPA 3.87 30.91 38.27 5.55
BAT 12.32 48.36 2.46 2.46

Existing aggregate 20.22 22.54 15.89 7.71
GTLBO 39.17 44.45 32.09 32.09
FTLBO 40.75 33.38 45.06 45.06
FBAT 25.23 22.18 27.16 27.16
FGA 64.49 12.72 33.95 33.95

Proposed aggregate 42.41 28.1825 34.565 34.565
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5.2.3. FTLBO

FTLBO is the hybrid of FPA and TLBO techniques. FTLBO performance is better than FPA and
TLBO as shown in simulation and Table 3. The daily cost reduction, daily discomfort and PAR by
FPA, TLBO and FTLBO are 3.87%, 30.91%, 5.55%, 26.74%, 3.33%, 12.96%, and 40.75%, 33.38%, 45.06%,
respectively. Hence, the daily cost and PAR reduction by FTLBO is more as compared to FPA and
TLBO. In case of daily discomfort, the FTLBO performance is better than FPA and TLBO. The FTLBO
reduced the daily discomfort very little as compared to FPA because there is trade-off between cost
and discomfort. As the cost by FPA is reduced very little, the discomfort is increased by 30.91%.
By making the FTLBO, all the steps of TLBO, i.e., population initialization and random generation,
evaluate the population or solutions, find best fitness and select for the next generation, are followed.
However, the two main steps of TLBO, i.e., the teaching and learning phase are replaced with the main
steps of FPA, i.e., after starting the local pollination, random flowers are searched and found in the
neighborhood of FPA. The new solutions are found and their fitness values are checked to compute
the best solution. The best solutions found are chosen for the next generation based on the global
best solutions.

5.2.4. FGA

FGA is made by FPA and GA. In FGA, all the steps of GA are followed except the two main steps,
i.e., crossover and mutation, which generate new solutions in each iteration. The steps are replaced by
the FPA pollination process as already discussed in section GTLBO and FTLBO.

6. Simulations and Discussion

In this section, simulation results and performance of the proposed algorithms are discussed.
Load scheduling is performed under day-ahead pricing (DAP) as shown in Figure 4, taken from
the daily report of FERC [38]. Total time horizon is 24 h, whereas hourly time slots are taken for
scheduling of appliances. The problem is formulated as an optimization problem with the objectives to
minimize electricity consumption cost and user discomfort. The problem is solved using four existing
optimization techniques: GA, TLBO, FPA, BAT and four proposed hybrid techniques: GTLBO, FTLBO,
FBAT and FGA. Results show that power flexible appliances operate at low power, where the prices
are high, while time flexible appliances delay their operation onto off-peak hours. A comparison of
above mentioned techniques is provided in Table 3. A detailed discussion of performance parameters
is provided as below:
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Figure 4. DAP signal.
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6.1. Power Consumption

Power consumption depends on power rating and the length of the operation time of appliances.
Minimizing power consumption during on-peak hours minimizes the cost; however, user discomfort
increases. Figure 4 illustrates that 6:00 p.m.–10:00 p.m. is on-peak hours, whereas 1:00 a.m.–6:00 a.m.
is off-peak hours. To achieve the objectives, power consumption must be minimized at on-peak hours
and maximized at off-peak hours. The hourly power consumption of all appliances using GA, TLBO,
FPA, BAT and the hybrid techniques are shown in Figure 5.

As it can be seen in Figures 6 and 7, GA, TLBO, FPA, BAT and the hybrid techniques:
GTLBO, FTLBO, FBAT and FGA have peak hourly power consumption of 2.10 kW, 2.6 kW, 3.1 kW,
4.7 kW, 2.3 kW, 2.2 kW, 4.7 kW and 5.5 kW, respectively, whereas FGA has the peak hourly power
consumption of 2.42 kW that is highest among all the techniques. As it is depicted from the FGA
schedule provided in Figure 6b, the washing machine is scheduled to operate at 1:00 a.m., where two
power flexible appliances are already in operation; this resulted in peak creation. Results demonstrate
that FTLBO outperforms all other techniques in terms of achieving minimum peak power consumption
as shown in Figure 6a and Table 3.

The power consumption of each appliance is shown in Figure 5. Figure 5 illustrates that an air
conditioner consumes 1.5 kW from 8:00 a.m. to 8:00 p.m. and 0.8 kW from 9:00 p.m. to 7:00 a.m.
The refrigerator uses 0.5 kW from 8:00 a.m.–12:00 a.m. and 0.3 kW from 1:00 a.m.–7:00 a.m. The washing
machine is ON from 1:00 a.m.–2:00 a.m. and consumes 0.7 kW power. From 5:00 a.m.–6:00 a.m.
the clothes dryer operates and consumes 0.8 kW power. Electric kettle consumes 0.3 kW at 8:00 a.m.,
5:00 p.m. and 8:00 p.m. Electric toaster runs for two hours, i.e., 6:00 a.m.–7:00 a.m. and consumes
0.2 kW power.

Figure 6 shows the hourly power consumption of appliances in unscheduled case for TLBO, FPA,
GA, FPA and their hybrid: FTLBO and FGA respectively. The peak unscheduled power consumption
is at 8:00 a.m., i.e., 3.5 kW, while low peak power consumption is 1.6 kW during the rest of the hours.
The peak power consumption by TLBO is 2.6 kW at 11:00 p.m. and power consumption is low for
the rest of the hours, i.e., 1.3 kW. At 7:00 a.m., FPA has the highest power consumption, i.e., 3.9 kW
and 1.6 kW for the remaining hours. The FTLBO has peak power consumption from 12:00 a.m. and
1:00 a.m., i.e., 2.2 kW and below 1.5 kW during the rest of the hours. GA power consumption from 1:00
a.m.–2:00 a.m. is 2.2 kW and the lowest in the other time slots as shown in Figure 6a, while 8:00 a.m.–10
a.m. shows the peak power consumption by FGA. The power consumption by FTLBO and FGA is less
than FPA; however, it is equal to TLBO and more than GA as shown in Figure 6.

Figure 7 shows the hourly power consumption by unscheduled case, GA, TLBO, BAT, FPA and
their hybrid, i.e., GTLBO and FBAT, respectively. The peak power in the unscheduled case is 3.5 kW at
8:00 p.m. and the lowest power consumption is 1.6 kW at many other hours as shown in Figure 7a,b.
Peak power consumption by GA from 1:00 a.m.–2 a.m. is 2.2 kW and the lowest power consumption is
1.1 kW. In conclusion, TLBO shows the peak power consumption at 11:00 p.m., i.e., 2.6 kW and the
lowest from 9:00 a.m. to 4:00 p.m., while GTLBO shows the peak power consumption of 2.3 kW at
1:00 a.m. The power consumption by BAT is highest at 1:00 a.m., i.e., 3.5 kW and the lowest is 1.7 kW
for the rest of the hours. The peak power consumption by FBAT is 3.5 kW at 7:00 a.m., while for the
rest of the hours, the power consumption is 1.6 kW.
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Figure 6. Hourly power consumption of appliances: (a) using TLBO, FPA and FTLBO, (b) using GA,
FPA and FGA.
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Figure 7. Hourly power consumption of appliances: (a) using GA, TLBO and GTLBO, (b) using BAT,
FPA and FBAT.

6.2. Electricity Consumption Cost

Cost minimization is one of the primary objectives of power scheduling where appliances are
scheduled to minimize user’s electricity bill. However, the user discomfort is increasing with cost
minimization due to trade-off between cost and discomfort. Daily consumption cost after scheduling
appliances by all optimization techniques is given in Figure 8. The results show that GA and FGA have
lowest cost in all the times slots. The reason for this much cost reduction using GA and FGA is clear
from power consumption pattern illustrated in Figure 6, which shows that hourly power consumption
of GA and FGA is minimum as compared to TLBO, FPA, BAT and the hybrid algorithms.

Figures 7 and 8 show the hourly electricity cost of appliances. The unscheduled cost is high from
7:00 a.m.–10 a.m. and 5:00 p.m.–8 p.m., which is about $1/kW. The cost by TLBO from 7:00 p.m.–11
p.m. is high, nearly $0.84/kW and has the lowest cost from 1:00 a.m.–6:00 a.m. This is due to the
off-peak hours. The cost by FPA is high from 6:00 p.m.–11:00 p.m. and 7:00 a.m., while the lowest cost
is from 1:00 a.m.–6:00 a.m. due to off-peak hours. Similar to the case with FTLBO, however, it reduces
the cost as compared with the unscheduled case, TLBO and FPA for all hours. Hence, it shows that
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FTLBO is more cost efficient than TLBO and FPA. The cost by GA is higher at 8:00 a.m., 5:00 p.m.–11:00
p.m. and 7:00 a.m. due to on-peak hours and lowest from 1:00 a.m.–6:00 a.m. due to off-peak hours.
The cost reduction by GA is more than the unscheduled case and FPA; however, it is not more than
FGA. FGA has high and low cost from 6:00 p.m.–11:00 p.m., 5:00 a.m.–7:00 a.m. due to on-peak and
off-peak hours, respectively, as shown in Figure 8b. The cost by FGA is high from 8:00 a.m.–10:00 a.m.
and has the lowest cost at all other hours. FGA reduces cost more as compared to GA and FPA.

Figure 7 shows the hourly cost reduction by GA, TLBO, GTLBO, BAT, FPA and FBAT. The peak
unscheduled cost is $0.9/kW at 8:00 p.m. and the lowest cost is $0.2/kW at 4:00 a.m. due to off-peak
hours. GA, TLBO and GTLBO show high cost from 6:00 p.m.–11:00 p.m. and have the lowest cost
from 1:00 a.m.–6:00 a.m. due to on-peak and off-peak hours. GTLBO is more efficient in cost reduction
than GA and TLBO as shown in Figure 7b. Similarly, the cost reduction by BAT, FPA and FBAT is high
from 6:00 p.m.–11:00 p.m. and 7:00 a.m. However, FBAT is more efficient in cost reduction than BAT
and FPA, respectively, as shown in Figure 7b. Table 3 shows the daily cost reduction by FPA, BAT and
FBAT, which are 3.87%, 12.32% and 25.23%, respectively. The hourly electricity cost of appliances is
shown in Figure 9.
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Figure 8. Hourly electricity cost of appliances. (a) TLBO, FPA and FTLBO; (b) GA, FPA and FGA.
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Figure 9. Hourly electricity cost of appliances. (a) GA, TLBO and GTLBO; (b) BAT, FPA and FBAT.

6.3. User Discomfort

Discomfort is caused due to two main reasons: delaying the operation of time-flexible appliances
and the running of the appliances before its starting time from the time suitable for the consumers.
From 6:00 p.m.–11:00 p.m. due to on-peak hours, user discomfort is maximum, whereas, from 12:00
a.m.–7:00 a.m. due to off-peak hours, user discomfort is minimum. Overall daily discomfort is depicted
in Figure 10, which shows that BAT has the highest user discomfort, whereas GTLBO has minimum
user discomfort. Comparison is made between parents and proposed hybrid techniques. Proposed
techniques outperform their parents techniques considering user discomfort. Hourly discomfort
caused by power-flexible appliances is illustrated in Figure 11. Figure 11a shows the hourly discomfort
by GA, TLBO, GTLBO and in unscheduled case. The hourly discomfort by GA, TLBO and GTLBO is
high during on-peak hours and a minimum at off-peak hours.
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Figure 10. Daily discomfort of appliances.
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6.4. PAR

PAR provides a measure of how peak electricity consumption affects the system, particularly in
efficiency and reliability. Figure 12 shows the scheduled and unscheduled PAR. The unscheduled
PAR is 1.62, while the PAR by: GA, TLBO, GTLBO, BAT, FPA, FBAT, FTLBO and FGA are 1.46,
1.41, 1.58, 1.53, 1.18, 0.89 and 1.07, respectively. It can also be noted that the PAR by the proposed
techniques: GTLBO, FTLBO, FBAT and FGA is 1.10, 0.89, 1.18, 1.07, respectively. This is less than their
parent techniques. FTLBO has the minimum PAR among all of the techniques. High PAR in case of
BAT resulted from peak power consumption as displayed in Figure 7. BAT has highest peak power
consumption and it resulted in the high PAR.
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Figure 12. Daily discomfort of appliances.

6.5. Feasible Region for Electricity Cost and User Discomfort

Figure 13 shows the feasible region between electricity cost and user discomfort. The total cost
for the unscheduled case is $16.62. Possible points are calculated using the minimum and maximum
combinations of price and user discomfort. The main objective is to calculate the total maximum
and minimum cost against maximum and minimum user discomfort. Reducing the overall energy
consumption cost ultimately results in increasing user discomfort. To achieve the economic goals for a
consumer, there is trade-off between electricity cost and user discomfort. Electricity price defined by
the utility ranges from $11.30/kWh–$11.53/kWh. The minimum and maximum user discomfort are
1.6 and 3.8, respectively. Total covered area is obtained under points P1(0, 1269.8), P2(2.8334, 1072),
P3(4.6191, 1036.8). To represent the feasible region, point P3 (4.6191, 1036.8) is plotted, which means
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that the electricity cost should be less than $11.53 to achieve the objective function of the minimal user
discomfort. Hence, all three points P1, P2, P3 collectively form our feasible region for cost reduction by
minimizing user discomfort. The feasible region using RTP is shown in Figure 13.
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Figure 13. Feasible region.

6.6. The Performance Parameters Trade-Off

Results show a trade-off between user discomfort and consumption cost. The feasible region for
consumption cost provided in the system model section shows that maximum saving can be achieved
by scheduling maximum load during off-peak hours. A relationship between user discomfort and cost
is illustrated by feasible region depicted in Figure 13. User discomfort greatly affects consumption cost,
i.e., by minimizing user discomfort, consumption cost increases with the increase of user discomfort,
and the consumption cost decreases as shown in Tables 3 and 4. Table 4 shows a performance trade-off
between cost and user discomfort. GA reduces cost by 37.95%; however, daily discomfort reduces
very little, i.e., 7.56%. Peak power consumption (PPC) and PAR is reduced to 9.87%. TLBO has
cost reduction of 26.74% and the daily user discomfort is 3.33%, whereas PPC and PAR are reduced
to 12.96%.

Table 4. Performance trade-off.

Technique Discomfort Cost ($) Technique Discomfort Cost ($)

GA 2.83 11.53 GTLBO 1.32 11.30
TLBO 2.50 13.61 FTLBO 1.58 11.01
FPA 1.76 17.86 FBAT 1.06 13.89
BAT 1.84 16.29 FGA 2.33 6.59

FPA has a cost reduction of 3.87%, and hence the decrease in discomfort is very high, i.e., 30.91%.
This is high due to the consumption of load during peak hours. The decrease in PPC and PAR is 38.27%
and 5.55%, respectively. BAT reduces cost up to 12.32%, while discomfort is up to 48.36%. The decrease
in PPC and PAR is 2.46%. Cost reduction by GTLBO is 39.17% and discomfort is minimized up
to 44.45%. The PPC and PAR are reduced by 32.09%. FTLBO reduces cost up to 40.75% and user
discomfort is minimized to 33.38%, while PPC and PAR are reduced by 45.06%. FBAT reduces cost and
user discomfort by 25.23% and 22.18%, while PPC and PAR are reduced by 27.16%. The cost reduction
by FGA is very high, i.e., 64.49% due to which daily user discomfort is reduced, i.e., PPC and PAR
are 33.95% reduced as shown in Table 3. Comparison provided in Table 3, which shows that hybrid
techniques perform best in terms of achieving minimum cost, user discomfort, PPC and PAR.
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7. Conclusions and Future Work

Residential load scheduling is a common method in DSM for smart homes. The electricity cost,
PAR and user discomfort are minimized using ECSU. Power elastic and time elastic appliances are
considered for the proposed scheme. Combined RTP and IBR pricing schemes are used to avoid the
buildings of peaks during off-peak hours. In this work, the heuristic algorithms: GA, TLBO, BAT and
FPA are implemented via Matlab to reduce cost, PAR and user discomfort. The daily cost, PAR and
user discomfort are reduced up to 37.95%, 9.87%, 7.56% by GA, 26.74%, 12.96%, 3.33% by TLBO, 3.87%,
5.55%, 30.91% by FPA, 12.32%, 2.46%, 48.36% by BAT, respectively. In addition, four hybrid heuristic
algorithms: GTLBO, FTLBO, FBAT and FGA are proposed by combining the best features of GA and
TLBO, FPA and TLBO, FPA and FBAT, FPA and GA. The daily cost, PAR and user discomfort are
reduced by proposed techniques: up to 39.17%, 32.09%, 44.45% by GTLBO, 40.75%, 45.06%, 33.38% by
FTLBO, 25.23%, 27.16%, 22.18% by FBAT, 64.49%, 33.95%, 12.72% by FGA, respectively. The simulation
results show that the performance of the hybrid techniques are better than their parent’s techniques
in term of reducing electricity cost, PAR and user discomfort. Moreover, a trade-off exists between
electricity cost and user discomfort, while reducing cost, PAR and user discomfort is compromised
by the proposed techniques. The user discomfort is decreasing with the increasing electricity cost.
FGA cost is the highest, i.e., $17.86 and user discomfort is the lowest, i.e., 1.76 among the parent
techniques. In addition, FBAT electricity cost is the highest, i.e., $13.89 and user discomfort is the
lowest, i.e., 1.06 among the proposed techniques.

In the future, the three parameters—electricity cost, PAR and user discomfort will be considered
for further optimization using heuristic algorithms. Furthermore, the fog computing concept will be
used to implement the above scenario for appliances’ scheduling and optimizing results. In addition,
the above scenario was implemented for a single home, and, in the future, it will further be simulated
for multiple homes using RES integration.
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