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Abstract: This paper proposes a real-time pricing scheme for the demand response management
between one energy provider and multiple energy hub operators. A promising energy trading
scenario has been designed for the near future integrated energy system. The Stackelberg game
approach was employed to capture the interactions between the energy provider (leader) and energy
consumers (follower). A distributed algorithm was proposed to derive the Stackelberg equilibrium,
then, the best strategies for the energy provider and each energy hub operator were explored in order
to maximize their benefits. Simulation results showed that the proposed method can balance the
energy supply and demand, improve the payoffs for all players, as well as smooth the aggregated
load profiles of all energy consumers.

Keywords: real-time pricing; demand response; load balance; Stackelberg game; integrated energy
system

1. Introduction

Conventional energy infrastructures such as electricity, natural gas, and heat networks, are mostly
planned and operated independently. However, with the developments of on-site generation
technologies, energy storage, combined heating and power (CHP) technologies, and demand side
management, as well as information and communication technologies, modern power systems are
becoming smart integrated energy systems [1,2]. The integrated energy system can be described as
an energy hub where multi energy carriers can be converted, stored and distributed to meet various
the energy demands of end users [3]. Given this environment, innovative business models arise and
the conventional power provider evolves into an integrated energy service provider, which is able to
supply electric power, natural gas, heat, cooling, etc. to energy consumers, including energy hubs [4].

Traditionally, utility companies increase the power supply level to maintain a balance of electricity
supply and demand when the load demand is high. With the help of advanced metering and
bi-directional communication infrastructures, the demand response (DR) is a promising method
to reshape the load profiles and balance the electricity supply and demand [5–8]. However, in the
context of smart integrated energy systems, the energy demands of consumers becomes diversified.
For example, energy hubs need to purchase electricity and natural gas from the integrated energy
provider (IEP) simultaneously. The IEP can develop optimal electricity and natural gas price strategies
to balance the supply and demand, as well as take advantage of the synergies between power and
natural gas. This is called an integrated demand response, in which energy customers not only can
shift their loads but also switch the energy types they consume [9].
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However, energy pricing schemes are still an open issue for integrated energy providers. Most of
the existing research focuses on the electricity pricing mechanism and power demand response.
For example, in [10], a Stackelberg game method is used to describe the power demand response
and electricity trading between one power provider and multiple consumers. In [11], the demand
side management in a smart grid is formulated as two non-cooperative games to investigate the
interactions between electricity providers and customers. A game-theoretic approach to optimize the
time-of-use electricity pricing is proposed in [12]. Furthermore, an efficient power pricing method is
proposed in [13] which can prevent users’ cheating. An autonomous and distributed demand side
energy management system among electricity users based on game theory is presented in [14]. In [15],
a Stackelberg game between utilities and end users to maximize their own payoffs is proposed in the
smart grid. In [16], a real-time pricing-based management strategy in a smart grid is proposed with a
hierarchical game method. A new real-time power pricing algorithm to minimize the peak-to-average
ratio (PAR) in aggregate load demand is proposed in [17]. In [18], the demand side management of
multiple electricity providers and multiple electricity consumers in future smart grids is discussed
based on non-cooperative game. Additionally, a flexible management strategy of wind power heating
is proposed in [19] to facilitate the consumption of curtailed wind based on game theory. In [20], two
energy strategies are proposed to maximize the social welfare of generators and energy consumers in
the smart grid based on a Stackelberg game.

Since integrated energy systems have both better environmental and economic benefits, extensive
research has focused on these systems along with the concept of the energy hub, and have mainly
included energy management [21–23], optimal energy flow [24,25], optimal configuration and
planning [26,27]. Furthermore, there are several studies which discuss demand response programs
for integrated energy systems with multi energy hubs. In [28], an autonomous demand response
program is discussed in the smart energy hub framework, and the interactions between smart energy
hubs are formulated as a non-cooperation game. In [29], the interactions among smart energy hubs
are also formulated as a non-cooperation game, and the potential game method is employed to
optimize the strategies for each energy hub. In [30], the strategic operation of the energy hubs in
a competitive electricity market is investigated, time of use and dynamic power pricing schemes
are compared, and an efficient algorithm for the energy management of energy hubs is proposed.
Also, in [11]demand side management game among a group of smart energy hubs is proposed.
However, these studies are mainly focused on the interactions between energy hubs, most of which are
formulated as non-cooperative games. The interactions between energy providers and energy hubs
are far from fully investigated.

In this paper, a multi energy pricing scheme is proposed to describe the interactions between an
integrated energy provider and multiple integrated energy consumers. The main contributions are
summarized as follows.

• A multi energy trading framework including one integrated energy provider and multiple
integrated energy consumers, is proposed.

• A price-based energy management strategy is proposed to manage the electricity and gas trading
between the integrated energy provider and smart energy hub operators.

• A Stackelberg game is proposed to capture the interactions between the integrated energy provider
(leader) and smart energy hub operators (followers).

• A distributed algorithm between the integrated energy provider and energy hubs is proposed to
derive the Stackelberg equilibrium, through which the optimal strategies for each player can be
determined and the balance of energy supply and demand can be kept.

The rest of this paper is organized as follows. Section 2 presents the model of a smart energy
hub. In Section 3, the system model is modeled in detail including the formulation of the Stackelberg
game and the distributed interactive algorithm is introduced. In Section 4, an illustrative example is
examined to analyze the proposed method. Conclusions are drawn in Section 5.
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2. Smart Energy Hubs

An energy hub is a unit where different energy resources can be converted, conditioned and stored.
By integrating modern communication, information and control technologies, the energy hub evolves
into a smart energy hub (SEH) [11]. Bi-directional communication infrastructure, smart energy meters
and a smart energy management system (SEMS) are embedded in the SEH. The SEMS is employed
to exchange real time data with the energy provider and energy consumers via the bi-directional
communication infrastructure. Furthermore, the SEMS is responsible for collecting information about
electricity and natural gas prices, the device status, the power and heating loads. Based on these data,
the SEMS makes optimal decisions and sends control signals to coordinate the operation of the whole
system [9].

Figure 1 illustrates the architecture of two typical types of smart energy hub. The type I SEH is
composed of a gas turbine, electric heat pump, and transformer. The type II SEH is comprised of a
gas turbine, gas boiler and transformer. The input ports of the two types of SEH are connected to the
electricity and natural gas grids. The output ports can simultaneously provide power and heating
energy services to end users. Coupled with power and gas networks and integrating various energy
converters, the SEH can consume electricity or natural gas flexibly to satisfy the diversified energy
demands of end consumers.
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Figure 1. Two typical types of smart energy hub.

From the perspective of integrated energy suppliers, the energy hubs are immediate electricity
and natural gas consumers. When the electricity tariff is high, the energy hubs tend to consume
more natural gas, and vice versa. Thus, the electricity load demand from the electricity utility can
be reduced in peak periods and increased in valley hours by optimizing the multiple input energy
carriers. For the end energy consumers, they are fed by the output energy of energy hubs immediately.
Thus, their thermal demands can be provided by the energy hubs instead of their air conditioners.
Also, their hot water and heating loads can be supplied by the energy hubs without working their water
heaters and heat pumps. Equivalently, the electricity demands are effectively reduced. Thus, from the
viewpoint of end energy users, their power and heating demands can be satisfied without changing
their electricity consumption behaviors and violating their comfort levels. Of course, the conventional
demand response programs (e.g., energy shifting) still work. Thus, in an integrated demand response
(IDR) program, energy consumers cannot only shift or curtail their energy consumption, but can also
switch the consumed energy type. By taking advantages of complementarities of multi-energy carriers,
the IDR becomes more flexible, economic and potential.

Take the input power of each energy converter as variables, then energy flows of the type I SEH
can be described by (1) and (2), and the type II SHE can be formulated as (3) and (4).
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A part of the power and heating loads of end users is flexible, thus, it can be shifted or adjusted
according to demand response signals. In this paper, the energy shifting of power and heating loads
are considered and can be expressed as follows [31]. (1− Rx)L0,t

n,x ≤ Ldr,t
n,x ≤ (1 + Rx)L0,t

n,x
T
∑

t=0
Ldr,t

n,x =
T
∑

t=0
L0,t

n,x
(5)

where x ∈ {e, h} is the index of load type, e and h denote electricity and heating load, respectively, Rx

denotes the load shifting ratio; the first term of Equation (5) denotes that the load shift should keep
within its limits, the second term of Equation (5) denotes the sum of load demands that are not changed
after the demand response, Ldr,t

n,x and L0,t
n,x are the load x after and before demand response, respectively.

3. The System Model

Figure 2 illustrates a smart integrated energy system consisting of one integrated energy provider
and N smart energy hub operators (SEHO). The energy provider might be an energy retailer or an
alliance of electricity and natural gas utility companies. The energy provider purchases electricity and
natural gas from the wholesale market and sells them to the smart energy hub operators in a retail
market. Each smart energy hub is equipped with two-way communication infrastructure, smart energy
meters and smart energy management system. Bi-directional communication is available between the
energy provider and a cluster of SEHOs through a local area network (LAN).

In general, the SEHO is responsible for the normal operation of the SEH and the energy
consumption management of end users. One of the most important tasks for the SEHOs is to accurately
forecast the power and heating aggregate load demands. Once information has been received, such as
the aggregate load demand, the electricity and natural gas prices broadcasted by the energy supplier,
then the SEHOs will decide the amount of purchased electricity and natural gas from the energy
provider, and coordinate the operation of energy conversion devices to meet the load demands of end
users and maximize their revenues.

An integrated demand response program is implemented in this integrated energy system,
the real-time electricity and natural gas prices are broadcast to all the SEHOs by the IEP to encourage
them to optimize energy consumptions. In the following sections, a more detailed interaction model
between one energy provider and a cluster of smart energy hubs will be introduced.
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Figure 2. The schematic diagram of a smart integrated energy system consisting of one energy provider
and N smart energy hub operators.

3.1. Integrated Energy Provider Model

The integrated energy provider is assumed to be an alliance of ab electricity utility company and a
natural gas utility company. It can supply the electricity and natural gas to energy hubs simultaneously.
In general, the energy supply cost is a monotonically increasing function of the amount of supplied
energy. Without losing generality, a quadratic function is taken to formulate the energy cost at time
slot t [9,10].

Ct(gt) = aX
t · (gt)

2 + bX
t · gt + cX

t , aX
t > 0 (6)

where aX
t , bX

t and cX
t are cost coefficients, which can be predetermined by the energy provider. The gt

is the total electricity Eto
t or the total natural gas Gto

t supplied by the energy provider at time slot t. It is
obvious that the energy cost function is strictly convex.

In the IDR program, the real-time electricity price pe,t and the real-time gas price pg,t are
determined by the difference in supply and demand, which are broadcast to the smart energy hub
operators by the energy provider to encourage them to adjust their energy consumption behaviors.

The payoff Uto
EP(Eto

t , Gto
t ) of energy provider during a day time can be defined as a function of Eto

t
and Gto

t :
Uto

EP(Eto
t , Gto

t ) = Eto
t pe,t + Gto

t pg,t − Ct(Eto
t )− Ct(Gto

t ) (7)

where Eto
t pe,t and Gto

t pg,t are the profits from selling electricity and natural gas to the energy hub
operators at time slot t, respectively. Ct(Eto

t ) and Ct(Gto
t ) are the electricity supply cost and natural gas

supply cost at time slot t, respectively.
Once the real-time energy prices pe,t and pg,t are determined, the energy provider aims to supply

the smart energy hub operators a certain amount of electricity and natural gas to maximize his
profits. The optimal strategy profiles of the energy provider can be obtained by solving the following
optimization problem ((8)–(9)):
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(Eto
t , Gto

t )
∗
= arg max(Uto

EP(Eto
t , Gto

t )) (8)

s.t.

 ∑
n∈N

Ein
n,t ≤ Eto

t ≤ Eto
t,max

∑
n∈N

Gin
n,t ≤ Gto

t ≤ Gto
t,max

(9)

The constraint (9) guarantees that the electricity and gas supplied by the energy provider can meet
the demands of all the energy hub operators. N = [1, · · · , n, · · · , N] denotes the set of smart energy
hub operators. The energy pricing mechanism based on the supply and demand will be discussed in
detail in Section 3.3.

3.2. The Smart Energy Hub Operator Model

The utility function of each smart energy hub operator n can be expressed as:

Un(Ein
n,t, Gin

n,t) = ωn,t(Ein
n,t)− Ein

n,t pe,tωn,t(Gin
n,t)− Gin

n,t pg,t (10)

where Ein
n,t pe,t and Gin

n,t pg,t are the payments of operator n for consuming electricity Ein
n,t and natural gas

Gin
n,t at time t, respectively. ωn,t(Ein

n,t) and ωn,t(Gin
n,t) denote the benefits for the satisfaction of energy

consumption. Without losing generality, a quadratic function can describe the benefits gained by
consuming electricity or natural gas [9,10].

ωn,t(Xin
n,t) = αX

n,tX
in
n,t −

βX
n
2 (Xin

n,t)
2

αX
n,t > 0 βX

n > 0 (11)

where Xin
n,t can be Ein

n,t or Gin
n,t. Besides, αX

n,t is a consumer preference parameter characterizing customer
types, which may vary with different consumers and time slots. It can be seen that the consumer with
a greater αX

n,t prefers to consume more Xin
n,t to improve the satisfaction level of energy consumption,

and βX
n is a predetermined constant.

Each smart energy hub operator optimizes their energy consumption strategies Ein
n,t and Gin

n,t to
maximize their utility and meet the end-use energy demands, which can be obtained by solving the
following optimization problems.{

(Ein
n,t, Gin

n,t)
∗ = arg max[Un(Ein

n,t, Gin
n,t)]

s.t. (1), (2), (5) or (3), (4), (5)
(12)

3.3. The Energy Pricing Mechanism: Stackelberg Game Approach

With the further expansion of business, the traditional utility company has become an integrated
energy provider, which can provide multi energy resources such as electricity, natural gas, fresh water,
etc. to energy consumers. As illustrated in Figure 2, the energy provider simultaneously provides
electricity and natural gas to N smart energy hub operators. Meanwhile, the energy provider is the
electricity and natural gas price setter. Through setting the electricity and gas prices, the energy
provider aims to balance the supply and demand as well as maximize their profits. When the energy
prices are broadcast to the SEHOs, the SEHOs will optimize their energy consumption and determine
the electricity and natural gas demands to maximize their energy consumption satisfaction. In contrast,
the constraint (9) shows that the adjusted energy demands of SEHOs will affect the amount of electricity
and gas supplies of the energy provider. In other words, the energy provider can use the energy price
as a weapon to induce the smart energy hub operators to participate in the IDR programs as well as
keep the energy supply and demand balance.

The interactions between the IEP and SEHOs can be described with the Stackelberg game,
where the IEP acts as the leader, and the SEHOs are the followers. A classic game has three elements,
the players, the strategy sets and the utility or payoff functions. The one-leader, and N-followers
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Stackelberg game GS captures the interactions between the IEP and SEHOs and can be formally
identified as follows.

GS =
{

EP ∪N; ΩEP, Ωn∈N ; Uto
EP, Un

}
(13)

• Players EP ∪N:

The energy provider (EP) acts as the leader and the SEHOs in set N = [1, · · · , N] are followers in
response to the strategies of the energy provider.

• Strategy sets ΩEP and Ωn∈N :

ΩEP =

{
(Eto

t , Gto
t )| ∑

n∈N
Ein

n,t ≤ Eto
t ≤ Eto

t,max, ∑
n∈N

Gin
n,t ≤ Gto

t ≤ Gto
t,max

}
denotes the feasible strategy

set of the energy provider referring to (9), from which the energy provider determines
their energy supply strategy (Eto

t , Gto
t ), namely, the daily electricity and natural gas supply

vectors. Each SEHO will select their strategies (Ein
n,t, Gin

n,t) from the feasible strategy set Ωn ={
(Ein

n,t, Gin
n,t)
∣∣s.t.(1), (2), (5)or(3), (4), (5)

}
, which is defined by constraints (1), (2), (5) or (3), (4), (5).

• Utility or payoff functions Uto
EP and Un:

The payoff function Uto
EP of IEP denotes the profits gained by selecting the strategy (Eto

t , Gto
t ),

and the utility function Un describes the revenue of selecting the strategy (Ein
n,t, Gin

n,t) for each SEHO.
It is obvious that the objectives of the IEP and each SEHO are to maximize their benefits (7) and (10),
respectively, through adjusting their strategies.

Definition 1. Let φ∗ denote the strategy vector of the energy supplier and ρ∗ denote the strategy vector of
all the smart energy hub operators. If the following conditions are satisfied, the strategy vector (φ∗, ρ∗)

will be the Stackelberg equilibrium (SE) of the proposed GS game [10].

Uto
ep(φ

∗, ρ∗) ≥ Uto
ep(φ, ρ∗) , ∀φ ∈ ΩEP (14)

Un(φ
∗, ρ∗) ≥ Un(φ

∗, ρn, ρ∗−n) , ∀ρn ∈ Ωn , ∀n ∈ N (15)

where ρ∗−n denotes the equilibrium strategies of all energy hub operators except energy hub operator n. At the
SE, no one will benefit by deviating from his strategies.

Theorem 1. For the proposed Stackelberg game GS, an unique Stackelberg equilibrium exists between the energy
provider and smart energy hub operators if the following conditions are satisfied [10,15].

(1) The strategy set of each player is nonempty, convex, and compact.
(2) Each smart energy hub operator has an unique optimal best-response strategy once informed of the

strategies of energy provider.
(3) The game leader energy provider will admit a unique optimal strategy profile, once given the best

strategies for all the smart energy hub operators.
The proof progressions of this theorem are given in Appendix A.

3.4. Distributed DR Algorithm and Implementation

To protect the privacy of the integrated energy consumers and reduce the communication
pressure [32], a distributed algorithm is developed to determine the strategy profiles of each SEHO
and the IEP in the Stackelberg equilibrium (SE). Figure 3 illustrates the interactions between the IEP
and the SEHOs when the IDR programs are implemented in the integrated energy system based on
the real-time electricity and natural gas prices. Let k denote the iteration number. Let pk

e,t and pk
g,t

denote the electricity price and natural gas price in iteration k at time slot t, respectively. The energy
price update module embedded in the smart energy management system of the energy provider is
responsible for updating the electricity and gas prices by the following formulas, respectively.
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pk+1

e,t = [pk
e,t + γ

(
∑

n∈N
Ein∗

n,t (pk
e,t)− Eto∗

t (pk
e,t)

)
]+

pk+1
g,t = [pk

g,t + γ

(
∑

n∈N
Gin∗

n,t (pk
g,t)− Gto∗

t (pk
g,t)

)
]+

(16)

where [·]+ is the projection onto the feasible space defined by constraints (1)–(12), γ is the step size,
and [[] has proved that there is an upper bound on the step size, a small enough step size can guarantee
the convergence, in this paper γ = 10−4, which is selected by trial and error [33]. More information
about the method to choose can be found in [9].Energies 2018, 11, x FOR PEER REVIEW  9 of 19 
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Figure 3. Interactions between the energy provider and smart energy hubs.

Actually, the energy price update module acts in the coordinator role between the energy provider
and smart energy hub operators. As shown in Figure 3, in each iteration at time slot t, the energy price
update module of the energy provider updates the prices pk

e,t, pk
g,t according to the strategies of the

energy provider and all the smart energy hub operators, and then broadcasts them to each smart energy
hub operator and the energy supply update module. When the prices are received, each smart energy
hub operator will update their energy consumption strategies Ein,∗

n (pk
e,t) and Gin,∗

n (pk
g,t), and send

them back to the energy provider for updating the energy supply strategies Eto,∗(pk
e,t) and Gto,∗(pk

g,t).
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The distributed algorithm is summarized in Algorithm 1. The first line is the initialization.
δ denotes the iteration precision, p0

e and p0
g are the initial electricity and gas prices, respectively.

The loop in lines 2–9 describe the interactions between the energy provider and the smart energy
hub operators at each time slot t. In line 5, each smart energy hub receives the electricity price pk

e,t
and gas price pk

g,t broadcasted by the energy provider. In line 6, each smart energy hub updates

its optimal energy demands Ein,∗
n (pk

e,t) and Gin,∗
n (pk

g,t) according to (12), and sends them back to the
energy provider while line 8 shows that the energy provider will update its optimal energy supply
Eto,∗(pk

e,t) and Gto,∗(pk
g,t) by solving (8)–(9). Once the energy supply and energy demand strategies

have been received, the energy price update module of the energy provider will update the electricity
price pk

e,t and natural gas price pk
g,t. In line 10, the iteration number k is updated and the stopping

criterion for the algorithm is given in line 11. It is obvious that when the energy supply equals the
energy demand, the energy prices will converge. That is to say, the algorithm guarantees the balance
of energy supply and demand. Also, at each time slot, the real-time energy prices, the optimal energy
supply and consumption strategies will be determined.

Algorithm 1: An iterative algorithm executed by the EP and SEHOs

1: Initialization: k = 0, δ = 10−5, p0
e , p0

g.
2: While t = TT
3: Repeat
4: For each SEHO n
5: Receive the new electricity price pk

e, t and gas price pk
g, t broadcasted by energy provider.

6: Update the electricity consumption value Ein,k∗
n, t and gas consumption value Gin,k∗

n, t according to (12),
and send them back to the energy provider.
7: End for
8: Update the amount of electricity supply Eto,k∗

t and the natural gas supply Gto,k∗
t amount by solving (8)–(9).

9: Update the electricity price pk
e,t and natural gas price pk

g,t according to (16).
10: k= k+1.
11: Until max

(∣∣∣pk+1
e,t − pk

e,t

∣∣∣, ∣∣∣pk+1
g,t − pk

g,t

∣∣∣) < δ.
12: End while.

4. Case Studies

4.1. Basic Parameters

In this section, a smart integrated energy system consisting of one integrated energy provider and
four smart energy hubs are taken as an example to evaluate the performance of the proposed integrated
demand response program. The first two smart energy hubs are assumed as type II, and the last two
smart energy hubs are assumed as type I. Each smart energy hub is managed by one smart energy hub
operator and is responsible for satisfying the power and heating demands of one residential community
which accommodates about 500 persons. The simulation time cycle is divided into T = 24 time slots
which represents 24 h of a day. Assume the hourly aggregate power loads Ln,e,t and heating loads Ln,h,t
of each smart energy hub obey the normal distribution, Ln,e,t ∼ N

(
µe,t, δ2

e
)

, Ln,h,t ∼ N
(
µh,t, δ2

h
)

[34].
The hourly aggregate power loads and heating loads of all the smart energy hubs are generated
randomly from the normal distribution. The hourly mean parameters µe,t and µh,t are given in Figure 4.
The standard deviation parameters for aggregate power loads and heating loads are 40 kW and 30 kW,
respectively. The parameters of the two types of smart energy hubs are given in Table 1 and all the
parameters are chosen randomly from their corresponding intervals.



Energies 2018, 11, 2858 10 of 19

Energies 2018, 11, x FOR PEER REVIEW  10 of 19 

 

4. Case Studies 

4.1. Basic Parameters 

In this section, a smart integrated energy system consisting of one integrated energy provider 

and four smart energy hubs are taken as an example to evaluate the performance of the proposed 

integrated demand response program. The first two smart energy hubs are assumed as type Ⅱ, and 

the last two smart energy hubs are assumed as type Ⅰ. Each smart energy hub is managed by one 

smart energy hub operator and is responsible for satisfying the power and heating demands of one 

residential community which accommodates about 500 persons. The simulation time cycle is divided 

into T = 24 time slots which represents 24 h of a day. Assume the hourly aggregate power loads 𝐿𝑛,𝑒,𝑡 

and heating loads 𝐿𝑛,ℎ,𝑡 of each smart energy hub obey the normal distribution, 𝐿𝑛,𝑒,𝑡~𝑁(𝜇𝑒,𝑡 , 𝛿𝑒
2) ,

𝐿𝑛,ℎ,𝑡~𝑁(𝜇ℎ,𝑡 , 𝛿ℎ
2) [34]. The hourly aggregate power loads and heating loads of all the smart energy 

hubs are generated randomly from the normal distribution. The hourly mean parameters 𝜇𝑒,𝑡 and 

𝜇ℎ,𝑡 are given in Figure 4. The standard deviation parameters for aggregate power loads and heating 

loads are 40 kW and 30 kW, respectively. The parameters of the two types of smart energy hubs are 

given in Table 1 and all the parameters are chosen randomly from their corresponding intervals. 

 

Figure 4. Mean value of energy loads of each energy hub (EH). 

Table 1. Parameters of smart energy hubs. 

Smart 

EH Type ,n T
 ,

e

n GT
 ,

h

n GT
 ,n EHPCOP

 ,n GB
 

Type Ⅰ [0.95, 0.98]* [0.3, 0.38] [0.4, 0.48] [2.5, 3.5] — 

Type Ⅱ [0.92, 0.96] [0.28, 0.33] [0.44, 0.5] — [0.85, 0.95] 
1 [a, b]* represents that the parameter obeys the uniform distribution of the range [a, b]. 

The coefficients ,

E

n t  for the type I and type Ⅱ smart energy hubs were chosen randomly from 

[4,5] and [2.5,3.5], respectively. The coefficients ,

G

n t  for the type I and type Ⅱ smart energy hubs 

were chosen randomly from [3,4] and [4.5,5.5], respectively. Two cases were considered, the energy 

shifting of aggregate power and heating loads of end users was not considered in case 1, but were 

considered in case 2. 
E

n  and 
G

n  for all the SEHs are 0.0025 and 0.002, respectively. 
41 10E

ta  

, 
40.6 10G

ta   , 0E G

t tb b  , 0E G

t tc c  , 
41 10   , 0.2xR  . The other parameters of 

the two types of energy hubs are given in Table 2. 

  

Figure 4. Mean value of energy loads of each energy hub (EH).

Table 1. Parameters of smart energy hubs.

Smart EH Type ηn,T ηe
n,GT ηh

n,GT COPn,EHP ηn,GB

Type I [0.95, 0.98]* [0.3, 0.38] [0.4, 0.48] [2.5, 3.5] —
Type II [0.92, 0.96] [0.28, 0.33] [0.44, 0.5] — [0.85, 0.95]

1 [a, b]* represents that the parameter obeys the uniform distribution of the range [a, b].

The coefficients αE
n,t for the type I and type II smart energy hubs were chosen randomly from [4,5]

and [2.5, 3.5], respectively. The coefficients αG
n,t for the type I and type II smart energy hubs were

chosen randomly from [3,4] and [4.5, 5.5], respectively. Two cases were considered, the energy shifting
of aggregate power and heating loads of end users was not considered in case 1, but were considered in
case 2. βE

n and βG
n for all the SEHs are 0.0025 and 0.002, respectively. aE

t = 1 × 10−4, aG
t = 0.6 × 10−4,

bE
t = bG

t = 0, cE
t = cG

t = 0, δ = 1 × 10−4, Rx = 0.2. The other parameters of the two types of energy
hubs are given in Table 2.

Table 2. Parameters of the devices in the smart energy hubs.

Type I ET
n EEHP

n GGT
n

1500 kW 500 kWh 4000 kWh

Type II ET
n Gin

n GGB
n

2000 kW 5000 kW 1000 kW

4.2. Simulation Results and Discussions

4.2.1. Real-Time Energy Prices and Load Profiles

Figure 5 illustrates the power and gas prices before and after demand response. Figure 6 shows
the aggregated electricity and natural gas loads provided by the energy provider before and after DR
(Equation (5)), respectively. It can be seen that the energy prices vary with real time, proportional to
the aggregated energy demands during that hour.
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Figure 6. Real time energy supply by the energy provider (EP) before and after DR.

Figures 7 and 8 show the purchased power and the purchased gas for each SEH, respectively.
Also, the power and gas demand for each SEH are shifted from peak hours to off-peak hours. This is
because, before the implementation of the demand response, the energy prices during peak hours are
high; when the demand response is employed, all the four energy hub operators will change their
energy demands, some peak loads are shifted to off-peak hours. As a result, the energy demands
reduce during peak hours and increase during off-peak hours. The energy prices also vary with the
total energy demands.
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4.2.2. Comparisons of the Peak-to-Average Ratio (PAR) 
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aggregated load demands. The PAR of electricity and natural gas provided by the energy provider 

can be expressed as: 

Figure 8. Hourly gas demands of all EHs before and after DR.

Besides, Figure 9 illustrates the hourly energy supply and demand of the whole integrated energy
system before and after the demand response. It is clear that the supply and demand stays balanced
at each time slot. This is because the pricing method in (16) can guarantee the supply and demand
balance. The results demonstrate the effectiveness of this pricing method, and the integrated demand
response also performs well in peak-load shifting.
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4.2.2. Comparisons of the Peak-to-Average Ratio (PAR)

The energy provider can benefit from reducing the peak-to-average ratio (PAR) of the aggregated
load demands. The PAR of electricity and natural gas provided by the energy provider can be
expressed as:

PARE =
max Eto

t
T
∑
t

Eto
t /T

, PARG =
max Gto

t
T
∑
t

Gto
t /T

(17)

Table 3 gives the PAR of loads before and after the demand response. If all of the energy hubs do
not implement the demand response programs, the PAR for the electricity and natural gas loads of the
energy provider is 1.370 and 1.214, respectively. If the demand response programs are applied to their
end users, the PAR for the electricity loads of the energy provider is reduced to 1.143, about 16.57%
less, and the PAR for the natural gas loads of the energy provider is reduced to 1.077, about 11.29%
less. Thus, the profiles of electricity and natural gas loads become smooth, which demonstrates that
the integrated demand response has an advantage in smoothing the load profiles.

Table 3. PAR of loads before and after DR.

Items Before DR After DR

PAR of Electricity 1.370 1.143
PAR of Natural gas 1.214 1.077

4.2.3. The Convergence of the Demand Response Algorithm

Figure 10 shows the convergence processes of the electricity and gas prices without or with
demand response of the end users. In each iteration, the IEP adjusts its energy supply strategies
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according to the energy consumption strategies of SEHOs, while the SEHOs adjust their energy
consumption based on the real-time prices. According to (16), the interactions will stop when the
supply and demand balance is satisfied. It can be seen from the results that the demand response
algorithm converges very fast. The energy prices converge within 10 iterations.
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Figure 11 shows the convergence processes of the payoffs of energy hubs and the cost of the
energy provider. The payoffs and cost all converge within 10 iterations. Besides, the payoffs of all
energy hubs will increase by considering the demand response and the cost of the energy provider
will decrease by considering the demand response. Specifically, the payoffs of EH1, EH2, EH3 and
EH4 before implementing the demand response are $74,307.52, $50,946.09, $67,747.64 and $55,291.27
respectively. When consider the demand response, the payoffs increase to $78,812.14, $55,352.93,
$72,796.12 and $60,554.23, respectively. Additionally, the operation costs of the energy provider
decrease from $48,150.61 to $46,005.76 by considering demand response. Thus, both the energy hub
operators and energy providers can benefit from the integrated demand response. As discussed above,
the pricing mechanism has a good convergence performance.

Figure 12 illustrates the deviations in energy prices (defined in line 11 of Algorithm 1) between
two iterations at time slot 13, the deviation meets the iteration precision at the 10th iteration. When the
iteration precision is satisfied, the energy prices are convergent, and the energy supply and demand is
balanced. The game reaches equilibrium, neither the energy provider nor the energy operators will
change their strategies. The deviations in energy prices for other time slots show the similar patterns.
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5. Conclusions

In this paper, a real-time pricing scheme for energy management between one integrated energy
provider and multiple energy hub operators was proposed. The interaction between the energy
provider (leader) and energy consumers (follower) was formulated as a 1-leader and N-follower game.
An interactive algorithm was proposed to derive the Stackelberg equilibrium, through which the best
strategies of for energy provider and each energy hub operator are determined to maximize their own
benefits. Moreover, the existence and uniqueness of the Stackelberg equilibrium have been proved.

Numerical results showed that the proposed demand response method based on the Stackelberg
game can describe the interactions between the IEP and SEHOs and balance the energy supply
and demand. Besides, this method can also improve the payoffs for players, as well as smooth the
aggregated load profiles for all energy consumers. Furthermore, the pricing method has a good
convergence performance and the error was no more than 10−5.

Renewable energy and energy storage devices were not considered in this paper, which could be
considered as an extension of the current work. Also, more specific models of power or heating loads
could be considered and discussed in future work.
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Nomenclature

SEHO Smart energy hub operator
EP Energy provider
SEH Smart energy hub
SEMS Smart energy management system
DR Demand response
T Transformer
EHP Electric heat pump
GT Gas turbine
GB Gas boiler
n Index of SEH
t Index of time slot
x Index of load type
e/h Electricity/heating load
X ∈ {E, G} Index of electricity or gas
TT The set of time slots
aX

t /bX
t / cX

t Cost coefficients of EP
aX

n,t/βX
n Preference parameter of SEHO

Ein
n,t/Gin

n,t Electricity/gas purchased by SEH n
ET

n,t/EEHP
n,t Power consumed by T/EHP

GGT
n,t /GGB

n,t Gas consumed by GT, GB
Le

n,t/Lh
n,t power/heating load

ηT
n /ηGB

n Efficiency of T/GB
ηGT,e

n /ηGT,h
n Electrical/heating efficiency of GT

COPEHP
n Coefficient of performance of EHP

pe,t/pg,t Real time power/gas price
Rx Load shifting ratio
Ldr,t

n,x /L0,t
n,x Load x after/before DR

Eto
t /Gto

t Total electricity/natural gas supplied by EP
Eto

t,max/Gto
t,max Maximum electricity/natural gas supplied by EP

γ Step size

Appendix A

Proof of Theorem 1:

Proof 1. The sets Ωn and ΩEP defined in (1)–(5) and (9) are linear equality (i.e., constraints (1), (3), (5)) and
convex constraints (i.e., constraints (2), (4), (5) and (9)). These sets are obviously defined as nonempty, convex and
compact [35].

Proof 2. Once the strategies of the energy provider are received, the best response functions can be directly
obtained through taking the first order partial derivative of Un(Ein

n , Gin
n ) with respect to Ein

n,t and Gin
n,t, respectively.

∂Un

∂Ein
n,t

= aE
n,t − βE

n,tE
in
n,t − pe,t (A1)
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∂Un

∂Gin
n,t

= aG
n,t − βG

n,tG
in
n,t − pg,t (A2)

The second order partial derivative of Un(Ein
n , Gin

n ) can be calculated as follows.

∂2Un

∂Ein
n,t

2
= −βE

n,t (A3)

∂2Un

∂Gin
n,t

2
= −βG

n,t (A4)

∂2Un

∂Ein
n,t∂Gin

n,t
= 0,

∂2Un

∂Gin
n,t∂Ein

n,t
= 0 (A5)

The Hessian matrix:

H(Un) =

 ∂2Un
∂Ein

n,t
2

∂2Un
∂Ein

n,t∂Gin
n,t

∂2Un
∂Gin

n,t∂Ein
n,t

∂2Un
∂Gin

n,t
2

 (A6)

Since βE
n,t > 0, βG

n,t > 0, then the value of (A3) and (A4) are always negative; therefore, all the diagonal
elements of H(Un) are negative; all the off-diagonal elements are zeros, thus all the principal minors become
negative, and then the hessian matrix is negative definite. Therefore, the payoff function Un(Ein

n , Gin
n ) is strictly

concave in ΩEP. Thus, each smart energy hub operator will have a unique optimal best-response strategy once
the strategies of the energy supplier is announced.

Proof 3. Once the optimal strategies of all the smart energy hub operator have been determined, the Ωn is convex.
Because the energy cost function Ct(gt) is strictly convex, so if given the energy prices pe,t and pg,t, the utility
function Uto

es(E
to, Gto) in (7) is strictly concave. Therefore, the optimization problem described by (8) and (9) is

a convex optimization problem and it has a unique solution [9,35]. Thus, the game leader energy supplier will
disclose a unique optimal strategy when given the best strategies of all the energy hub operators.
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